INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal-500043, Hyderabad
B.Tech VI SEMESTER END EXAMINATIONS (REGULAR) - JULY 2023

Regulation: UG-20
FINITE ELEMENT ANALYSIS
Time: 3 Hours
(AERONAUTICAL ENGINEERING)
Max Marks: 70

Answer ALL questions in Module I and II
 Answer ONE out of two questions in Modules III, IV and V
 All Questions Carry Equal Marks
 All parts of the question must be answered in one place only

MODULE - I

1. (a) A simply supported beam of length ' 1 ' subjected to a UDL on the entire span and a point load P at the center of the span. Using Rayleigh Ritz method to determine the deflection at the mid span and slope.
[BL: Apply| CO: 1|Marks: 7]
(b) Consider a bar as shown in Figure 1. An axial load of 200 kN is applied at point P. Take $A_{1}=2400 \mathrm{~mm}^{2}, E_{1}=70 G P a, A_{2}=600 \mathrm{~mm}^{2}$ and $E_{2}=200 G P a$. Calculate the following
i) The nodal displacement at point P
ii) Stress in each material
iii) Reaction forces
[BL: Apply| CO: 1|Marks: 7]

Figure 1
MODULE - II
2. (a) Explain the principle of minimum potential energy. Determine the shear forces and bending moments for the cantilever beam having length ' 1 '.
[BL: Apply| CO: 2|Marks: 7]
(b) Determine the nodal displacements, element stresses and support reactions in the truss structure shown in Figure 2, assuming points 1 and 3 are fixed. Use $\mathrm{E}=70 \mathrm{GPa}$ and $A=200 \mathrm{~mm}^{2}$
[BL: Apply| CO: 2|Marks: 7]

Figure 2

MODULE - III

3. (a) Summarize about CST element. State its properties and applications. Distinguish between CST and LST elements.
[BL: Understand| CO: 3|Marks: 7]
(b) For a constant strain triangular element shown in Figure 3, assemble strain-displacement matrix.

Take $\mathrm{t}=20 \mathrm{~mm}$ and $E=200 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. All dimensions are in mm
[BL: Apply| CO: 3|Marks: 7]

Figure 3
4. (a) List the conditions for a problem to be axi-symmetric. Obtain shape function for an eight noded quadrilateral element.
[BL: Understand| CO: 4|Marks: 7]
(b) For an isoparametric quadrilateral element shown in Figure 4, determine the local coordinates of the point P which has cartesian coordinates $(7,4)$.
[BL: Apply| CO: 4|Marks: 7]

Figure 4

MODULE - IV

5. (a) Determine the one dimensional equation for one dimensional heat conduction element with free end convection.
[BL: Apply| CO: 5|Marks: 7]
(b) A wall of 0.9 m thickness is having thermal conductivity of $1.2 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The wall is to be insulated with a material of thickness 0.09 m having an average thermal conductivity $0.3 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The surface temperature is $1000^{\circ} \mathrm{C}$ and outside insulation exposed to atmospheric air at $40^{\circ} \mathrm{C}$ with heat transfer coefficient $35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Use finite element method to calculate the nodal temperature.
[BL: Apply| CO: 5|Marks: 7]
6. (a) Obtain the stiffness matrix for heat flow in a rectangular fin, where k, h and P denotes thermal conductivity, convective heat coefficient and perimeter of fin. [BL: Apply| CO: 5|Marks: 7]
(b) Consider a brick wall of thickness $0.3 \mathrm{~m}, \mathrm{k}=0.7 \mathrm{~W} / \mathrm{m} \mathrm{K}$. The inner surface is at $28^{\circ} \mathrm{C}$ and the outer surface is exposed to cold air at $-15^{\circ} \mathrm{C}$. The heat transfer coefficient associated with the outside surface is $40 \mathrm{~W} / \mathrm{m}^{2} K$. Determine the steady state temperature distribution within the wall and also the heat flux through the wall. Use two elements and obtain the solution.
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Find the natural frequencies of vibrations of a simple cantilever beam. Mention the convergence requirements in the finite element method.
[BL: Apply| CO: 6|Marks: 7]
(b) Give the lumped mass matrix for the following elements
i) Beam element
ii) Plane truss element
iii) CST element.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Differentiate between boundary value problem and initial value problem. Explain the importance of element mass matrix in FEM with suitable example. [BL: Understand| CO: 6|Marks: 7]
(b) Find the natural frequencies of longitudinal vibrations of the same stepped shaft of areas A and 2A and of equal lengths (L), when it is constrained at one end, as shown in Figure 5.
[BL: Apply| CO: 6|Marks: 7]

Figure 5
$-\circ \circ \bigcirc \circ \circ-$

