INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal-500043, Hyderabad
B.Tech VI SEMESTER END EXAMINATIONS (REGULAR) - JULY 2023

Regulation: UG-20
POWER SYSTEM ANALYSIS
Time: 3 Hours
ELECTRICAL AND ELECTRONICS ENGINEERING
Max Marks: 70

Answer ALL questions in Module I and II

Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Illustrate the procedure for forming the bus admittance matrix using the singular transformation method.
[BL: Understand| CO: 1|Marks: 7]
(b) Obtain the per unit impedance and reactance diagram of the power system shown in Figure 1.

Generator No. 1: $30 \mathrm{MVA}, 10.5 \mathrm{kV}, \mathrm{X} "=1.6 \Omega$
Generator No. 2: $15 \mathrm{MVA}, 6.6 \mathrm{kV}, \mathrm{X} "=1.2 \Omega$
Generator No. 3: $25 \mathrm{MVA}, 6.6 \mathrm{kV}, \mathrm{X} "=0.56 \Omega$
Transformer T1 (3phase): 15 MVA, $33 / 11 \mathrm{kV}, \mathrm{X}=15.2 \Omega$ per phase on high tension side.
Transformer T2 (3phase): 15 MVA, $33 / 6.2 \mathrm{kV}, \mathrm{X}=16 \Omega$ per phase on high tension side.
Transmission line: $20.5 \Omega /$ phase
Load A: $15 \mathrm{MW}, 11 \mathrm{kV}, 0.9 \mathrm{pf}$ lagging
Load B: $6.2 \mathrm{kV}, 34 \mathrm{MW}+\mathrm{j} 20.07$ MVAR.

Figure 1
[BL: Apply| CO: 1|Marks: 7]

MODULE - II

2. (a) Explain the step-by-step computational procedure for the Gauss-Seidel method of load flow studies.
[BL: Understand| CO: 2|Marks: 7]
(b) The Figure 2 shows a five bus power system. Each line has an impedance of $0.05+\mathrm{j} 0.15 \mathrm{pu}$. The line shunt admittances may be neglected. The bus power and voltage specifications are given below in Table 1. Find the line voltage after first iteration using Gauss-Seidal method.
[BL: Apply| CO: 2|Marks: 7]

Figure 2

Table 1

Bus	PL	QL	PG	QG	V	Bus Specification
1	1.0	0.5	not specified	not specified	$1.02 \angle$	Slack bus
2	0	0	2	not specified	1.02	PV bus
3	0.5	0.2	0	0	not specified	PQ bus
4	0.5	0.2	0	0	not specified	PQ bus
5	0.5	0.2	0	0	not specified	PQ bus

MODULE - III

3. (a) Summarize the step-by-step procedure to be followed for short circuit analysis using Thevenin's theorem.
[BL: Understand| CO: $3 \mid$ Marks: 7]
(b) The Figure 3 shows a generating station feeding a 132 kV system. Determine the total fault current and the fault current supplied by each alternator for a 3 phase fault at the receiving end of the bus. The line is 300 km long.
[BL: Apply| CO: 3|Marks: 7]

Figure 3

4. (a) Obtain the necessary equation to determine the fault current for a single line to ground fault. Draw a diagram showing the interconnection of sequence networks.
[BL: Understand| CO: 4|Marks: 7]
(b) Determine the fault current in pu, current in phase domain form for a double line to ground fault occurs between phases ' b ' and 'c' at bus 4 of Figure 4.
[BL: Apply| CO: 4|Marks: 7]

Figure 4
$G_{1}, G_{2}: 100 \mathrm{MVA}, 11 \mathrm{kV}, \mathrm{X}+=\mathrm{X}-=15 \%, \mathrm{X} 0=5 \%, \mathrm{Xn}=6 \%$
$T_{1}, T_{2}: 100 \mathrm{MVA}, 11 / 220 \mathrm{kV}$, Xleak $=9 \%$
$L_{1}, L_{2}: \mathrm{X}+=\mathrm{X}-=10 \%, \mathrm{X} 0=10 \%$ on a base of 100 MVA.

MODULE - IV

5. (a) Compare steady state, transient and dynamic stability. Derive the swing equation of a synchronous machine, beginning from fundamental principles.
[BL: Understand| CO: 5|Marks: 7]
(b) A synchronous generator having a reactance of $1 \mathrm{p} . \mathrm{u}$. is connected to an infinite bus ($\mathrm{V}=1 \angle 0$) through a transmission line. The line reactance is 0.5 p.u. The machine has an inertia constant of $4 \mathrm{MW}-\mathrm{sec} / \mathrm{MVA}$. Under no load condition, the generated emf is $1.1 \mathrm{p} . \mathrm{u}$. The system frequency is 50 Hz . Calculate the frequency of natural oscillations, if the generator is loaded to 75% of its maximum power limit.
[BL: Apply| CO: 5|Marks: 7]
6. (a) What is steady state stability? Describe it with respect to power angle curve with neat sketch.
[BL: Understand| CO: 5|Marks: 7]
(b) A synchronous generator having direct axis reactance $0.6 \mathrm{p} . \mathrm{u}$. is supplying full load power with a power factor of 0.85 lag . The generator is connected to an infinite bus. The voltage at the bus is $\mathrm{V}=1 \angle \mathrm{p} . \mathrm{u}$. Find the electrical power transferred to the infinite bus. If the mechanical input is raised by 25% from the previous value, find the new steady-state values of Pe and δ
[BL: Apply| CO: 5|Marks: 7]

MODULE - V

7. (a) Draw a diagram to demonstrate the application of equal area criterion to study transient stability when there is a sudden increase in the input of generator. [BL: Understand| CO: 6|Marks: 7]
(b) Find the critical clearing angle for a three phase fault at the point P as shown in Figure 5. The generator is delivering 1.0 p.u. power under prefault conditions. [BL: Apply| CO: 6|Marks: 7]

Figure 5
8. (a) Develop an expression for critical clearing angle for a system having a generator feeding a large system through a double circuit line.
[BL: Understand| CO: 6|Marks: 7]
(b) A $250 \mathrm{MW}, 33 \mathrm{kV}, 60 \mathrm{~Hz}$, 3 -phase, 2-pole synchronous generator having a rated p.f. $=0.8$ has a moment of inertia of $27.5 \times 10^{3} \mathrm{~kg}-\mathrm{m}^{2}$. Determine the inertia constant (H) of the machine.
[BL: Apply| CO: 6|Marks: 7]

