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UNIT WISE LECTURE NOTES

MODULE-I

PROBABILITY AND RANDOM VARIABLES AND OPERATIONS ON RANDOM
VARABLES

Introduction

It is remarkable that a science which began with the consideration of games of chance
should have become the most important object of human knowledge.

A brief history

Probability has an amazing history. A practical gambling problem faced by the French
nobleman Chevalier de Méré sparked the idea of probability in the mind of Blaise Pascal (1623-
1662), the famous French mathematician. Pascal's correspondence with Pierre de Fermat (1601-
1665), another French Mathematician in the form of seven letters in 1654 is regarded as the
genesis of probability. Early mathematicians like Jacob Bernoulli (1654-1705), Abraham de
Moivre (1667-1754), Thomas Bayes (1702-1761) and Pierre Simon De Laplace (1749-1827)
contributed to the development of probability. Laplace's Theory Analytique des Probabilities
gave comprehensive tools to calculate probabilities based on the principles of permutations and
combinations. Laplace also said, "Probability theory is nothing but common sense reduced to
calculation.”

Later mathematicians like Chebyshev (1821-1894), Markov (1856-1922), von Mises (1883-
1953), Norbert Wiener (1894-1964) and Kolmogorov (1903-1987) contributed to new
developments. Over the last four centuries and a half, probability has grown to be one of the
most essential mathematical tools applied in diverse fields like economics, commerce, physical
sciences, biological sciences and engineering. It is particularly important for solving practical
electrical-engineering problems in communication, signal processing and computers.
Notwithstanding the above developments, a precise definition of probability eluded the
mathematicians for centuries. Kolmogorov in 1933 gave the axiomatic definition of probability
and resolved the problem.

Randomness arises because of

o random nature of the generation mechanism
o Limited understanding of the signal dynamics inherent imprecision in measurement,
observation, etc.

For example, thermal noise appearing in an electronic device is generated due to random
motion of electrons. We have deterministic model for weather prediction; it takes into account
of the factors affecting weather. We can locally predict the temperature or the rainfall of a place
on the basis of previous data. Probabilistic models are established from observation of a random
phenomenon. While probability is concerned with analysis of a random phenomenon, statistics
help in building such models from data.




Deterministic versus probabilistic models

A deterministic model can be used for a physical quantity and the process generating it
provided sufficient information is available about the initial state and the dynamics of the
process generating the physical quantity. For example,

Many

We can determine the position of a particle moving under a constant force if we know
the initial position of the particle and the magnitude and the direction of the force.

We can determine the current in a circuit consisting of resistance, inductance and
capacitance for a known voltage source applying Kirchoff's laws.

of the physical quantities are random in the sense that these quantities cannot be

predicted with certainty and can be described in terms of probabilistic models only. For
example,

The outcome of the tossing of a coin cannot be predicted with certainty. Thus the
outcome of tossing a coin is random.

The number of ones and zeros in a packet of binary data arriving through a
communication  channel cannot be  precisely predicted is  random.

The ubiquitous noise corrupting the signal during acquisition, storage and transmission
can be modelled only through statistical analysis.

Probability in Electrical Engineering

A signal is a physical quantity that varyies with time. The physical quantity is
converted into the electrical form by means of some transducers . For example, the time-
varying electrical voltage that is generated when one speaks through a telephone is a
signal. More generally, a signal is a stream of information representing anything from
stock prices to the weather data from a remote-sensing satellite.

A sample of a speech signal
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An analog signal (x(2.2€ T} is defined for a continuum of values of domain parameter
£ I and it can take a continuous range of values.

A digital signal tz].7€ 1} s defined at discrete points and also takes a discrete set of
values.

As an example, consider the case of an analog-to-digital (AD) converter. The input to the AD
converter is an analog signal while the output is a digital signal obtained by taking the samples
of the analog signal at periodic intervals of time and approximating the sampled values by a
discrete set of values.

Analog signai [ 1 Digital signal

—_— -

Converter
x, (1) ‘ x[n] = x, (7T

Figure 3 Analog-to-digital (AD) converters

Random Signal

Many of the signals encountered in practice behave randomly in part or as a whole in the
sense that they cannot be explicitly described by deterministic mathematical functions such as a
sinusoid or an exponential function. Randomness arises because of the random nature of the
generation mechanism. Sometimes, limited understanding of the signal dynamics also
necessitates the randomness assumption. In electrical engineering we encounter many signals
that are random in nature. Some examples of random signals are:

I.  Radar signal: Signals are sent out and get reflected by targets. The reflected signals
are received and used to locate the target and target distance from the receiver. The
received signals are highly noisy and demand statistical techniques for processing.

ii.  Sonar signal: Sound signals are sent out and then the echoes generated by some
targets are received back. The goal of processing the signal is to estimate the location of
the target.




Speech signal: A time-varying voltage waveform is produced by the speaker speaking
over a microphone of a telephone. This signal can be modeled as a random signal.
A sample of the speech signal is shown in Figure 1.

Biomedical signals: Signals produced by biomedical measuring devices like ECG,
EEG, etc., can display specific behavior of vital organs like heart and brain. Statistical
signal processing can predict changes in the waveform patterns of these signals to detect
abnormality. A sample of ECG signal is shown in Figure 2.

Communication signals: The signal received by a communication receiver is generally
corrupted by noise. The signal transmitted may the digital data like video or speech and
the channel may be electric conductors, optical fiber or the space itself. The signal is
modified by the channel and corrupted by unwanted disturbances in different stages,
collectively referred to as noise.

These signals can be described with the help of probability and other concepts in

statistics. Particularly the signal under observation is considered as a realization of a random
process or a stochastic process. The terms random processes, stochastic processes and random
signals are used synonymously.

A deterministic signal is analyzed in the frequency-domain through Fourier series and

Fourier transforms. We have to know how random signals can be analyzed in the frequency
domain.

Random Signal Processing

Processing refers to performing any operations on the signal. The signal can be

amplified, integrated, differentiated and rectified. Any noise that corrupts the signal can also be
reduced by performing some operations. Signal processing thus involves

o Amplification
o Filtering
Integration and differentiation
Nonlinear operations like rectification, squaring, modulation, demodulation etc.

These operations are performed by passing the input signal to a system that performs the

processing. For example, filtering involves selectively emphasising certain frequency
components and attenuating others. In low-pass filtering illustrated in Fig.4, high-frequency
components are attenuated

- Output (filtered) signal
Tnput signal f-:uh'-p:us uiput (filfere )sagim:—__
x(@) [ y@®

Figure 4 Low-pass filtering
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Signal estimation and detection

A problem frequently come across in signal processing is the estimation of the true value
of the signal from the received noisy data. Consider the received noisy signal }’@given by
yity = Acos(@yf) + niL)

where Acos(@yt)

is the desired transmitted signal buried in the noise 4O}

Simple frequency selective filters cannot be applied here, because random noise cannot
be localized to any spectral band and does not have a specific spectral pattern. We have to do
this by dissociating the noise from the signal in the probabilistic sense. Optimal filters like the
Wiener filter, adaptive filters and Kalman filter deals with this problem.

In estimation, we try to find a value that is close enough to the transmitted signal. The
process is explained in Figure 6. Detection is a related process that decides the best choice out
of a finite number of possible values of the transmitted signal with minimum error probability.
In binary communication, for example, the receiver has to decide about 'zero' and 'one' on the
basis of the received waveform. Signal detection theory, also known as decision theory, is based
on hypothesis testing and other related techniques and widely applied in pattern classification,
target detection etc.

Signal

—_—

Noisy {'J‘.!:'srr'rf.lff-:ﬂ_ Opiimal Estimate

Channel filtering

Figure 6 Signal estimation problem

Source and Channel Coding

One of the major areas of application of probability theory is Information theory and
coding. In 1948 Claude Shannon published the paper "A mathematical theory of
communication™ which lays the foundation of modern digital communication. Following are
two remarkable results stated in simple languages :




Digital data is efficiently represented with number of bits for a symbol decided by its
probability of occurrence.

