INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal-500043, Hyderabad

B.Tech VI SEMESTER END EXAMINATIONS (REGULAR) - JULY 2023

Regulation: UG-20

COMPILER DESIGN

Time: 3 Hours

Hall Ticket No

(COMMON TO CSE(CS) | CSE(DS))

Max Marks: 70

Answer ALL questions in Module I and II Answer ONE out of two questions in Modules III, IV and V All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{MODULE}-\mathbf{I}$

(a) What are the various phases of the compiler? Write down the output of each phase for expression a:=b+c*60. [BL: Understand| CO: 1|Marks: 7]
(b) Construct the equivalent finite state transition diagram for the given regular expression (a/b)*abb.

[BL: Apply| CO: 1|Marks: 7]

$\mathbf{MODULE}-\mathbf{II}$

- 2. (a) Give the parse tree for the string w = (a,(a,(a,a))) by following the given grammar. S \rightarrow (L) | a
 - $L \rightarrow L, S \mid S$ [BL: Understand] CO: 2[Marks: 7]
 - (b) Compute the FIRST and FOLLOW of the given grammar [BL: Apply| CO: 2|Marks: 7] $E \rightarrow E + T / T$ $T \rightarrow T F / F$ $F \rightarrow F * | a | b$

MODULE – III

- 3. (a) Construct a syntax directed definition for constructing a syntax tree for assignment statements. S \rightarrow id:=E
 - $$\begin{split} & E \rightarrow E1 + E2 \\ & E \rightarrow E1 * E2 \\ & E \rightarrow E1 \\ & E \rightarrow (E1) \\ & E \rightarrow id \end{split}$$

[BL: Understand] CO: 3|Marks: 7]

(b) Apply the S-attribute definition and construct syntax tree for a simple expression grammar involving only the binary operators + and -. As usual, these operators are at the same precedence level and are jointly left associative. All nonterminal have one synthesized attribute node, which represents a node of the syntax tree.

Production: $E \rightarrow E1 + T E \rightarrow T T \rightarrow (E) T \rightarrow id \mid num$ [BL: Apply| CO: 3|Marks: 7]

- 4. (a) What is a syntax tree? Describe construction of syntax tree for expression? Give example to support your description. [BL: Understand] CO: 4|Marks: 7]
 - (b) Generate the three address statement for the given expression $a = (b + c)^*(b + c)^*2$.

[BL: Apply| CO: 4|Marks: 7]

$\mathbf{MODULE}-\mathbf{IV}$

- 5. (a) What is symbol table? What type of information is stored in it? Illustrate type checking with necessary diagram. [BL: Understand] CO: 5|Marks: 7]
 - (b) Analyze the differences among the various kind of memory in runtime storage allocation strategies. [BL: Apply] CO: 5|Marks: 7]
- 6. (a) Discuss how names are stored in symbol table? Illustrate the quick sort example for storage allocation strategies. [BL: Understand] CO: 5[Marks: 7]
 - (b) How type checker can handle arrays, pointers, statements, and functions? Explain about specification of simple type checker. [BL: Understand] CO: 5[Marks: 7]

$\mathbf{MODULE}-\mathbf{V}$

7. (a) What are the principal sources of optimization? Explain in detail with suitable examples.

[BL: Understand] CO: 6|Marks: 7]

(b) Construct the basic block for the given three address code.

		1	a = 1	
		2	b = 2	
		3 L0	c = a + b	
		4	d = c - a	
		5	If $c < d$ goto L2	
		6 L1	$\mathbf{d} = \mathbf{b} + \mathbf{d}$	
		7	If $d < 1$ go to L3	
		8 L2	$\mathbf{b} = \mathbf{a} + \mathbf{b}$	
		9	e = c - a	
		10	If $e = 0$ goto Lo	
		11	a = b + d	
		12	$\mathbf{b} = \mathbf{a} - \mathbf{d}$	
		13	goto L4	
		14 L3	d = a + b	
		15	e = e + 1	
		16	goto L3	
		$17 \mathrm{L4}$	return	[BL: Apply CO: 6 Marks: 7]
8.	(a)	Explain the following with respect to code generation phase.		
	i) Instruction selection		ction selection	
ii) Register all		ii) Regist	ter allocation	
		iii) Evaluation order		[BL: Understand CO: 6 Marks: 7]
	(b)	Consider		
		sum=0;		
		for(i=0;i<=10;i++)		
		sum=sum+a[i];		
		perform	DAG representation on the given basic block.	[BL: Apply] CO: 6 Marks: 7]

 $-\circ\circ\bigcirc\circ\circ-$