INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	PROBABILTY THOERY AND STOCHASTIC PROCESS						
Course Code	AECB0	AECB08					
Programme	B.Tech	B.Tech					
Semester	III	III ECE					
Course Type	Core						
Regulation	IARE - I	R18					
	Theory Practical						
			Theory		Practic	cal	
Course Structure	Lectur	·es	Theory Tutorials	Credits	Practic Laboratory	cal Credits	
Course Structure	Lectur 3	·es	Theory Tutorials 1	Credits 4	Practic Laboratory -	cal Credits -	
Course Structure Chief Coordinator	Lectur 3 Dr. M V	es Kris	Theory Tutorials 1 shna Rao, Profes	Credits 4 sor, ECE	Practic Laboratory -	cal Credits -	

I. COURSE OVERVIEW:

2000

The course addresses the principles of probability theory and random variables. The course also introduces the concepts of random processes and sample functions, which are nothing but the noise signals that appear in a communication channel. The course also introduces the concepts such as Information, entropy of random sources and various coding techniques based on information theory. This course (along with the Signals and Systems course) forms the basis for the next level courses: Analog communication (AC), Digital communication (DC) and Digital Signal Processing (DSP), Radar Systems (RS) and Digital Image Processing (DIP). Students will learn the basics of probability functions (PDF and CDF), Moments, Random Variable Transformations, Temporal and Spectral properties of Random processes, Types of Random Processes, LTI system driven by Random Process, Input and output correlations, and Input and output Power spectral densities..

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHSB11	Π	Mathematical Transform Techniques	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Probability Theory and Stochastic Process	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component	Component Theory				
Type of Assessment	CIE Exam	Quiz	AAT	i otai Marks	
CIA Marks	20	05	05	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Lectures,
	mathematics, science, engineering fundamentals, and an		Assignments
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	3	Lab related
	literature, and analyze complex engineering problems		exercises
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences		
PO 4	Conduct investigations of complex problems: Use	2	Term Paper
	research-based knowledge and research methods including		

Program Outcomes (POs)	Strength	Proficiency assessed by
design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic	1	Seminar
	concepts in Electronics & Communication Engineering		
	and to apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of complex		
	systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	1	Lab related
	Electronics and communication Engineering problems,		exercises
	using latest hardware and software tools, along with		
	analytical skills to arrive cost effective and appropriate		
	solutions.		
PSO 3	Successful Career and Entrepreneurship: An	-	-
	understanding of social-awareness & environmental-		
	wisdom along with ethical responsibility to have a		
	successful career and to sustain passion and zeal for real-		
	world applications using optimal resources as an		
	Entrepreneur.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	urse should enable the students to:
Ι	Understand the random experiments, sample space and event probabilities.
II	Study the random variables, density and distribution functions, moments and transformation of random variables.
III	Understand the concept of random process and sample functions (signals)
IV	Explore the temporal and spectral characteristics of random processes

IX. COURSE OUTCOMES

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Appreciate the concept of	CLO 1	Describe the basic concepts of the random experiments,
	the random experiments,		event probabilities, joint and conditional probabilities-
	event probabilities,		bayes theorem
	random variables and	CLO 2	Learn and understand the concept of random variables,
	their description,		continuous and discrete variables, the probability density
	functions of random		functions (pdfs), probability distribution functions
	variables		(pdfs), different random variables and their properties
		CLO 3	Learn and understand the functions of a random
			variable, standard and central moments, and their
			physical significance
CO 2	Learn and understand the	CLO 4	Understand the characteristic and moment generating
	Single Random Variable		functions; understand and apply the transformations on
	Transformation- Multiple		continuous and discrete random variables - expectations
	Random Variables	CLO 5	Learn and understanding of vector random variables,
			joint, marginal and conditional distribution functions,
			joint, marginal and conditional density functions.
		CLO 6	Learn and understand the conditional distribution and
			density functions: point and interval conditioning
		CLO 7	State and explain the central limit theorem : sum of
			several random variables
CO 3	Understand the Operations	CLO 8	Learn and understanding of functions of vector random
	multiple random variables		variables, joint standard and central moments, joint
	and their expectations		characteristic and moment generating functions
		CLO 9	Learn and understanding of jointly gaussian random
			variables; and transformations of multiple random
			variables
CO 4	Understand the concept of	CLO 10	Learn and understanding of random process, sample
	random processes and		functions and time domain characteristics: stationary,
	their time domain		independence and ergodicity
	description	CLO 11	Contrasting of correlation and covariance functions,
			gaussian and poisson random processes
CO 5	Explore the spectral	CLO 12	Distinguish between auto- and cross- power density
	characteristics of random		spectra, properties, relationship between correlation
	processes, and filtered		functions and power density spectra
	random processes	CLO 13	Understand and discuss the linear time invariant (lti)
			systems driven by random process, input-output spectral
			relations, white and colored noises