The data at a rate smaller than the channel capacity can be transmitted over a noisy
channel with arbitrarily small probability of error. The channel capacity again is
determined from the probabilistic descriptions of the signal and the noise.

Basic Concepts of Set Theory

The modern approach to probability based on axiomatically defining probability as

function of a set. A background on the set theory is essential for understanding probability.

Some of the basic concepts of set theory are:

Set

A set is a well defined collection of objects. These objects are called elements or

members of the set. Usually uppercase letters are used to denote sets.

Probability Concepts

Before we give a definition of probability, let us examine the following concepts:

1. Random Experiment: An experiment is a random experiment if its outcome cannot be

predicted precisely. One out of a number of outcomes is possible in a random
experiment. A single performance of the random experiment is called a trial.

Sample Space: The sample space < is the collection of all possible outcomes of a
random experiment. The elements of < are called sample points.

« A sample space may be finite, countably infinite or uncountable.
« Afinite or countably infinite sample space is called a discrete sample space.

e Anuncountable sample space is called a continuous sample space

Event: An event A is a subset of the sample space such that probability can be assigned
to it. Thus

A S

o Foradiscrete sample space, all subsets are events.

« “is the certain event (sure to occur) and ?is the impossible event.

Figure 1




Consider the following examples.

Example 1: tossing a fair coin

The possible outcomes are H (head) and T (tail). The associated sample space is S={H, Thy
is a finite sample space. The events associated with the sample space < are: SAHN Thgng @

Example 2: Throwing a fair die:

The possible 6 outcomes are:

L . .. . e .'l' : :
L [ L [ W L
.'Ill.' -:', .3. .l__F.l rjr 'l.'::l'l

The associated finite sample space is §={1. 2.3, 9.5 % Some events are
A=The event of getting an odd face={"'1, '3, 57,
B =The event of getting a siz={'6"}

And so on.
Example 3: Tossing a fair coin until a head is obtained

We may have to toss the coin any number of times before a head is obtained. Thus the possible
outcomes are:

H, TH, TTH, TTTH,
How many outcomes are there? The outcomes are countable but infinite in number. The

countably infinite sample space g = {H, THTTH, ... b,

Example 4 : Picking a real number at random between -1 and +1

The associated sample space is © ~ (¢|s€ R, ~1&s <1 =[~1, 1]

Clearly <'is a continuous sample space.

Definition of probability

Consider a random experiment with a finite number of outcomes ¥ If all the outcomes of the
experiment are equally likely , the probability of an event A is defined by

FrA) m
where

N, =Mumber of outcomes favourable to 4

Example 6 A fair die is rolled once. What is the probability of getting a ‘6* ?

Here S- = {Ill, |2|, |3|, |4|, |5|, |6|} and ﬂ ={ I6I}




L N=6 and N, =1
. 1
WLCIRE

Example 7 A fair coin is tossed twice. What is the probability of getting two ‘heads'?

Here & = (HH. TH, HT, TT} jq A={HH}
Total number of outcomes is 4 and all four outcomes are equally likely.

Only outcome favourable to 4is {HH}

CPA) =

o

Discussion

e The classical definition is limited to a random experiment which has only a finite
number of outcomes. In many experiments like that in the above examples, the sample
space is finite and each outcome may be assumed ‘equally likely." In such cases, the
counting method can be used to compute probabilities of events.

e Consider the experiment of tossing a fair coin until a ‘head' appears.As we have
discussed earlier, there are countably infinite outcomes. Can you believe that all these
outcomes are equally likely?

e The notion of equally likely is important here. Equally likely means equally probable.
Thus this definition presupposes that all events occur with equal probability . Thus the
definition includes a concept to be defined

Relative-frequency based definition of probability

If an experiment is repeated * times under similar conditions and the event A occurs in ™ times,
P(A) = Lim 4
then e R

Example 8 Suppose a die is rolled 500 times. The following table shows the frequency each
face.

Face I 2 3 4 5 [
Fregquency 82 81 | 88 1 |90 | 78
Relative frequency  |0.164|0.162|0.176|0.162|0.18 |0.156

1

We see that the relative frequencies are close to . How do we ascertain that these relative
1

frequencies will approach to © as we repeat the experiments infinite no of times?

Discussion This definition is also inadequate from the theoretical point of view.




= We cannot repeat an experiment infinite number of times.
= How do we ascertain that the above ratio will converge for all possible
sequences of outcomes of the experiment?

Axiomatic definition of probability

We have earlier defined an event as a subset of the sample space. Does each subset of the
sample space forms an event?

The answer is yes for a finite sample space. However, we may not be able to assign probability
meaningfully to all the subsets of a continuous sample space. We have to eliminate those
subsets. The concept of the sigma algebra is meaningful now.

Definition Let < be a sample space and Fa sigma field defined over it. Let ¥ F —=Epe g
mapping from the sigma-algebra Finto the real line such that for each A=F | there exists a

unique PAER Clearly £ is a set function and is called probability, if it satisfies the
following three axioms.

. P{A 20 forall AcsF
Fsh =1
Countable additivity IF 4, A, . are pair-wise disjoint events,1.e. A mA; =¢ fori =, then

P(]4) = SP(4)

i=l
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Figure 2

Discussion

e Thetriplet (5. F. )is called the probability space.
« Any assignment of probability assignment must satisfy the above three axioms

i f AnB=0 P(ALB) = P(4)+P(5)

This is a special case of axiom 3 and for a discrete sample space , this simpler version
may be considered as the axiom 3. We shall give a proof of this result below.

e The events A and B are called mutually exclusive ¥ANE=0




Basic results of probability

From the above axioms we established the following basic results:

1 P =0
Suppose, A= HL=d . A=E.
Then Amd; =gfori=
P(f) = P 4)
- P(4)
=3r
Therefore E @)
Pip=3F
Thus @ 2{ @) which is possible only if Fgy=0
2. if ABeFand AnB =0, P(AL D) = P(4~+P(B)
We have ,

AobB=A4A0B g Qg
CPLALE) = P(A) + PR + P(g). + Pig)+ . (using aziom 3)
CPLALE) = P(A) + PLE)
3. PA) = 1- P (4 yhere where A€ F
A A =8
= P4 A = B(S)
— P(A)+P(AY =1 wAnA =¢
We have, LA =1-PA)
4 1f ABEF, P(ANE) = P(4) - P(ANB)

We have, —
(ANBYU(ANB) = A ey -$ N, s
CCHANEBE Y (AN B)] = P(A) 4 4 A2 )
= PLANE )+ F{AnEB) = P(4) K W -

o -
= P(AMB") = P{4) - F{ANE) ‘”&
A B° Am B
We can similarly show that , A=A BN (AN E)

P(A° A BY = P(B) - P(Ar B)




If ABelF, PlAUEY= P(A)+P(EY - P(AE
We have ,

5.

AVB={4 nE(dmBNa{dmE)

CPAUE) = F(A A BY (A BV (A B
=FP(A B+ P(ANE) + PLAN BT
=P - P(AN B+ P(ANE) + P(A) - P(Arm B
=P(E+ P(A) - P(AN B

6. We can apply the properties of sets to establish the following result for
A8 CelF

PAUBUC =P+ PEV+ PO -PANEB - FENC) - P(ANC) + PIANEBNC)
The following generalization is known as the principle inclusion-exclusion.

Probability assignment in a discrete sample space

Consider a finite sample space . Then the sigma algebra is defined by the power set
of S. For any elementary event , we can assign a probability P( si ) such that,

g A€ ]F, we can define the probability

P4 = P(4)
e

For any even

In a special case, when the outcomes are equi-probable, we can assign equal probability
p to each elementary event.

M

Zp=1

i=1

= r = 1n
P - P U{ﬂ,-}]
Sed
= (4 1
#
_ #id
7

Example 9 Consider the experiment of rolling a fair die considered in example 2.

suppose “¥* = 1% represent the elementary events. Thus “tis the event of getting ‘1,

Asjs the event of getting '2' and so on.




