

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad -500 043

# **ELECTRICAL AND ELECTRONICS ENGINEERING**

## **COURSE DESCRIPTOR**

| Course Title      | POWER                                                                              | POWER SYSTEM ANALYSIS |         |            |         |  |  |
|-------------------|------------------------------------------------------------------------------------|-----------------------|---------|------------|---------|--|--|
| Course Code       | AEE012                                                                             | AEE012                |         |            |         |  |  |
| Programme         | B.Tech                                                                             | B.Tech                |         |            |         |  |  |
| Semester          | VI E                                                                               | VI EEE                |         |            |         |  |  |
| Course Type       | Professional Core                                                                  |                       |         |            |         |  |  |
| Regulation        | IARE - R16                                                                         |                       |         |            |         |  |  |
|                   | Theory Practical                                                                   |                       |         |            | al      |  |  |
| Course Structure  | Lectures                                                                           | Tutorials             | Credits | Laboratory | Credits |  |  |
|                   | 3                                                                                  | 1                     | 4       | -          | -       |  |  |
| Chief Coordinator | Mr. T. Anil Kumar, Assistant Professor                                             |                       |         |            |         |  |  |
| Course Faculty    | Mr. T. Anil Kumar, Assistant Professor<br>Mr. P. Mabu Hussain, Assistant Professor |                       |         |            |         |  |  |

## I. COURSE OVERVIEW:

Power system analysis deals formation impedance and admittance matrices for power system network, finding different electrical parameters for various buses in power system, study fault analysis and represent power system using per unit system, understand steady state and transient stability of power system.

## **II.** COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites                        | Credits |
|-------|-------------|----------|--------------------------------------|---------|
| UG    | AEE002      | II       | Electrical Circuits                  | 4       |
| UG    | AEE003      | III      | Power Generation Systems             | 4       |
| UG    | AEE011      | V        | Transmission And Distribution System | 4       |

## **III. MARKS DISTRIBUTION:**

| Subject               | SEE Examination | CIA Examination | Total Marks |
|-----------------------|-----------------|-----------------|-------------|
| Power System Analysis | 70 Marks        | 30 Marks        | 100         |

## IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk           | ~ | Quiz     | ~ | Assignments  | × | MOOCs  |
|---|------------------------|---|----------|---|--------------|---|--------|
| ~ | LCD / PPT              | ~ | Seminars | × | Mini Project | × | Videos |
| × | Open Ended Experiments |   |          |   |              |   |        |

## V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

**Semester End Examination (SEE):** The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

| 50 % | To test the objectiveness of the concept.                                                    |
|------|----------------------------------------------------------------------------------------------|
| 50 % | To test the analytical skill of the concept OR to test the application skill of the concept. |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

| Component          |          | Theory     | Total Marks |
|--------------------|----------|------------|-------------|
| Type of Assessment | CIE Exam | Quiz / AAT | Total Warks |
| CIA Marks          | 25       | 05         | 30          |

#### **Continuous Internal Examination (CIE):**

Two CIE exams shall be conducted at the end of the 8<sup>th</sup> and 16<sup>th</sup> week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

## VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                                                                                                                                                                                                                                                                                           | Strength | Proficiency assessed<br>by   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------|
| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                         | 2        | Assignment<br>And<br>Seminar |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                        | 3        | Assignment<br>And<br>Seminar |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for<br>complex engineering problems and design system<br>components or processes that meet the specified needs<br>with appropriate consideration for the public health and<br>safety, and the cultural, societal, and environmental<br>considerations. | 3        | Assignment<br>And<br>Seminar |
| PO 5 | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                        | 2        | Assignment<br>And<br>Seminar |

**3** = **High**; **2** = **Medium**; **1** = Low

## VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|      | Program Specific Outcomes (PSOs)                                                                                                                                                                                                                                                                               | Strength | Proficiency assessed<br>by   |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------|--|
| PSO1 | <b>Problem Solving</b> : Exploit the knowledge of high voltage engineering in collaboration with power systems in innovative, dynamic and challenging environment, for the research based team work.                                                                                                           | 3        | Assignment<br>And<br>Seminar |  |
| PSO2 | <b>Professional Skills:</b> Identify the scientific theories, ideas, methodologies and the new cutting edge technologies in renewable energy engineering, and use this erudition in their professional development and gain sufficient competence to solve the current and future energy problems universally. | -        | -                            |  |
| PSO3 | <b>Modern Tools in Electrical Engineering:</b> Comprehend<br>the technologies like PLC, PMC, process controllers,<br>transducers and HMI and design, install, test, maintain<br>power systems and industrial applications.                                                                                     | -        | -                            |  |

