INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
B.Tech I Semester End Examinations (Regular) - March 2021

Regulation: UG-20
LINEAR ALGEBRA AND CALCULUS
Time: 3 Hours
(Common to All Branches)
Max Marks:

Answer ONE Question from each Module
 All Questions Carry Equal Marks

All parts of the question must be answered in one place only
Module - I

1. (a) Find the rank of a matrix by reducing into echelon form of $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right]$.
(b) Find the inverse of a matrix by using Gauss-Jordan method $\left[\begin{array}{ccc}2 & 2 & 6 \\ 2 & 6 & -6 \\ 4 & -8 & -8\end{array}\right]$.
Module - II
2. (a) Verify Cayley-Hamilton theorem for $\mathrm{A}=\left(\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right)$. Hence find the value of $5 A^{3}-7 A^{2}+3 \mathrm{~A}$.
(b) Find the eigen values and corresponding eigen vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.

Module - III

3. (a) Show that the Rolle's theorem is applicable for the function $\mathrm{f}(\mathrm{x})=\log \left(\frac{x^{2}+a b}{x(a+b)}\right)$ in the interval $[a, b], a>0, b>0$.
(b) Show that the Lagrange's mean value theorem is applicable for the function $f(x)=x^{3}-x^{2}-5 x+3$ in the interval $[0,4]$.
4. (a) If $u=x y z, ~ v=x y+y z+z x, w=x+y+z$. Find $\frac{\partial(u, v, w)}{\partial(x, y, w)}$ at $(1,0,1)$.
(b) Examine the stationary points of the function $f(x, y)=x^{3}+y^{3}-3 x-12 y+20$ and also state their nature.

Module - IV

5. (a) Solve $\left(D^{3}+1\right) y=5 e^{2 x}$.
(b) Solve $\left(D^{2}-5 D+4\right) y=\sin 2 x+x^{3}+3$.
6. (a) Solve $\left(D^{2}-3 D+2\right) y=2 \cos (2 x+3)+2 e^{x}$.
(b) Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+5 y=e^{-x} \tan x$ using the of method of variation of parameters.
Module - V
7. (a) Obtain the Fourier series expansion of $\mathrm{f}(\mathrm{x})$ given that $f(x)=x^{2}$ in $-\pi<x<\pi$ and deduce the value of $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots \ldots .=\frac{\pi^{2}}{6}$.
(b) Obtain the Fourier series of $f(x)=\left\{\begin{array}{l}\pi x, \quad 0 \leq x \leq 1 \\ \pi(2-x), \quad 1 \leq x \leq 2\end{array}\right.$
8. (a) Find the half range Fourier sine series for the function $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}$ for $0<\mathrm{x}<\pi$.
(b) Express $f(x)=e^{a x}$ as a Fourier series in the interval $0<x<2 \pi$.