Since all six disjoint events are equiprobable and S=dud v v we get ,

P(4) = P(4) = .= P(4) =%

Suppose “is the event of getting an odd face. Then
A=d o4
1 1
VP = PUAD+ PLAY+ PULA = 3><:E =3

Example 10 Consider the experiment of tossing a fair coin until a head is obtained discussed in

Example 3. Here S={#, THTIH, ... ! Letus call
s =H
g =TH
s, =1TTH
1
Pllsd) == 2 Plish=1 _
and so on. If we assign, 2" then =S Let =555 s the event

of obtaining the head before the 4 th toss. Then

PlA)= Fl{a}) + P{s,)) + Pl{s))
1,117

2 27 F 8
Probability assignment in a continuous space

Suppose the sample space S is continuous and un-countable. Such a sample space arises
when the outcomes of an experiment are numbers. For example, such sample space occurs
when the experiment consists in measuring the voltage, the current or the resistance. In such a
case, the sigma algebra consists of the Borel sets on the real line.

Suppose 5= Rand & =R 5 3 non-negative integrable function such that,

lf{x} dr =1

For any Borel set 4,
P4y = J'f (x) dx
4 defines the probability on the Borel sigma-algebra B .

2 3
We can similarly define probability on the continuous space of R ofc,




Example 11  Suppose

for xe[a, &]
fx':x:' =<b -a
0 otherwi se
Then for [ 1l S, ]
Play, b)) = 7%
b - a

Probability Using Counting Method

In many applications we have to deal with a finite sample space < and the elementary
events formed by single elements of the set may be assumed equiprobable. In this case, we can
define the probability of the event A according to the classical definition discussed earlier:

Py ="

M

where “4= number of elements favorable to A and n is the total number of elements in the
sample space =

Thus calculation of probability involves finding the number of elements in the sample
space * and the event A. Combinatorial rules give us quick algebraic formulae to find the
elements in = .We briefly outline some of these rules:

1. Product rule Suppose we have a set A with m distinct elements and the set B with n
AxB =g b ||aecd b, el i
distinct elements and [(a‘ d )l “ d ] . Then A* & contains mn ordered
pair of elements. This is illustrated in Fig for m=5 and n=4 n other words if we can
choose element a in m possible ways and the element b in n possible ways then the
ordered pair (a, b) can be chosen in mn possible ways.

F

E a, by iy, By s, By 2y, By @by
a, b Ay, by @z, b Ay, by A, by
a8 iy, By s, By @y, by @, By

ay .y .0 . &y g, g,y

o=

Figure 1 Illustration of the product rule

The above result can be generalized as follows:




The number of distinct k -tupples in
Awd = xd ={[a1,a2,...,ak)|ale_rﬂl,aj el akEﬂk} is P %% where

" represents the number of distinct elements in ‘qi.

Example 1 A fair die is thrown twice. What is the probability that a 3 will appear at least
once.

Solution: The sample space corresponding to two throws of the die is illustrated in the

following table. Clearly, the sample space has 6 %6 = 35 lements by the product rule. The
event corresponding to getting at least one 3 is highlighted and contains 11 elements. Therefore,
11

the required probability is %.

(1.6) | (2.6 [(536) [(d6) | (56) |(66)
(L5 [ (2,5) |35 [@E5) |55 [(65)
(14 | @4y [34) [@d4) [ (540 | 64)
(1.2) | (2,3 [((533) [ @3 | (53 |63
(1,2) | 2,2) | (3,2) [ @) |5,2) | (6,2)
(L &0 [0 [ @1 |51 |61

Throw |

ba g 0 E g

Example 2 Birthday problem - Given a class of students, what is the probability of two
students in the class having the same birthday? Plot this probability vs. number of students and
be surprised!.

Let k<365 be the number of students in the class.

Then the number of possible birth days=365.365....365 ( k-times) = 365
The number of cases with each of the & students having a different birth

day is =R =365.364.. (365-k+1)

x5

. : F

Therefore, the probahility of common bithday =1- 365i
Number of persons Probahiliy

2 0.0027
1 0.1169

15 0.4114
25 0.5687
40 18912
50 {09704
i) 0.9941

80 {19090
o0




The plot of probability vs number of students is shown in above table. Observe the
steep rise in the probability in the beginning. In fact this probability for a group of 25 students is

greater than 0.5 and that for 60 students onward is closed to 1. This probability for 366 or more
number of students is exactly one.

0.6

(=
(52

probability

=
E-

nz-%

1 I 1 I 1
a0 100 180 200 280 300 350
Mumber of people

Example 3 An urn contains 6 red balls, 5 green balls and 4 blue balls. 9 balls were picked at

random from the urn without replacement. What is the probability that out of the balls 4 are red,
3 are green and 2 are blue?

Solution :
L =l§i
9 balls can be picked from a population of 15 balls in o9l
LR oA o
S S Rt
Therefore the required probability is Co

Example 4 What is the probability that in a throw of 12 dice each face occurs twice.

Solution: The total number of elements in the sample space of the outcomes of a single
throw of 12 dice is ="

The number of favourable outcomes is the number of ways in which 12 dice can be

arranged in six groups of size 2 each — group 1 consisting of two dice each showing 1, group 2
consisting of two dice each showing 2 and so on.

Therefore, the total number distinct groups

_ 1
212121212121

121
Y
Hence the required probability is (2)6




Conditional probability

Consider the probability space (5. F.#) | et A and B two events in F . We ask the
following question —
Given that A has occurred, what is the probability of B?

The answer is the conditional probability of B given A denoted by F(B1A) \we shall
develop the concept of the conditional probability and explain under what condition this

conditional probability is same as PE)

Notation
P (B/4) = Conditional probability of B
given A

Let us consider the case of equiprobable events discussed earlier. Let Nz sample points
be favourable for the joint event A5

ANk

Figure 1

Mumber of outcomes favourable to A and B

P(BIA)=

Mumber of outcomes in &
ni A8
_ ni A _ on FP(ANE)
ald)  nlA) P4

M

Clearly,

This concept suggests us to define conditional probability. The probability of an event B under
the condition that another event A has occurred is called the conditional probability of B given
A and defined by




P(ArE)

P(BIA) = , Pl =0

We can similarly define the conditional probability of A given B, denoted by PALB)

From the definition of conditional probability, we have the joint probability PANE) o

two events A and B as follows

P(ArnB) = PLP(BIA) = P(B)P(Al B)

Example 1 Consider the example tossing the fair die. Suppose

A=event of getting an even number ={2, 4,6}
b =event of getting a number less than 4 =1{1,2,3}
SANE={2}
FlAmEY 16 1
P4 36 3

S E(BIA) =

Example 2 A family has two children. It is known that at least one of the children is a girl.
What is the
probability that both the children are girls?

A = event of at least one girl

B = event of two girls

S = {gg, gh, bg, bb}, A={gg. gb, bg} and & ={gg}
AmE={gg}
PlAnE) _ 114 1

B A = T T T3

Clearly,

Conditional probability and the axioms of probability

In the following we show that the conditional probability satisfies the axioms of
probability.




P(ARB)

FBIA= LAY =0
By definition
Axiom 1:
PANBY 20, P(A) >0
SOPBTA) =M 20
Pl A
Axiom 2 :
We have , ArmAd=4
P(SIA) = PE A PA) 1
PlA) PrA)
Axiom 3 :

Consider a sequence of disjoint events BBy By

(fj BlrA= EJ(B!. )
il

iml

We have ,

B B2

%y
L

Figure 2

BmA i=12

Note that the sequence **is also sequence of disjoint events.

P(D (B, n ) = iP(Bi A A)
i=l

i=l




B na SPE N

P Bt A= = = =N PB4
(ig 4 4] P4 g‘ Bl

Properties of Conditional Probabilities

if BC A then PBIA) =1and P(AIB) > P(A

We have , A& =14

P(AnB) _ P _,

PRI A) = " Fa

and
P(ANE)
P(B)
_P(AVP(BIA)
PE®)
_ Py
P(B)
2Pl

PlAIB) =

Chain Rule of Probability

PO4 My A) = PUA)P(A, 1A )P(A T A NAY. P4 T AN N4

We have ,

(ANMEBE T =(AnE
PANEB miT) = FAANBIFICT AN E
= FAFPBETAFCIANE

S E(ANENC) = PLDP(B I A)F(C AN E)

We can generalize the above to get the chain rule of probability

P4 Ay A) = POA)P(A, 1 4 )P4 1A M A). P41 4 A 4,

A )




Joint Probability

Joint probability is defined as the probability of both A and B taking place, and is
denoted by P(AB).

