INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal-500043, Hyderabad
B.Tech VI SEMESTER END EXAMINATIONS (REGULAR) - JULY 2023

Regulation: UG-20
PRINCIPLES OF SIGNALS AND SYSTEMS
Time: 3 Hours (ELECTRICAL AND ELECTRONICS ENGINEERING)
Max Marks: 70
Answer ALL questions in Module I and II
Answer ONE out of two questions in Modules III, IV and V
All Questions Carry Equal Marks
All parts of the question must be answered in one place only

MODULE - I

1. (a) Draw the signal representation of an exponential and sinusoidal signal with expression.
[BL: Understand| CO: 1|Marks: 7]
(b) Describe in detail about analogy between vectors and signals. Also derive the expression of mean square error.
[BL: Understand| CO: 1|Marks: 7]
MODULE - II
2. (a) Obtain the Fourier transform of the following functions:
i) Impulse signal
ii) Rectangular pulse.
[BL: Understand| CO: 2|Marks: 7]
(b) Determine the Fourier transform of $\mathrm{x}(\mathrm{t})=\cos \omega_{0} \mathrm{t} u(\mathrm{t})$. Also plot its frequency response.
[BL: Apply| CO: 2|Marks: 7]

MODULE - III

3. (a) What is an LTI system? Illustrate the characteristics of ideal LPF, HPF and BPF with suitable diagrams.
[BL: Understand| CO: 3|Marks: 7]
(b) List the properties of auto correlation. Determine whether system $\mathrm{y}(\mathrm{t})=2 t^{2} \mathrm{x}(\mathrm{t})$ is time-invariant or time-variant.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Describe distortion less transmission system and plot its magnitude and phase spectrum.
[BL: Understand| CO: 4|Marks: 7]
(b) A system produces an output $\mathrm{y}(\mathrm{t})=e^{-t} \mathrm{u}(-\mathrm{t})$ for an input of $\mathrm{x}(\mathrm{t})=2 e^{+2 t} \mathrm{u}(+\mathrm{t})$. Determine the impulse response and frequency response of the system
[BL: Apply| CO: 4|Marks: 7]
MODULE - IV
5. (a) Explain the method of obtaining the frequency response of linear shift-invariant systems.
[BL: Understand| CO: $5 \mid$ Marks: 7$]$
(b) Find the complete solution of the system represented by $4 y[n]-4 y[n-1]+y[n-2]=2 x[n]-x[n-1]$ for $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]$ assuming that the system is at initial rest, $\mathrm{y}[-1]=\mathrm{y}[-2]=0$.
[BL: Apply| CO: 5|Marks: 7]
6. (a) Determine the relationship between impulse response and frequency response of a discrete time LTI system.
(b) Check whether the following systems are stable or not,
i) $y(n)=2 x(n-1)-3 x(n)$,
ii) $y(n)=x(n)+2 x(n-1)$.
[BL: Apply| CO: 4|Marks: 7]

MODULE - V

7. (a) Draw the butterfly line diagram for 8-point FFT calculation and briefly explain. Use decimation-in-time algorithm.
[BL: Understand| CO: 6|Marks: 7]
(b) Given a sequence $\mathrm{x}(\mathrm{n})=\{0,1,2,3,4,5,6,7\}$, determine $\mathrm{X}(\mathrm{k})$ using DIT FFT algorithm.
[BL: Apply| CO: 6|Marks: 7]
8. (a) Calculate the number of multiplications needed in the calculation of DFT using FFT algorithm with 32 -point sequence.
[BL: Understand| CO: 6|Marks: 7]
(b) Find the 8 -point DFT of a sequence $\mathrm{x}(\mathrm{n})=\{2,1,2,1,2,1,2,1\}$ by using DIF FFT algorithm. [BL: Apply| CO: 6|Marks: 7]