**3** = High; **2** = Medium; **1** = Low

## VIII. COURSE OBJECTIVES (COs):

| The | The course should enable the students to:                                                        |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|--|--|--|--|
| Ι   | Determine the bus impedance and admittance matrices for power system network.                    |  |  |  |  |
| II  | Calculate various electrical parameters at different buses using load flow studies and numerical |  |  |  |  |
|     | methods.                                                                                         |  |  |  |  |
| III | Discuss the symmetrical component theory, sequence networks, short circuit calculations and per  |  |  |  |  |
|     | unit representation power system.                                                                |  |  |  |  |
| IV  | Understand the steady state stability of power system and suggest methods to improve stability.  |  |  |  |  |
| V   | Analyze the transient stability of power system and check methods to improve the stability.      |  |  |  |  |

# IX. COURSE OUTCOMES (COs):

| COs  | Course Outcome                                                        | CLOs   | Course Learning Outcome                                                                                                        |
|------|-----------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------|
| CO 1 | Formulate the bus<br>impedance and admittance<br>matrices for complex | CLO 1  | Define the basic terminology of graph theory to form<br>bus impedance and admittance matrices                                  |
|      | power system networks.                                                | CLO 2  | Determine the bus impedance and admittance matrices for power system.                                                          |
|      |                                                                       | CLO 3  | Draw the algorithms to form bus impedance and<br>admittance matrices for configuration of primitive<br>network.                |
| CO 2 | Identify unknown electrical quantity at various buses                 | CLO 4  | Understand necessity of load flow studies and derive static load flow equations.                                               |
|      | of power system and estimate.                                         | CLO 5  | Use different numerical methods to determine<br>unknown parameters at various buses and to draw<br>relevant algorithms.        |
|      |                                                                       | CLO 6  | Compare various numerical methods of load flow studies and analyze DC load flow studies.                                       |
| CO 3 | Determine effect of symmetrical and                                   | CLO 7  | Draw the equivalent reactance network of three phase power system using per unit system.                                       |
|      | unsymmetrical faults on<br>power system in per unit<br>system.        | CLO 8  | Calculate the electrical parameters under symmetrical fault conditions and understand symmetrical component theory.            |
|      |                                                                       | CLO 9  | Compute the electrical parameters under unsymmetrical faults with and without fault impedance.                                 |
| CO 4 | Check the effect of slow and gradual change in load                   | CLO 10 | Discuss the steady state stability, dynamic stability<br>and transient stability of power system.                              |
|      | on power system and<br>check the methods of<br>improvement.           | CLO 11 | Describe steady state stability power limit, transfer<br>reactance, synchronizing power coefficient, power<br>angle curve.     |
|      |                                                                       | CLO 12 | Determination of steady state stability and methods to<br>improve steady state stability of power system.                      |
| CO 5 | Discuss the characteristics of power system under                     | CLO 13 | Derive the swing equation to study steady state stability of power system.                                                     |
|      | large disturbances and<br>methods to improve<br>transient stability.  | CLO 14 | Predict the transient state stability of power system<br>using equal area criteria and solution of swing<br>equation.          |
|      |                                                                       | CLO 15 | Suggest the methods to improve transient stability, discuss application of auto reclosing and fast operating circuit breakers. |

## X. COURSE LEARNING OUTCOMES (CLOs):

| CLO<br>Code | CLO's | At the end of the course, the student will have the ability to: | PO's<br>Mapped | Strength<br>of |
|-------------|-------|-----------------------------------------------------------------|----------------|----------------|
| 0040        |       |                                                                 |                | Mapping        |
| AEE012.01   | CLO 1 | Define the basic terminology of graph theory to form bus        | PO1            | 2              |
|             |       | impedance and admittance matrices                               |                |                |
| AEE012.02   | CLO 2 | Determine the bus impedance and admittance matrices for         | PO1,PO3        | 3              |
|             |       | power system.                                                   |                |                |
| AEE012.03   | CLO 3 | Draw the algorithms to form bus impedance and                   | PO1,PO3        | 3              |
|             |       | admittance matrices for configuration of primitive              |                |                |
|             |       | network.                                                        |                |                |
| AEE012.04   | CLO 4 | Understand necessity of load flow studies and derive static     | PO1,PO2        | 3              |
|             |       | load flow equations.                                            |                |                |