Joint probability is not the same as conditional probability, though the two concepts are
often confused. Conditional probability assumes that one event has taken place or will take
place, and then asks for the probability of the other (A, given B). Joint probability does not have
such conditions; it simply asks for the chances of both happening (A and B). In a problem, to
help distinguish between the two, look for qualifiers that one event is conditional on the other
(conditional) or whether they will happen concurrently (joint).

Probability definitions can find their way into CFA exam questions. Naturally, there may also
be questions that test the ability to calculate joint probabilities. Such computations require use
of the multiplication rule, which states that the joint probability of A and B is the product of the
conditional probability of A given B, times the probability of B. In probability notation:

P(AB) =P(A | B) * P(B)

Given a conditional probability P(A | B) = 40%, and a probability of B = 60%, the joint
probability P(AB) = 0.6*0.4 or 24%, found by applying the multiplication rule.

P(AUB)=P(A)+P(B)-P(AnB)
For independent events: P(AB) = P(A) * P(B)
Moreover, the rule generalizes for more than two events provided they are all independent of

one another, so the joint probability of three events P(ABC) = P(A) * (P(B) * P(C), again
assuming independence.

Total Probability

Let A4 "ﬂ""be n events such that

=40 A L d 4 =g fori=j
S=dv 4 A mnd 4And;=¢ ford 7 Then for any event B,

P(B) = P(A)P(BIA)
iml

VRS

Proof : We have i-! and the sequence End is disjoint.




LEEY =P B4

il

=> P(BnA)
iml
=iP(4)P{BJ4)
iml
5
4
A4 A
Figure 3

Remark

(1) A decomposition of a set S into 2 or more disjoint nonempty subsets is called a partition

of S.The subsets “4° 2 =+ " form a partition of S if

S=Au 4 A and_,q!_m‘,qi:-;aﬁ fori#= .
(2) The theorem of total probability can be used to determine the probability of a complex
event in terms of related simpler events. This result will be used in Bays' theorem to be

discussed to the end of the lecture.

Example 3 Suppose a box contains 2 white and 3 black balls. Two balls are picked at
random without replacement.

Let “4= event that the first ball is white and
Let 4 event that the first ball is black.

Clearly quland 4 form a partition of the sample space corresponding to picking two
balls from the box.

Let B = the event that the second ball is white. Then .




P(BY = P(A)YP(BI 4)+ P(4)P(BI &)
_2, 1,322

5 4 5 4 5
Bayes' Theorem

SUppose A, 4. ... A are partitions on S suchthat §= A A4 and 4 M4 = ¢ fori# |
suppose the event B occurs if one of the events A Ay .. A, ooours, Thus we have the information of the
probabilities P(4) and P(BfA),i =12 » We ask the following question:

Chven that B has cccured what 1s the probability that a particular event A, has cccured? In other words

what iz PlAIB)?

We have F(5) =ZP(A:) P[B |_r%) ( Using the theorem of total probability)

F(4,) P(Bi4)
F{EB)

_ P(4)P(BA)
> P4 )P(BIA)

im]

" P8

This result is known as the Baye's theorem. The probability £ is called the a priori
probability and P47 Bis called the a posteriori probability. Thus the Bays' theorem enables

us to determine the a posteriori probability £ 7 B from the observation that B has occurred.
This result is of practical importance and is the heart of Baysean classification, Baysean
estimation etc.

Example 6

In a binary communication system a zero and a one is transmitted with probability 0.6
and 0.4 respectively. Due to error in the communication system a zero becomes a one with a
probability 0.1 and a one becomes a zero with a probability 0.08. Determine the probability (i)
of receiving a one and (ii) that a one was transmitted when the received message is one.

Let S be the sample space corresponding to binary communication. Suppose & be event

of transmitting 0 and 7' be the event of transmitting 1 and £ and & be corresponding events of
receiving 0 and 1 respectively.

P(Ty =06, P(Ty=04, P(RJT)=01__ . P(R,{T) =008

Given and




(1) F(A) = Probabalty of receiving 'one'
- (L) PRI ) + P)P(R I T)
=04x092+06x0.1
= 0448
{11) Using the Baye's rule
P(T) P(RIT)
FLE)
_ PIPR T
P(T)P(R, IT) + P(G)F(R I T,)
0.4x092

T 04%0.92+0.6%0.1
~0.8214

PR =

Example 7: In an electronics laboratory, there are identically looking capacitors of three makes

A4 and Ay vne ratio 2:3:4. It is known that 1% of “1, 1,50 of “2 @4 2 of & o0
defective. What percentages of capacitors in the laboratory are defective? If a capacitor picked

at defective is found to be defective, what is the probability it is of make 49

Let D be the event that the item is defective. Here we have to find P(D) and P(4 1) .

2 -1 _4
ore T g P = S and PCA) = o

The conditional probabilities are £&/4) = 0.0, 2(D/.4,) = 0.015 and 2D/ 4) = 0.02
" P(D) = P(4)P(DI 4) + P(A4) P(DI 4)+ P(4&) P(DI &)

= Exg_m+lxo_mj+i><0.[]2
9 3 9

=0.0167

and

P4, 1) = PAEDI )

F(DY

i><[Zl.[112
G

0.0167
=0.533

Independent events

Two events are called independent if the probability of occurrence of one event does not
affect the probability of occurrence of the other. Thus the events A and B are independent if

P(BIA)=FP(B) .  P(AIB) = P(4)

and




where P4 and F(B) are assumed to be non-zero.
Equivalently if A and B are independent, we have

FANE) _

P &)

or P{ArB) = P(A)P(B)

Joint probability is the
product of individial
probabilities.

Two events A and B are called statistically dependent if they are not independent. Similarly, we

can define the independence of n events. The events Ay

and only if

are called independent if

P4 M A)) = P(4) P(4)
P4 M4y MA) = PLAYP(A)P(4)
P4 nA N, neA) = PLAYPAIPA).PA)

Example 4 Consider the example of tossing a fair coin twice. The resulting sample space is
given by & ={HHA,HT.TH.TTY ond all the outcomes are equiprobable.

Let 4= 77T} be the event of getting ‘tail' in the first toss and B ={TH, HH} g the
event of getting ‘head’ in the second toss. Then

ANE)=(TH) & that

Again, {
P(Ar B)- % - P(AP(B)

Hence the events A and B are independent.

Example 5 Consider the experiment of picking two balls at random discussed in above
example




ey =2 Pmray=t
In this case, 5and 4

P(B) = P(B]4)

Therefore, and “tand B are dependent.

RANDOM VARIABLE

INTRODUCTION

In application of probabilities, we are often concerned with numerical values which are
random in nature. For example, we may consider the number of customers arriving at a service
station at a particular interval of time or the transmission time of a message in a communication
system. These random quantities may be considered as real-valued function on the sample
space. Such a real-valued function is called real random variable and plays an important role in
describing random data. We shall introduce the concept of random variables in the following
sections.

Random variable

A random variable associates the points in the sample space with real numbers.

Y 5=BR

Consider the probability space (S’ ]F’P) and function mapping the sample space

oy

into the real line. Let us define the probability of a subset Fch by

P ({BY) = PLXT(B) = P({s| X (s)€ BY)

-1
Such a definition will be valid if “X %7 js a valid event. If Sis a discrete sample

-1
space, (L7080 s always a valid event, but the same may not be true if < is infinite. The
concept of sigma algebra is again necessary to overcome this difficulty. We also need the Borel
sigma algebra B -the sigma algebra defined on the real line.

The function 4 % — Ejs called a random variable if the inverse image of all Borel sets
under < is an event. Thus, if < is a random variable, then

XHB)={s| X(s)eB}eF




Figure: Random Variable

Observations:

« ~isthe domain of .
« The range of <% denoted by By is given by

Ry ={X(5)|s €8}
Clearly By ;]R.