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AECB08.01	CLO 1	Describe the basic concepts of the random	PO 1, PSO 1	3
		experiments, event probabilities, joint and		
		conditional probabilities- bayes theorem		
AECB08.02	CLO 2	Learn and understand the concept of random	PO 1, PSO 1	3
		variables, continuous and discrete variables, the		
		probability density functions (pdfs), probability		
		distribution functions (pdfs), different random		
		variables and their properties		
AECB08.03	CLO 3	Learn and understand the functions of a random	PO 1, PO 2	3
		variable, standard and central moments, and their		
		physical significance		
AECB08.04	CLO 4	Understand the characteristic and moment	PO 1, PO 2,	3
		generating functions; understand and apply the	PSO 2	
		transformations on continuous and discrete		
		random variables - expectations		
AECB08.05	CLO 5	Learn and understanding of vector random	PO 1, PSO 1	3
		variables, joint, marginal and conditional		
		distribution functions, joint, marginal and		
		conditional density functions.		
		Learn and understand the conditional		
AECB08.06	CLO 6	distribution and density functions: point and	PO 1, PSO 1	3
		interval conditioning		
AECB08.07	CLO 7	State and explain the central limit theorem : sum	PO 4	2
		of several random variables		
		Learn and understanding of functions of vector		
AECB08.08	CLO 8	random variables, joint standard and central	PO 1, PSO 2	3
		moments, joint characteristic functions		
AECB08.09	CLO 9	Learn and understanding of jointly gaussian	PO 1, PO 2	3
		random variables; and transformations of		
		multiple random variables		
AECB08.10	CLO 10	Learn and understanding of random process,	PO 1, PO 2	3
		sample functions and time domain		
		characteristics: stationary, independence and		
		ergodicity		
AECB08.11	CLO 11	Contrasting of correlation and covariance	PO 2, PSO 2	3
		functions, gaussian and poisson random		
		processes		

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's Mapped	Strength of
Code		the ability to:		Mapping
AECB08.12	CLO 12	Distinguish between auto- and cross- power	PO 2, PSO 1	2
		density spectra, properties, relationship between		
		correlation functions and power density spectra		
AECB08.13	CLO 13	Understand and discuss the linear time invariant	PO 2, PO 3,	2
		(lti) systems driven by random process, input-	PSO 2	
		output spectral relations, white and colored		
		noises		

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course	Program Outcomes (POs)								
Outcomes (COs)	PO 1	PO 2	PO 4	PSO 1	PSO 2				
CO 1	3	3		3	3				
CO 2	3		2	3					
CO 3	3	3		1	3				
CO 4	3	3		1	2				
CO 5		2	2	2	2				

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

					Progr	am Oı	itcome	es (PO	s)				Program Specific Outcomes (PSOs)		
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												3		
CLO 2	3												3		
CLO 3	3	3													
CLO 4	3	3												3	
CLO 5	3												3		
CLO 6	3												3		
CLO 7				2											
CLO 8	3													3	
CLO 9	3	3													
CLO 10	3	3													

		Program Outcomes (POs)										Prog Outo	Program Specific Outcomes (PSOs)		
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 11		3												2	
CLO 12		2											2		
CLO 13		2		2										2	

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4, PSO1, PSO2	SEE Exams	PO1, PO2, PO4, PSO1, PSO2	Assignments	PO1, PO2, PO4	Seminars	PO1, PO2, PO4, PSO1, PSO2
Laboratory Practices	PO 2, PO 4	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4, PSO1						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

MODULE-I PROBABILITY, RANDOM VARIABLES AND OPERATIONS ON RANDOM VARIABLES

Random Experiments, Sample Spaces, Events, Probability, Axioms, Joint, Conditional and Total Probabilities, Bay's Theorem, Independent Events. Random Variables: Definition, Conditions for mapping function of a Random Variable, Types of Random Variable, Distribution and Density functions: Definition and Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, random variables, Methods of defining Conditioning Event, Conditional Distribution, Conditional Density and their Properties, Expected Value of a Random Variable, Function of a Random Variable, Standard and Central Moments, Variance and Skew, Chebychev's Inequality

MODULE-II SINGLE RANDOM VARIABLE TRANSFORMATIONS- MULTIPLE RANDOM VARIABLES

Characteristic Function, Moment Generating Function, Monotonic and Non-monotonic Transformations of Single Random Variables (Continuous and Discrete), Vector Random Variables, Joint Distribution Function and its Properties, Marginal Distribution Functions, Joint Density Function and its Properties, Marginal Density Functions, Conditional Distribution and Density – Point Conditioning, Conditional Distribution and Density – Interval conditioning, Statistical Independence, Sum of Two and more Random Variables, Central Limit Theorem: Equal and Unequal Distribution.

MODULE-III OPERATIONS ON MULTIPLE RANDOM VARIABLES – EXPECTATIONS

PART:1

Expected value of a function of multiple random variables, Correlation and Covariance, Correlation Coefficient, Joint Moments about the origin, Joint Central moments, Joint characteristic function, Joint moment generating function.