| CLO<br>Code | CLO's  | At the end of the course, the student will have the ability to:                                                                              | PO's<br>Mapped                            | Strength<br>of<br>Mapping |
|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------|
| AEE012.05   | CLO 5  | Use different numerical methods to determine unknown<br>parameters at various buses and to draw relevant<br>algorithms.                      | PO1,PO2,<br>PO5                           | 2                         |
| AEE012.06   | CLO 6  | Compare various numerical methods of load flow studies and analyze DC load flow studies.                                                     | PO2                                       | 2                         |
| AEE012.07   | CLO 7  | Draw the equivalent reactance network of three phase power system using per unit system.                                                     | PO1                                       | 2                         |
| AEE012.08   | CLO 8  | Calculate the electrical parameters under symmetrical fault conditions and understand symmetrical component theory.                          | PO1                                       | 3                         |
| AEE012.09   | CLO 9  | Compute the electrical parameters under unsymmetrical faults with and without fault impedance.                                               | PO1,PO2                                   | 3                         |
| AEE012.10   | CLO 10 | Discuss the steady state stability, dynamic stability and transient stability of power system.                                               | PO1,PO2                                   | 3                         |
| AEE012.11   | CLO 11 | Describe steady state stability power limit, transfer reactance, synchronizing power coefficient, power angle curve.                         | PO1,PO2,<br>PO3                           | 3                         |
| AEE012.12   | CLO 12 | Determination of steady state stability and methods to improve steady state stability of power system.                                       | PO1,PO2,<br>PO3                           | 2                         |
| AEE012.13   | CLO 13 | Derive the swing equation to study steady state stability of power system.                                                                   | PO1,PO3                                   | 2                         |
| AEE012.14   | CLO 14 | Predict the transient state stability of power system using<br>equal area criteria and solution of swing equation.                           | PO1,PO2,<br>PO3                           | 2                         |
| AEE012.15   |        | application of auto reclosing and fast operating circuit breakers.                                                                           | PO1,PO2,<br>PO3                           | 2                         |
|             |        | Apply the concept of graph theory, numerical methods, symmetrical and unsymmetrical fault to understand steady state and transient analysis. | PO1,PO2,<br>PO3,PO5                       | 2                         |
| AEE012.17   | CLO 17 | Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.                   | PO1,PO2,<br>PO3,PO5,<br>PO9,PO10,<br>PO12 | 2                         |

**3 = High; 2 = Medium; 1 = Low** 

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

| Course            | Program Outcomes (POs) |      |      |      |      |  |  |  |  |
|-------------------|------------------------|------|------|------|------|--|--|--|--|
| Outcomes<br>(COs) | PO 1                   | PO 2 | PO 3 | PO 5 | PSO1 |  |  |  |  |
| CO 1              | 2                      |      | 3    |      | 2    |  |  |  |  |
| CO 2              | 2                      | 3    |      | 2    | 2    |  |  |  |  |
| CO 3              | 2                      | 3    |      |      | 3    |  |  |  |  |
| CO 4              | 2                      | 3    | 3    |      | 3    |  |  |  |  |
| CO 5              | 1                      | 3    | 2    |      | 3    |  |  |  |  |

#### XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Learning | rogram Outcomes (POs) |     |     |        |     |     | Outo | ram Sj<br>comes (1 | PSOs) |      |      |      |      |      |      |
|--------------------|-----------------------|-----|-----|--------|-----|-----|------|--------------------|-------|------|------|------|------|------|------|
| Outcomes<br>(CLOs) | PO1                   | PO2 | PO3 | PO4    | PO5 | PO6 | PO7  | PO8                | PO9   | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 1              | 2                     |     |     |        |     |     |      |                    |       |      |      |      | 2    |      |      |
| CLO 2              | 2                     |     | 3   |        |     |     |      |                    |       |      |      |      | 2    |      |      |
| CLO 3              | 2                     |     | 3   |        |     |     |      |                    |       |      |      |      | 2    |      |      |
| CLO 4              | 2                     |     | 3   |        |     |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 5              | 2                     | 3   |     |        | 2   |     |      |                    |       |      |      |      | 2    |      |      |
| CLO 6              |                       | 2   |     |        |     |     |      |                    |       |      |      |      | 2    |      |      |
| CLO 7              | 2                     |     |     |        |     |     |      |                    |       |      |      |      | 2    |      |      |
| CLO 8              | 3                     |     |     |        |     |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 9              | 2                     | 3   |     |        |     |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 10             | 2                     | 3   |     |        |     |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 11             | 2                     | 3   | 3   |        |     |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 12             | 1                     | 2   | 2   |        |     |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 13             | 1                     |     | 2   |        |     |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 14             | 1                     | 3   | 3   |        |     |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 15             | 1                     | 2   | 2   |        |     |     |      |                    |       |      |      |      | 2    |      |      |
| CLO 16             | 1                     | 3   | 3   |        | 2   |     |      |                    |       |      |      |      | 3    |      |      |
| CLO 17             | 2                     | 2   | 2   | Iodiuu | 2   |     |      |                    | 3     | 3    |      | 3    | 2    |      |      |

**3 = High; 2 = Medium; 1 = Low** 

## XIII. ASSESSMENT METHODOLOGIES - DIRECT

| CIE Exams               | PO1,PO2<br>PO3,PO5 |                 | PO1,PO2,<br>PO3,PO5 | Assignments  | PO1,PO2<br>PO3,PO5 | Seminars      | PO1,PO2<br>PO3,PO5 |
|-------------------------|--------------------|-----------------|---------------------|--------------|--------------------|---------------|--------------------|
| Laboratory<br>Practices | -                  | Student<br>Viva | -                   | Mini Project | -                  | Certification | -                  |
| Term Paper              | -                  |                 |                     |              |                    |               |                    |

## XIV. ASSESSMENT METHODOLOGIES - INDIRECT

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

## XV. SYLLABUS

| TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DAWED SYSTEM NETWODY MATDICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Unit-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POWER SYSTEM NETWORK MATRICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Graph Theory: Definitions, bus incidence matrix, Y bus formation by direct and singular transformation methods, numerical problems; Formation of Z Bus: Partial network, algorithm for the modification of Z bus matrix for addition of element from a new bus to reference bus, addition of element from a new bus to an old bus, addition of element between an old bus to reference bus and addition of element between two old busses (Derivations and Numerical Problems), modification of Z bus for the changes in network (Numerical Problems). |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Unit-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POWER FLOW STUDIES AND LOAD FLOWS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| load flow of<br>solution wi<br>power syst<br>(Sample or<br>method in<br>derivation                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Load flows studies: Necessity of power flow studies, data for power flow studies, derivation of static<br>load flow equations; Load flow solutions using Gauss Seidel method: Acceleration factor, load flow<br>solution with and without PV buses, algorithm and flowchart; Numerical load flow solution for simple<br>power systems (Max. 3 buses): Determination of bus voltages, injected active and reactive powers<br>(Sample one iteration only) and finding line flows / losses for the given bus voltages; Newton Raphson<br>method in rectangular and polar coordinates form: Load flow solution with or without PV busses<br>derivation of Jacobian elements, algorithm and flowchart, decoupled and fast decoupled methods,<br>comparison of different methods, DC load flow study. |  |  |  |  |  |  |
| Unit-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SHORT CIRCUIT ANALYSIS PER UNIT SYSTEM OF REPRESENTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Symmetrica<br>reactors, nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | estem: Equivalent reactance network of a three phase power system, numerical problems;<br>al fault analysis: Short circuit current and MVA calculations, fault levels, application of series<br>imerical problems; Symmetrical component theory: Symmetrical component transformation,<br>egative and zero sequence components, voltages, currents and impedances.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | etworks: Positive, negative and zero sequence networks, numerical problems; Unsymmetrical<br>is: LG, LL, LLG faults with and without fault impedance, numerical problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Unit-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STEADY STATE STABILITY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| of steady s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e stability: Elementary concepts of steady state, dynamic and transient stabilities, description<br>tate stability power limit, transfer reactance, synchronizing power coefficient, power angle<br>letermination of steady state stability and methods to improve steady state stability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Unit-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TRANSIENT STATE STABILITY ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| criterion, a<br>equation, p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ation: Derivation of swing equation, determination of transient stability by equal area<br>application of equal area criterion, critical clearing angle calculation, solution of swing<br>oint by point method, methods to improve stability, application of auto reclosing and fast<br>ircuit breakers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Text Book                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| <ol> <li>I J Nagrath &amp; D P Kothari, "Modern Power system Analysis", Tata McGraw-Hill Publishing<br/>Company, 2<sup>nd</sup> Edition.</li> <li>M A Pai, "Computer Techniques in Power System Analysis", TMH Publications.</li> <li>B.R.Gupta, " power system analysis and design", S.CHAND publications</li> <li>K Umarao, "Computer techniques and models in power systems", I K International Pvt. Ltd.</li> </ol>                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| <ol> <li>Stagg, El Abiad, "Computer Methods In Power System". Tata McGraw-Hill.1968.</li> <li>Grainger and Stevenson, "Power System Analysis", Tata McGraw-Hill, 3<sup>rd</sup> Edition, 2011.</li> <li>J Duncan Glover and M S Sarma., THOMPSON, "Power System Analysis and Design", 3<sup>rd</sup> Edition 2006.</li> <li>Abhijit Chakrabarthi and Sunita Haldar, "Power system Analysis Operation and control", 3<sup>rd</sup> Edition, PHI, 2010.</li> </ol>                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |

## XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Lecture<br>No. | Topics to be covered                                                                                                                       | CLOs  | Reference                    |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|
| 1              | Introduction to graph theory.                                                                                                              | CL01  | T4:9.4.1<br>R1:3.1-3.2       |
| 2              | Solve numerical problems on graph theory.                                                                                                  | CL01  | T4:9.4.1<br>R1:3.1-3.2       |
| 3              | Outline steps to form Building bus incidence matrix.                                                                                       | CLO2  | T4:9.4.3<br>R1:3.3-3.5       |
| 4              | Determination of Y bus using direct method.                                                                                                | CLO2  | T4:9.2<br>R1:3.3-3.5         |
| 5,6            | Derive expression for Y bus formation by singular transformation.<br>methods,                                                              | CLO2  | T4:9.2<br>R1:3.3-3.5         |
| 7              | Solve numerical problems on bus matrices.                                                                                                  | CLO2  | T4:9.2<br>R1:3.3-3.5         |
| 8              | Define Partial network and its importance.                                                                                                 | CLO3  | T4:9.4<br>R1:4.1             |
| 9              | Develop algorithm for the Modification of Z Bus Matrix for addition element from a new bus to reference.                                   | CLO3  | T4:9.3&9.5<br>R1:4.2         |
| 10             | Build algorithm for the Modification of Z Bus Matrix for addition element from a new bus to an old bus.                                    | CLO3  | T4: 9.3&9.5<br>R1:4.3-4.4    |
| 11,12          | Structure algorithm for the Modification of Z Bus Matrix for addition<br>element between an old bus to reference Addition of element       | CLO3  | T4: 9.3&9.5<br>R1:4.3-4.4    |
| 13             | Study of necessity of power flow studies – Data for power flow studies – derivation of static load flow equations.                         | CLO4  | T4:9.1<br>R1:8.1             |
| 14             | Extract solution of load flow solutions using Gauss Seidel                                                                                 | CLO5  | T4:9.8                       |
| 15             | Method: Acceleration Factor.<br>Develop load flow solution with and without P- V buses, Algorithm<br>and Flowchart.                        | CLO5  | R1:8.2<br>T4:9.9.1           |
| 16,17          | Find numerical load flow solution for simple power systems (Max.                                                                           | CLO5  | R1:9.2<br>T4:9.8             |
| 18,19          | 3- Buses): Determination of bus voltages, injected active and<br>Discuss on newton raphson method in rectangular form: load flow,          | CLO5  | R1:9.2<br>T4:9.10            |
| 20             | solution with or without PV busses- Derivation of jacobian elements.<br>Discussion newton raphson method in polar co- ordinates form: load | CLO5  | R1:9.2<br>T4:9.11.2          |
| 21,22          | flow solution with or without pv busses-Derivation of jacobian<br>Study on decoupled and fast decoupled methods for load flow              | CLO5  | R1:9.2<br>T4:9.12            |
| 23             | solution.<br>Comparison of Different Methods – DC load Flow.                                                                               | CLO6  | R1:9.2<br>T4:9.4.12          |
| 24,25          | Summarize Short Circuit Current and MVACalculations.                                                                                       | CLO7  | R1:9.2<br>T4:10.3            |
| 26             | Understand fault levels.                                                                                                                   | CLO7  | R1:6.1-6.3<br>T4:10.4        |
| 27             | Determine the application of series reactors.                                                                                              | CLO7  | R1:6.1-6.3<br>T4:10.4        |
| 28             | Solving numerical problems (Symmetrical fault Analysis).                                                                                   | CLO8  | R1:6.1-6.3<br>T4:10.4        |
| 29             | Understand symmetrical component transformation, positive,                                                                                 | CLO8  | R1:6.4<br>T4:10.5            |
| 30             | negative and zero sequence components.<br>Draw sequence networks.                                                                          | CLO8  | R1:<br>T4:10.6               |
| 31             | Derive sequence voltages, currents and impedances.                                                                                         | CLO08 | R1:6.3<br>T4:10.7            |
| 32             | Solving numerical problems on symmetrical components.                                                                                      | CLO8  | R1:6.3<br>T4:10.5            |
| 33,34          | Understand LG fault with and without fault impedance and numerical problems.                                                               | CLO9  | R1:6.3<br>T4:10.13<br>R1:6.3 |