« The above definition of the random variable requires that the mapping - is such that

-1
(L7(8) is a valid eventin 5. If Sis a discrete sample space, this requirement is met

by any mapping ¥ : = = B Thus any mapping defined on the discrete sample space is
a random variable.

Example 2 Consider the example of tossing a fair coin twice. The sample space is S={
HH,HT,TH,TT} and all four outcomes are equally likely. Then we can define a random variable
& as follows

Sample Point | Value of the
random
Variable
HH 0
HT 1
TH p)
I'1 3

Here #z = {(0.1.2.3

Example 3 Consider the sample space associated with the single toss of a fair die. The

sample space is given by F=11.2,3.4,5.6}




If we define the random variable % that associates a real number equal to the number on
the face of the die, then ¥ = {1-%%456}

Discrete, Continuous and Mixed-type Random Variables

« Arandom variable X is called a discrete random variable if iy (7) IS piece-wise

constant. Thus =% js flat except at the points of jump discontinuity. If the sample space #is
discrete the random variable <& defined on it is always discrete.

+ Xis called a continuous random variable if £y (x) is an absolutely continuous

function of x . Thus Fy (7] is continuous everywhere on I and y (%) exists everywhere except
at finite or countably infinite points .

+ Xis called a mixed random variable if x(x) has jump discontinuity at countable
number of points and increases continuously at least in one interval of X. For a such type RV X,

Helxy = piyix) +(1 - piF.(x)

Fa(x)

where Fplx) is the distribution function of a discrete RV, is the distribution function of

a continuous RV and o< p <1.

Typical plots of x(x) for discrete, continuous and mixed-random variables are shown in
Figure 1, Figure 2 and Figure 3 respectively.

The interpretation of Fplx) and Fo (%) will be given later.

Y

#y(x)

i =+
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»

X
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Figure1l Plot of Fx(X)\s, % for a discrete random variable
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Probability Distribution Function

We have seen that the event & and 5 [£(5)€ 5} are equivalent and

F(U5}) = PUs| L(=) € B1) The ynderlying sample space is omitted in notation and we simply
write 4 € 8l gng UL E B jngtead of 1814181 € B} gpg FUE[L(51€ B pegpectively.

Consider the Borel set ™ x], where ¥ represents any real number. The equivalent
-1 — _ .
event < (7. x]) ={s] X(s) £ 1 5 €5} s denoted as 4 < The event 4 =% can be taken

as a representative event in studying the probability description of a random variable < . Any
other event can be represented in terms of this event. For example,

(X>n={X <0 (< X <x)={X <x)\(X <x),
x-n-Alreavra-y
n=1 A

and so on.

The probability £t £ %) = F({s] £(s) £ x. s €55 called the probability distribution
function (also called the cumulative distribution function , abbreviated as CDF ) of & and

denoted by '™ Thus

Fp(2) = P{X £ x})




Value

of the random variable

Fy(x)
’-

\ Random variable

Figure 4
Example 4: Consider the random variable <X in the above example. We have
Value of the
random PiX=x})
Variable X' =x
0 1/4
1 1/4
2 1/4
3 1/4
Forx <0,
Fyin)=F{A ixp)=0
For 0 £x <1,
1
Fy(x)=P{X 2xp)=P{X =0} = "
For 12 x4 2,

Fy(x) = P({& 2 x)
= P& =0u{&=1)
=P{A =0+ PUL =11

111
4 4 2
For2 £ x <73,

Fa(x)=F{4 Lx)
= P{X =0} (X =T} u{X =2}
=P{A =01+ P& =1+ P{X =2}
1,1,1.3
4 4 4 4




Forx:3,

Fe(x) = F{& £ x})
= PS5
=1

Figure 5 shows the plot of Fx(x)

e (x)

L J

Figure 5

Forls x< 2,

Fy(x) = P& Lx3)
=P{X =00 X =1
=P{A=0)+P{X =1}

1 1 1

= _ 4+ _=_

4 4 2
For2 £ x <3,

Fe(m)=P({X <x)
= PUX =0y (X =1 u{X =2
=FP{A =0+ =1+ FPH{A =2}

1 1. 1 3
+_+_=

4 4 4 4

Properties of the Distribution Function

0L R, (x)<1
This follows from the fact that Fy(x) is a probability and its value should lie between 0

and 1.




o s 2 non-decreasing function of X . Thus, if 7 ¢ %2 then Fx(x) < Fx(x)
i

= (X&) <n) C{X(s) Lxy)

= P(X(s) £ x) £ PLX(s) € x)

S Fy(m) < Fylx)

« %) 15 vight continuous.

F.(x")= laifé F(x+h)=F.(x)
k)
Eecause, Eﬂ% Folx+h)= kin% PES A+ k)
k0 k-0
=FX(5) L)
=Fy(x)
Fy(-=)=0

Becausze, Fy(—m)=Flz| Xs) 2 -} = Flg) = U.

Fy(o) =1
Becausze, Fy(m) =Fls| Als) 2w} = FPla) =1 .

Pl < X< =F(x)- F(x)

We have ,

(X Lx) =T < ml{m <X <x)
P Cx )= PUT Sx e Py <X <))
= FPlin <X Sx) S F{X Snp - FUL Sx1) = Fe(x) - Fo ()

P (x =R (x) - P(X = 1)

Fy(x7) = lim Fy(x= k)
k>0
= lim P(X(s) <x~ k)
k>0
= P{X(s) < x) - P(X(5) = %)
=Fy(x) - FlA =x)

We can further establish the following results on probability of events on the real line:

Pl aX =xi=Fx) - Flx)+ P(X=x)




Flim =X axl)=Fp () - Fy(m)+ (X =5)-PX =x)
PUX >xY)=F({x <X <oof)=1-F,(2)

Thus we have seen that given “x (& @<z <e

event involving values of the random variable <t .Thus
of the random variable < .

, We can determine the probability of any
Fx(x) ¥z €X s 3 complete description

Example 5 Consider the random variable -X defined by

F (%) =0, x4 -2

=lx+l , —2Ex<n
B 4

=1, x20

b) P{X <0
0 P{X >2}_
d) P{—H}{il}_
Solution:
a) PLA =)= Fp(07) - Fp (07)
1 =
=1-_==
4 4

b)Y P{X <0} = Fy(0)
=1

Q) P{X >2) =1-Fu(2)
=1-1=0

&) P{-1< X <1
= Fp (- Fp (-1

5 3




Figure 6 shows the plot of Fx(x).

A
e (%)

1

Y

Figure 6
Discrete Random Variables and Probability DENSITY functions

A random variable is said to be discrete if the number of elements in the range By IS

finite or countably infinite.

£+ t0 be countably finite. Let 1 %+ % he the elements of . Here the

{SlXI:S:I=Ii},i=1,2 ...... N

First assume

mapping * “ partitions &into ¥ subsets

The discrete random variable in this case is completely specified by the probability mass
function (pmf) Px (%) = PUs| X(s) = x).1 =12, 0}

Clearly,

. Px(x)20 ¥x ek, and

2 pxlx)=1

o imRy

L EE) = Fy(x) - Fy(x™) forall e R,

Pl{zxeD)) = py(x)

xal)

 Suppose e RX.Then

Figure 6 illustrates a discrete random variable.




A (&)
A (5,)
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Figure 6 Discrete Random Variable

Example 1

Consider the random variable <% with the distribution function

r

0 x40
1 oacx<a
Fxn=4"
LRI
2
1 x22

The plot of the y (x) is shown in Figure 7 on next page.




