INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal-500043, Hyderabad
B.Tech II SEMESTER END EXAMINATIONS (REGULAR) - SEPTEMBER 2022

Regulation:UG20
APPLIED PHYSICS
(Common to CSE \| CSE(AI\&ML) | CSE(CS) | CSE(DS) | CSIT \| IT)
Time: 3 Hours
Max Marks: 70

Answer ALL questions in Module I and II<br>Answer ONE out of two questions in Modules III, IV and V<br>All Questions Carry Equal Marks<br>All parts of the question must be answered in one place only

## MODULE - I

1. (a) Write Schrodinger time independent equations. Apply time independent equation for a particle confined one dimensional infinite potential well of width L and solve it to obtain allowed energy of nth state.
[BL: Understand| CO: 1|Marks: 7]
(b) Calculate the de Broglie wavelength of an electron moving with $3 / 5 \mathrm{c}$.(mass of electron $=9.11 \times 10^{-31}$ kg , velocity of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ )
[BL: Apply| CO: 1|Marks: 7]

## MODULE - II

2. (a) Distinguish intrinsic and extrinsic semiconductors. Obtain an expression for the carrier concentration of intrinsic semiconductors.
[BL: Understand| CO: 2|Marks: 7]
(b) Determine the Fermi level energy $E_{F}$, in a silicon semiconductor at 300 K . band gap energy, $E_{g}=1.12 e V, m_{e}^{*}=\left(m_{h}^{*}\right) / 2$.
[BL: Apply| CO: 2|Marks: 7]

## MODULE - III

3. (a) Explain the operation of a Zener diode in forward and reverse bias conditions.
[BL: Understand| CO: 3|Marks: 7]
(b) Current flowing in a p-n junction 0.2 micro amp at room temperature when a large reverse bias voltage is applied. Calculate the current when a forward bias voltage 0.1 V is applied.
[BL: Apply| CO: 3|Marks: 7]
4. (a) Illustrate the construction and working mechanism of solar cells with suitable diagrams.
[BL: Understand| CO: 3|Marks: 7]
(b) A particular green LED emits a light of wavelength $5490 \dot{A}$. Calculate the band gap of the semiconductor material used in eV. (Planck's constant $=6.63 \times 10^{-34} \mathrm{Js}$, Velocity of light, $c=3 \times 10^{8} \mathrm{~ms}^{-1}$ and charge of electron $\left.=1.6 \times 10^{-19} \mathrm{C}\right)$
[BL: Understand| CO: $3 \mid$ Marks: 7$]$

## MODULE - IV

5. (a) Write short notes on polarizability and susceptibility. Determine an expression for the internal field in the case of solids.
[BL: Understand| CO: $4 \mid$ Marks: 7 ]
(b) An elemental solid containing $2 \times 10^{28}$ atoms $\mathrm{m}^{-3}$ shows electronic polarizability of $2 \times 10^{-40} \mathrm{Fm}^{2}$. Assuming a Lorentz force field to be operative, calculate the dielectric constant of the material.
[BL: Apply| CO: 4|Marks: 7]
6. (a) What is meant by magnetization in a magnetic material? Discuss the classification of magnetic materials on the basis of magnetic moment.
[BL: Understand| CO: 4|Marks: 7]
(b) A magnetic field of $2000 \mathrm{Am}^{-1}$ is applied to a material which has a susceptibility of 1000 . Calculate i) Relative permeability of the material ii) Magnetization iii) Flux density.
[BL: Apply| CO: 4|Marks: 7]

## MODULE - V

7. (a) Illustrate the construction and working of a $\mathrm{He}-\mathrm{Ne}$ laser with appropriate diagrams.
[BL: Understand| CO: 5|Marks: 7]
(b) A LASER beam has a power of 50 mW and wavelength 5000 Angstrom at 300K. Calculate the number of photons emitted per minute.
[BL: Apply| CO: 5|Marks: 7]
8. (a) Distinguish between step- index and graded index fibres. Obtain an mathematical expression of numerical aperture with appropriate ray diagram.
[BL: Understand| CO: 6|Marks: 7]
(b) Calculate the numerical aperture and hence the acceptance angle for an optical fiber kept in an air medium whose core and cladding have a refractive index of 1.45 and 1.40 respectively.
[BL: Apply| CO: 6|Marks: 7]
