Hall Ticket	No Question P	aper Code: AHSC03		
	INSTITUTE OF AERONAUTICAL ENGINEER	ING		
EDUC	(Autonomous)			
FION FOR LIBERT	B.Tech I Semester End Examinations (Regular) - July, 2021			
Regulation: UG-20				
	ENGINEERING PHYSICS			
Time: 3 Hour	rs $(ECE EEE AE ME CE)$	Max Marks: 70		

Answer all questions in Module I and II Answer ONE out of two questions from Modules III, IV and V All questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{MODULE}-\mathbf{I}$

- 1. (a) Enumerate the application of Schrödinger wave equation in one-dimensional potential well. [7M]
 - (b) Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm. [7M]

$\mathbf{MODULE}-\mathbf{II}$

2.	(a) (b)	What are acceptor type of impurities and what is a P-type semiconductor? Explain how phosphorous atoms donate electrons to the conduction band. The intrinsic carrier density at room temperature in Ge is 2.37×10^{19} /m ³ . If the electron and mobilities are 0.38 and $0.18 \text{m}^2 \text{V}^{-1} \text{s}^{-1}$ respectively. Calculate the resistivity.	[7 M] d hole [7 M]	
$\mathbf{MODULE} - \mathbf{III}$				
3.	()	Discuss the different mechanisms involved to produce laser emission. The CO_2 laser is one of the most powerful lasers. The energy difference between the two is 0.117eV. Determine the frequency and wavelength of radiation.	$[\mathbf{7M}]$ levels $[\mathbf{7M}]$	
4.	(a) (b)	Explain the different types of optical fibers and their properties.Draw the conditions for the light propagation through optical fibers and hence explain the following termsi) Critical incident angle ii) Acceptance angle iii) Numerical aperture.	[7M] [7M]	
$\mathbf{MODULE} - \mathbf{IV}$				

- 5. (a) Explain how Newton's rings are formed and describe the method for the determination of wavelength of light with their use. [7M]
 - (b) In Young's double slit experiment the separation of the slits is 1.9 mm and the fringe spacing is 0.31 mm at a distance of 1 metre from the slits. Calculate the wavelength of light.
- 6. (a) Describe and explain the Fraunhofer single diffraction pattern obtained with a narrow slit and illuminated by a parallel beam of monochromatic light. [7M]
 - (b) Calculate the least width of a plane diffraction grating having 500 lines/cm, which will just resolve in the second order the sodium lines of wavelengths 5890 A^0 and 5896A^0 . [7M]

$\mathbf{MODULE} - \mathbf{V}$

- 7. (a) Derive the differential equation of a damped harmonic oscillator and discuss the different cases of damping. [7M]
 - (b) Deduce the expression for the velocity of transverse waves on a long stretched string. [7M]
- 8. (a) What do you understand by wave motion? What are transverse and longitudinal waves? Give examples of each. [7M]
 - (b) A massless spring of spring constant 10Nm^{-1} is suspended from a rigid support and carries a mass of 0.1kg at its lower end. The system is subjected to a resistive force pv, where p is a constant and v is the velocity. It is observed that the system performs damped oscillatory motion and its energy decays to 1/e of its initial value is 50s.
 - i) What is the value of p?
 - ii) What is the Q value of the oscillator?

[7M]

 $-\circ\circ\bigcirc\circ\circ-$