Py (x)

I | =

The probability mass function of the random variable is given by

Value of the random

variable X =x Px(x)
1
0 _
4
1
1 4
5 1
2

Continous Random Variables and Probability Density Functions

For a continuous random variable £ | x (x) is continuous everywhere. Therefore,

Fy(x)=F(x") e

This implies that for * €

px(x) = P{A = x})
= (2 - Fy(x)
=0

Therefore, the probability mass function of a continuous RV < is zero for all *.A
continuous random variable cannot be characterized by the probability mass function. A
continuous random variable has a very important chacterisation in terms of a function called the
probability density function.




if ¥} js differentiable, the probability density function ( pdf) of X denoted by
T2 (&) §s defined as

o
fx(x:' = EFX (x)

Interpretation of - (%

Fal@ =L )
odx
By (x+ %) - Fy(x)

= lim
=0 iy
4
g PURCX S )
Ax—0 Favy

so that

P({x < X $x+ix)) = fy(x)hx

Thus the probability of X lying in some interval “% & * £xljs determined by Fx&)

that sense, Sz (%) represents the concentration of probability just as the density represents the
concentration of mass.

Properties of the Probability Density Function

f(@® 20

This follows from the fact that Fy (x) is a non-decreasing function
Fy(x) = [ fylu)du

}fz(x)dx =1

Plm <X ix)= Ifx(x]dx

. -

Figure 8 below illustrates the probability of an elementary interval in terms of the pdf.




Fy(x)

v

0
X xg T x

Figure 8 Tlustration of P({x, < X L x +Ax}) = £ (508,

Example 2 Consider the random variable X with the distribution function

P 0 x<0
x:
“ 1-e g %0 x20

The pdf of the RV is given by

1] x40
fz':x:'={

e a0, x20

Remark: Using the Dirac delta function we can define the density function for a discrete
random variables.

Consider the random variable < defined by the probability mass function (pmf)

px(x)=Pls| X&) =x)i=12,. n

The distribution function (%) can be written as
Fp(®) =D py(ax)uix—x)
i=l

wix—x)

where is the shifted unit-step function given by

1 for x2x
u(x—x)= !

0 otherwise

Then the density function Tx(x) can be written in terms of the Dirac delta function as




F2(x) =D py(x)8(x - %)

im1
Example 3

Consider the random variable defined with the distribution function * given by,

o (x)= %u(x}+%u(;{—lj +%u(x—2)
Then

1 1 1
Jx(2) = Zﬁix} +25(x—1]' +§5(x—2}

Probability Density Function of Mixed Random Variable

Suppose -t is a mixed random variable with x(x) having jump discontinuity at

A=x.1=L2,.% Aqalready stated, the CDF of a mixed random variable X is given by

Fy(x) = pFp(x)+(1- p) Fo(x) ‘

where Fp [x) is a discrete distribution function of - and Fe '[x:' is a continuous distribution
function of & .
The corresponding pdf is given by

Je(x) = piplx) +(1-plfaix) ‘

where

Jolz) = pr (% )8(x - x;)
)

and Je () is a continuous pdf. We can establish the above relations as follows.

suppose F2 = (%272 %} denotes the countable subset of points on

[x),xER

Ry such that the random

variable is characterized by the probability mass function Px
R.=FR,\R

2. Similarly, let
I'be a continuous subset of points on By such that RV is characterized by the
probability density function Jo(x).x€ R .

Clearly the subsets 5 and fe partition the set = P(&p) ~# then P(&s) = 1_*2:'.

<
Thus the probability of the event (£ <a) can be expressed as

P{X <xp = P(R,)P({X <x} | Ry )+ PR P{X < x}| Re)
(




Taking the derivative with respect to x , we get
Sz (x) = pfp(x) +(1-p) fo(x)

Example 4 Consider the random variable - with the distribution function

0 <0

B () = 0.1 x=10
01+056x  0<x<1
1 2l

The plot of £y (x) is shown in Figure 9 on next page

FafX) A

1
U.‘}———J

0.1
0 ' r—
where
] x <0
Faix)=Z0.5 0<x <1
1 xx1
0 -

Figure 10




The pdf is given by

Jr(x)=027,0x) +0.5 7. (x)

where
Folx) =054z + 0548(x - 1)
and
o) = 1, 0<x21

et 0 elzewhere

F 3
fz(x)
F 3 F 3
1] L —»
Example 5

X is the random variable representing the life time of a device with the PDF Sz (%) for x=0
Define the following random variable

r=x if X fa

=g if X ra
Find Fy(y).
Solution: Rp ={a)
Ra= l':l:I, a)
p= P{ye D}
= P{}f ¥ cz}
=1-1y [‘1)




Other distribution and density rvs

In the following, we shall discuss a few commonly-used discrete random variabes. The
importance of these random variables will be highlighted.

Bernoulli random variable

Suppose X is a random variable that takes two values 0 and 1, with probability mass
functions

prxl=FlX=1=p
And

201 =1-p, 0<p<l

Such a random variable X is called a Bernoulli random variable, because it describes the
outcomes of a Bernoulli trial.

The typical CDF of the Bernoulli RV < is as shown in Figure 2

By (x)

Figure 2

Remark
We can define the pdf of <X with the help of Dirac delta function. Thus
Jx(z)=(1-p)8(x)+ pdiz)

Example 2 Consider the experiment of tossing a biased coin. Suppose
P{H})=p andP({T})= -7

If we define the random variable < %72 = land €70 =0 then X is a Bernoulli random
variable.

Mean and variance of the Bernoulli random variable




1
sy =EX =D dpL (k) =1xp+0x(l-p)=p
Kl

1
EXP = upy (k) =1xp+0x(1-p)=p
1]

o = EX -y = p(1-p)
Remark

o The Bernoulli RV is the simplest discrete RV. It can be used as the building block for
many discrete RVSs.
e For the Bernoulli RV,

EX"=p m=1273..

Thus all the moments of the Bernoulli RV have the same value of #-

Binomial random variable

Suppose X is a discrete random variable taking values from the set {0.1,..) . < is called a
binomial random variable with parameters n and 0LpSljs

prE) =" - k=01..x

where

n !

Cr kln—k)!

As we have seen, the probability of k successes in n independent repetitions of the
Bernoulli trial is given by the binomial law. If X is a discrete random variable representing the
number of successes in this case, then X is a binomial random variable. For example, the
number of heads in ‘n ' independent tossing of a fair coin is a binomial random variable.

« The notation < ~#% P)is used to represent a binomial RV with the parameters #and
F

D=0 - = [p -] =1
K=l Kl

The sum of n independent identically distributed Bernoulli random variables is a
binomial random variable.

e The binomial distribution is useful when there are two types of objects - good, bad;
correct, erroneous; healthy, diseased etc.

Example 3 In a binary communication system, the probability of bit error is 0.01. If a block of
8 bits are transmitted, find the probability that

(@) Exactly 2 bit errors will occur




(b) At least 2 bit errors will occur
(c) More than 2 bit errors will occur

(d) All the bits will be erroneous

Suppose < is the random variable representing the number of bit errors in a block of 8
bits. Then < ~ &(2.0.01).

Therefore,

(&) Probability that exactly 2 bit errors will occur
=px(2)
= o % 0,01 %0.9%°
= 00026
(b1 Probabality that at least 2 bit errors will occur
= px(0)+ py (L) + py(Z)
=0.99% + ¥ % 0.01 %0997 + ¥, % 0.01% %0 99°
=1.959%

() Probability that more than 2 kit errors will ocour
2
=1- 2 py (k)
k=0

=1-0.295%9
=0.0001

() Probability that all 8 bits will be erroneous
= px(5)
=0.01° =107"

The probability mass function for a binomial random variable with n =6 and p =0.8 is
shown in the Figure 3 below.

s Bionomial Distribuficn with p =08 .n=8

QZEF

LA

Q35
palk) ol

e

o

Qs




Figure 3
Mean and Variance of the Binomial Random Variable

e have
EX = hp, (k)
K=l
= >k - p)
k=0

=0xg" + > kK Cp 1 -pr
1

® zl

=" i ’ .Fc,-l_ -k

2 Ho-mi? 0P

. 7l & 2k
= - 1_

Z e nin-mi” P

x #-1l k-1 1-1-Ky

=n - o o= 1_

P Dini D

i a2 -1l ¥y 1 o
=up > ————p" (1-p)"™ (Substituting &k, =k -1
p&_uhl(m—l—kljlp (1-7) ( g y
=np(p+1-p)"?