PART:2

Jointly Gaussian random variables: Two random variables case and N random variable case, Properties, Transformations of Multiple Random Variables, Jacobian Matrix, Linear Transformations of Gaussian Random Variables

MODULE-IV RANDOM PROCESSES – TEMPORAL CHARACTERISTICS

Random Process: Definition and Classification, Distribution and Density Functions, Stationarity and Statistical Independence., First- Order, Second- Order, Wide-Sense Stationarities (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Mean-Ergodic and Correlation-Ergodic Processes, Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions, Gaussian and Poisson Random Processes. Response of Linear Systems to Random Process input, Mean and MS value of System Response, Autocorrelation Function of Response, Cross-Correlation between Input and Output.

MODULE-V RANDOM PROCESSES – SPECTRAL CHARACTERISTICS

Power Density Spectrum: Definition and Properties, Relationship between Power Density Spectrum and Autocorrelation Function, Cross Power Spectral Density: Definition and Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function, System Evaluation using Random Noise, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectra of Input and Output, Noise Bandwidth, White and Colored Noises.

TEXT BOOKS:

 Peyton Z. Peebles, "Probability, Random Variables & Random Signal Principles", Tata McGraw Hill, 4th Edition, 2001.

REFERENCE BOOKS:

- 1. Random Processes for Engineers-Bruce Hajck, Cambridge unipress, 2015
- Probability, Random Variables and Stochastic Processes Athanasios Papoulis and S. Unnikrishna Pillai, PHI, 4th Edition, 2002.
- Probability, Statistics & Random Processes-K .Murugesan, P. Guruswamy, Anuradha Agencies, 3rd Edition, 2003.
- 4. Signals, Systems & Communications B.P. Lathi, B.S. Publications, 2003.

XVI. COURSE PLAN:

The course	plan is meant as a	a guideline.	Probably t	there may be	e changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-3	Define random experiments, sample spaces, events,	CLO 1	T1:1.1-1.5
	probability, axioms, joint, conditional and total probabilities,		
	bay's theorem, independent events		
1	Random variables: definition, conditions for mapping function	CLO 2	T1:2.0-2.1
-	of a random variable, types of random variable,		
	Distribution and density functions: definition and properties,	CLO 2	T1:2.2-2.5
5-9	binomial, poisson, uniform, gaussian, exponential, rayleigh		
	random variables		
10	Methods of defining conditioning event, conditional	CLO 2	T1:2.6
	distribution, conditional density and their properties,		
11-13	Expected value of a random variable, function of a random	CLO 3	T1:3.0-3.2
	variable, standard and central moments, variance and skew,		
	chebychev's inequality		
14	Characteristic function, moment generating function	CLO 4	T1:3.3
15 10	Monotonic and non-monotonic transformations of single	CLO 4	T1:3.4
15-18	random variables (continuous and discrete)		
19-22	Vector random variables, joint distribution function and its	CLO 5	T1:4.0-4.4
	properties, marginal distribution functions, joint density		
	function and its properties, marginal density functions,		
23-24	Conditional distribution and density – point conditioning,	CLO 6	T1:4.5
	conditional distribution and density – interval conditioning,		
	statistical independence,		
25-26	Sum of two and more random variables, central limit theorem:	CLO 7	T1:4.6-4.7
25-20	equal and unequal distribution.		
27-28	Expected value of a function of multiple random variables,	CLO 8	T1:5.0-5.1
	correlation and covariance, correlation coefficient,		
29-31	Joint moments about the origin, joint central moments, joint	CLO 8	T1:5.2
	characteristic function		
32-33	Jointly gaussian random variables: two random variables case	CLO 9	T1:5.3
	and n random variable case, properties		
34-36	Transformations of multiple random variables, jacobian	CLO 9	T1:5.4-5.5
	matrix, linear transformations of gaussian random variables		
	Random process: definition and classification, distribution	CLO 10	T1:5.4-5.6
37-40	and density functions, stationarity and statistical		
	independence.		

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
41-43	First- order, second- order, wide-sense stationarities (n-order)	CLO 10	T1:6.1-6.2
	and strict-sense stationarity, time averages and ergodicity,		
	mean-ergodic and correlation-ergodic processes		
	Autocorrelation function and its properties, cross-correlation	CLO 10	T1:6.3
42-44	function and its properties, covariance functions, gaussian and		
	poisson random processes.		
45-49	Response of linear systems to random process input, mean and	CLO 11	T1:8.2
	ms value of system response, autocorrelation function of		
	response, cross- correlation between input and output.		
	Power density spectrum: definition and properties,	CLO 12	T1:7.1-7.2
50-52	relationship between power density spectrum and		
	autocorrelation function		
	Cross power spectral density: definition and properties,	CLO 12	T1:7.3-7.4
53-54	relationship between cross-power spectrum and cross-		
	correlation function		
	System evaluation using random noise, spectral characteristics	CLO 13	T1:8.3-8.4
55-57	of system response: power density spectrum of response,		
	cross-power density spectra of input and output,		
58-60	Noise bandwidth, white and colored noises	CLO 13	T1:8.5-8.7

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed Actions	Relevance with POs	Relevance with PSOs
1	Explore the pseudo random noise and its properties.	Two additional lecture hours	PO 2, PO 4	PSO 2
2	Study of pink noise	One additional lecture hour	PO 2, PO 4	PSO 2

Prepared by: Dr. M V Krishna Rao, Professor, ECE

HOD, ECE