| Lecture<br>No. | Topics to be covered                                                   | CLOs  | Reference  |
|----------------|------------------------------------------------------------------------|-------|------------|
| 35,36          | Study fault with and without fault impedance and numerical             | CLO9  | T4:10.13   |
|                | problems.                                                              |       | R1:6.1-6.3 |
| 37,38          | Determine LLG fault with and without fault impedance and               | CLO09 | T4:10.16   |
|                | numerical problems.                                                    |       | R1:6.1-6.3 |
| 39             | Compare LG, LL, LLG faults with and without fault impedance            | CLO9  | T4:10.17   |
|                | and numerical problems.                                                |       | R1:6.1-6.3 |
| 40,41          | Introduction to steadystate, dynamic and transient stabilities.        | CLO10 | T4:13.1    |
|                |                                                                        |       | R1:10.1    |
| 42,44          | Description of steady state stability power limit, transfer reactance, | CLO11 | T4:13.2    |
|                | synchronizing power coefficient.                                       |       | R1:10.3    |
| 45,46          | Plot Power Angle Curve and determination of steady state, stability.   | CLO11 | T4:13.2    |
|                |                                                                        |       | R1:        |
| 47,48          | Explain methods to improve steady state stability.                     | CLO12 | T4:13.2    |
|                |                                                                        |       | R1:10.3    |
| 49             | Derivation of swing equation.                                          | CLO13 | T4:13.3    |
|                |                                                                        |       | R1:10.2    |
| 50,51          | Determination of transient stability by equal area criterion.          | CLO14 | T4:13.6    |
|                |                                                                        |       | R1:10.5    |
| 52             | Application of equal area criterion to different cases.                | CLO14 | T4:13.7    |
|                |                                                                        |       | R1:10.5    |
| 53             | Discuss importance of critical clearing angle calculation.             | CLO14 | T4:13.6    |
|                |                                                                        |       | R1:10.5    |
| 54,55          | Solving numerical problems on equal area criteria.                     | CLO14 | T4:13.7    |
|                |                                                                        |       | R1:10.5    |
| 56             | Solution of swing equation: point-by- point method.                    | CLO14 | T4:13.8    |
|                |                                                                        |       | R1:10.5    |
| 57             | Explain methods to improve stability.                                  | CLO15 | T4:13.11   |
|                |                                                                        |       | R1:10.6    |
| 58             | Application of auto reclosing and fast operating circuit breakers.     | CLO15 | T4:13.11   |
|                |                                                                        |       | R1:10.7    |

# XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S. No | Description                                                                        | Proposed actions                           | Relevance with<br>POs | Relevance with<br>PSOs |
|-------|------------------------------------------------------------------------------------|--------------------------------------------|-----------------------|------------------------|
| 1     | Formation of bus<br>impedance and<br>admittance matrices using<br>digital methods. | MATLAB Software                            | PO1, PO5              | -                      |
| 2     | Power flow studies in integrated system.                                           | Introduction To<br>Distribution Generation | PO1, PO3              | PSO1                   |

**Prepared by:** Mr. T. Anil Kumar, Assistant Professor

HOD, EEE