similarly
EX* = Zkﬂ 2, (k)
k=l
=S et -prt
il

=|:]2 Xq:! +Z&Hcﬁpk(1_p)x—&
K=l

= . zl &y _ »-k
_;kzk!(n—k)!p (1-2)

bl

7 ko _nk
kap (1- 2

k=1

- n=1l
= E:k—1+1 TSRS Sy
?zpm( }(k—lj!(n—k)!p (1=7)
\ 21l A1 -l S x 1l k-1 #-1-{k-1)
=x E k-1 1- + 1 E 1-
pm( j(ﬂc—l)!(&z—l—k+l}!p d-2) pp,_l(k—lj!(n—l—k+lj!p (1-2)

=nprn-lip+up
=n(n —1};:':4 +up

Where




- (2 =1 E-1 2-1-{k-1)
k-1 1-
;E Uy oyt v A 2
isﬂlemeanofﬂ(m—l,p].
.'.O‘§{=vm’ianceofX
=n(1-Dp* +np —np?
=up(l-p)

Poisson Random Variable

A discrete random variable X is called a Poisson random variable with the parameter 4 if
Az=0 and
é‘—.] AF:.

px(k) = k=012

The plot of the pmf of the Poisson RV is shown in Figure 2

0.4
A H]
0.3 e
=1
=02 o
o o
01
o T L N M R T P U (R S Y
o 2 4 = a 10 12 14 16 18 20
0,25
o
0.2 " .
Zz 15 o A=35 ]
.-:.\. T
e :|'| . -
_ i
005} | a
[N | | | -I" [ L T L T L DR 3
i} 2 4 =] 2] 10 12 14 15 i8 20

Figure 2
Mean and Variance of the Poisson RV
The mean of the Poisson RV Xis given by
Hy = D oz (k)
k=0

[} -1 .‘:-
=|:|+Z.‘?CE ‘1
il
K=l :




X =Dk, (k)
]

@ -1 1k
ST S
=l 4

e kAR
k=1l

I i 1+132%
§ k-1

—J

[ ] a1

A+
= 32 yo
¢ Zﬁ'c 2| Zﬁ'c 1l

]

=™ 2t + o7 A
=A+ A
Sy = EX - = A
Example 3 The number of calls received in a telephone exchange follows a Poisson

distribution with an average of 10 calls per minute. What is the probability that in one-minute
duration?

I. no call is received
ii. exactly 5 calls are received
iii. More than 3 calls are received.

Solution: Let X be the random variable representing the number of calls received. Given

&1 Where 4 =1U. Therefore,
_ _ -l _
i.  probability that no call is received ~ 2= =27 =0,000095

ii.  probability that exactly 5 calls are received 3 0.0378




iii.  probability that more the 3 calls are received
5 2 3
=1—sz|ifc:|=1—Q_IU(I+E+£+£}=
e bo2b 317 0.9807

Poisson Approximation of the Binomial Random Variable

The Poisson distribution is also used to approximate the binomial distribution B(#.2) \when n is
very large and p is small.

Consider binomial RV with < ~ &% 2) with
#—rm p—0 sothat BY =»xp = A remains constant.

Then

7,k ="C -

7l 3 2k
e — 1_
tmm” 478

:?z(m —Niim—2 (n —k+1)pk

_ n—k
o (1-p)

z pril-pm

(1—1][1—2]...(1—E]
% ”kl % (p)(1-p)" "

a-Ha-3.a-hora- 2y
_ # # # #

ki —ﬂ)“
M

Mote that lim(1- i}” =gt

fraar ] M

1 2 k-1 A
(1——j(l—;)___(l—T)(A)krgl—;j A

2
il

Sopylk) =lim ~
b




Thus the Poisson approximation can be used to compute binomial probabilities for large n. It
also makes the analysis of such probabilities easier. Typical examples are:

« number of bit errors in a received binary data file
e number of typographical errors in a printed page

Example 4 Suppose there is an error probability of 0.01 per word in typing. What is the
probability that there will be more than 1 error in a page of 120 words?

Solution: Suppose X is the RV representing the number of errors per page of 120 words.

A~ B120.2) \Where # = 991 Therefore,

SoA=120x001=012
Pi{more than one errors)
=1-px 0} px(l)
=1-g™ - A
= 0.0066

In the following we shall discuss some important continuous random variables.

Uniform Random Variable

A continuous random variable X is called uniformly distributed over the interval [a, b],
- <a <& <o jf jts probability density function is given by

1
frlZl=sb-a |
0,

g xEh

otherwize

1x)

ha----

Figure 1

We use the notation < ~ (@ #)to denote a random variable X uniformly distributed over the
interval

[a,b]. Also note that




[~ A
o e

Distribution function £x*

Forx<a
F(x)=0
Foraix<b

[ felads

1

AT

L
-

Pl

—

Forx =h,
Fx=1

Figure 2 illustrates the CDF of a uniform random variable.

F\, {.U

Figure 2

Mean and Variance of a Uniform Random Variable




w 3
ty = BX = [ fy(x)dx = I#x

=cz+f:'

2

2

XY= ixﬂ Fp (30 = l;?dx

b tab+a

3

2 2 2
,',O';=EX2—'L{§,=E: +abh+ta _(ﬂ"'b)
3 4
_(a-a)
12
The characteristic function of the random variable < ~ /(@ 81 given by

. L

gy (w) = Be™ = [ 2y
QE:'_ [

é..r'u@ — cz"'““

N[E:I —.:1)

Example 1

Suppose a random noise voltage X across an electronic circuit is uniformly distributed
between -4 V and 5 V. What is the probability that the noise voltage will lie between 2 V and 3
VV? What is the variance of the voltage?

2odx 1
P({2<X£3})—£5_(_4) >
0§=(5+4)2=Ev2_

12 4

Normal or Gaussian Random Variable

The normal distribution is the most important distribution used to model natural and man
made phenomena. Particularly, when the random variable is the result of the addition of large
number of independent random variables, it can be modelled as a normal random variable.

A continuous random variable X is called a normal or a Gaussian random variable with

2
parameters Hrand “% if its probability density function is given by,




A x-pg )
o) = ngm ’[;]

& - S XS

=0

Where #%and < are real numbers.

. N AT
We write that X is (’HX’JX )dlstrlbuted.
if #x =%and oy’ =1,
1 =
X = g 2

and the random variable X is called the standard normal variable.

Figure 3 illustrates two normal variables with the same mean but different variances.

s

2
&
o
i
8

Figure 3

« 72 |5 a bell-shaped function, symmetrical about * = #x |
2

2
« “x Determines the spread of the random variable X . If “x js small X is more

concentrated around the mean * .
o Distribution function of a Gaussian random variable

Fy(%) = P(X < 7)




where P(x) is the distribution function of the standard normal variable.

Thus Fy (%) can be computed from tabulated values of P The table P was very useful
in the pre-computer days.

In communication engineering, it is customary to work with the Q function defined by,

O(x) =1- B(x)
_ 1 p _£
—@‘J‘e 2
00) =L, Ot-x) - 0(x)
Note that 2 and
0(x) = 1- (1)

These results follow from the symmetry of the Gaussian pdf. The function £(x) s tabulated and
the tabulated results are used to compute probability involving the Gaussian random variable.

Using the Error Function to compute Probabilities for Gaussian Random Variables

The function <) i closely related to the error function e (%) and the complementary error
function £}

2 ox
erf(x)=—= [ 2™ du
Note that, ﬁ ‘I;

And the complementary error function (% is given by

erfelx) = %]‘E_E?fﬁé
‘?T ¥
=1-erf(x)

u
2

1

00 ==
{3

(]

Mean and Variance of a Gaussian Random Variable

i




N A N
If X is (’HX’JX :Idlstrlbuted, then
BX = ity

var(X) = ng

Proof:

: e
EX=Ifo(x).:fx= ng R

@JX -

1.

(uay +py)e * Ty

$o— ©

T
o

1 w 'L.{_X w _l\“q

= ncf + g ¢ du

Jxm'lzj‘?'_‘!; \#2;?'{_‘!;
= D+ﬂzﬁ‘|‘€_?fﬁ£

w  at _m substituting TTHx

_ Mz T = Oy
=—=—ile “du-=

~ 25T J K so that x = uay + iy

Var(X) = B(X - )

s

1T » 4]
N J‘ (x—pz) e cfx
X —wo
1 y . x—H
= ‘I'szuzé' ¥ gpdu (substitating w = =)

~ 2T, Ty

2w 1-;
fay a TR
=2x—E£_ [u'e ¥ du

T

2 w1 2

= 2x jx_ ﬁlzﬁe"cﬁ (substituting £ = %}




Exponential Random Variable

A continuous random variable <% is called exponentially distributed with the parameter
—A x=0

Jx(x)= { 0 @ _
A > Uif the probability density function is of the form = chiterwise

The cotresponding probahkality distnbution function 1s
Fy(0) = [ Fx()da
_T:I x<0
) {1 - x 20
We have i, = X = ]‘xﬂg"”dx

w

= l we di ( subsifuting u = Ax)

i

Y R

Similarly Ex°

= J‘xgﬁe_'ucfx

w

= %J‘uje'&du

_1p

AE

-2

2

[1;_-.




Figure 1 shows the typical pdf of an exponential RV.

c-:u'.l[

Figure 1
Example 1
Suppose the waiting time of packets in <% in a computer network is an exponential RV with

Fr(x) =057 x2 0
Then,

045
PU01< X 2050 = IEII..S@'“".:I‘:{
0l

=€—IZI SwlS _ é‘_ﬂ RIN

=0.0241

Rayleigh Random Variable

A Rayleigh random variable X is characterized by the PDF

x _ 2
P

Jyxl(x)= a T
o, x =l

where &is the parameter of the random variable.




The probability density functions for the Rayleigh RVs are illustrated in Figure 6.

L i i i i i i i L
o 2 e 6 a8 10 12 14 16 18 20

Figure 6

Mean and Variance of the Rayleigh Distribution

Y = ij:g(xjcfx

1
=R -]
=]
4|
ml

*
5
&

Similarly,




Ex*= T 2 e (X)ex

x
xj—ge'fﬂ";cz’x

=0 L]
]

2
=20 [we™du  ( Substituting x = F)
fay

=1 -]

=30 { Noting that J-ue'“.:ﬁ; isthe mean of the exponential RV with .i=1)
0

2
gy = 252—[ Ef:r]

- (2- )¢

Relation between the Rayleigh Distribution and the Gaussian Distribution

¢ X1~ N0, 0%)

A Rayleigh RV is related to Gaussian RVs as follow: | and

= |12 2
X, ~ N, are independent, then the envelope 4= has the Rayleigh distribution
with the parameter &.
We shall prove this result in a later lecture. This important result also suggests the cases
where the Rayleigh RV can be used.

Application of the Rayleigh RV
v Modeling the root mean square error-

v" Modeling the envelope of a signal with two orthogonal components as in the case of a
signal of the following form:

Conditional Distribution and Density functions

We discussed conditional probability in an earlier lecture. For two events A and B with

P8) = 'j, the conditional probability P{‘M B) was defined as
P(AnE)
PIAIB) = —5gy

Clearly, the conditional probability can be defined on events involving a random variable

Conditional distribution function

. it . . .
Consider the event (X <] and any event B involving the random variable X . The
conditional distribution function of X given B is defined as




= FP(B1=0
2(3) (5)
: Fy(xlB) . o . e .
We can verify that satisfies all the properties of the distribution function.
Particularly.
. Fy(-=iB)= Fy(=iB)=1
. 0L F,(x IB)_l
Fy(xi B)

Is a non-decreasing function of *.
P{n< X Lx}iB)=PUX < x} i BY-P({X <x)iB)
= By B) - Fy(n ! 5)

Conditional Probability Density Function

In a similar manner, we can define the conditional density function Jr (%! leof the
random variable X given the event B as

Fo(x1 BY= LB, (x1 B)
ax
All the properties of the pdf applies to the conditional pdf and we can easily show that

Fe(x/BY20

w

Ifx[xfﬁ)dx=FX[mf3)=1

L] -

By (x/ B)= [ fy(u! B

Pz < X <x))IB)=Fylny i B) - Fyln i B)

= ifx[xfﬂﬁx

Example 1 Suppose X is a random variable with the distribution function #y () . Define
B={X <}




FolxiB)= 5(5)
_P({X<xpn{X <8
) P{X <B)
_P[{X<x)n{X LB}
x(2)
Case 1: x <&
Then
5, ()= DS }SEM})
_P({x <) F(n)
Fe(8)  Fx(d)
And
_d ¥ I: :'_fx A
e o18) L2
Case2; ¥z &
£y (et )= LEED ;gm})
_Plx <) Ay
Fe(b)  Fy(d]
and




Fy (218) g T2 (%1 B) e plotted in the following figures.

F_(x/B)

% N

Figure 1

Fr )
S By |,

e

Example 2 Suppose - is a random variable with the distribution function Py () and
B={X >k}




P{X <x)nB)
P(8)

P({X <xpn{X >3})
P{X >B)
P{X <xpn{X >2))
1-Fy (’5)

Fy(x1B)=

Then
For X =b, (£ <X o8 - ? Therefore,

Fy(x1B)=0 x<h

ForX }b1 I Sxtr{X »hy={b<{ X ix) Therefore,

P({b< X <x})

FylzxiB)=
_ Py (x)- Fyld)
I_Fx[b:‘
Thus,
([ xih
FX["‘-IB:I= FX[X)_FX[E:') oth erwil se
I_Fx[b)
the corresponding pdf is given by
0 xih
fx [x"fB) = fx [x:l otherw se
1_Fz[bj

Example 3 Suppose X is a random variable with the probability density function

Fola) ==

g 2

Vo gng BoTICEY ey




PlEX <xlmB
N OTY Pl (G Tal)
P(B)
O P[{X <xpn{-1L X <))
Pl{-14X <1
P{x <apm{-1< X <1})
= T
[Fx(mdx
-1
a, xi-1
P (x/B) = <w, ~1<x<1
1 =
T of
:I; Eﬂ_é‘ X
1, x21
fa’f':? , ~1<x <1
fexlB) = erf(E)
o, otherwi se
o (x) = ! g? erf (x) = i:[e'“‘du
x
where e and N
Remark
1 -
Jplx) = g *
e is the standard Gaussian distribution.
Jx (21 5) is called the truncated Gaussian and plotted in Figure 3 on next page.
0.7 -
Truncated Gaussian
0.6+
0.6+
-1\ 0.4 | — E
2 /N
~bal ¥ N
/ ¥
ozt / \ Standard
/, ‘\“/_/ﬁaussian
0.1 /o
/ LN
o —1 —1 - 1 1 1 F| 1 \\ St —_
-5 - -3 2 1 a 1 2 3 4

Expected Value of a Random Variable




e The expectation operation extracts a few parameters of a random variable and provides a
summary description of the random variable in terms of these parameters.

o ltis far easier to estimate these parameters from data than to estimate the distribution or
density function of the random variable.

« Moments are some important parameters obtained through the expection operation.

Expected value or mean of a random variable

The expected value of a random variable X is defined by

EX = [ xf, (N)dx

T xfy(x)dx

Provided —= exists.

EX Is also called the mean or statistical average of the random variable & and is denoted
by s

Note that, for a discrete RV £ with the probability mass function (pmf)
Pxxihi= L2 Votne pdf /2% is given by

A
Fe(®) =D py(x)8(x—x)

iml

iy = BX]= | 25 py(x)6(x- x)dx

—n im]

=2 px(0) ] 20(x- x)ai

ay w
=% %Px (%) v [ xS (x— xy)dx

-

Thus for a discrete random variable X with £x )1 =12... N,

I
My = Z EPylx)
il




Ty (x)

Figurel Mean of a random variable

Example 1
Suppose ¥ is a random variable defined by the pdf

1

Lixih
fem={p-a, 77
0 otherwise
Then
Hy = I?g‘}{(x)cix
& 1
=[x ox
a —
3 @+ &
2
Example 2

Consider the random variable X with the pmf as tabulated below

Value of the random

. O 1 2 3
variable x
1 1
X — — p— p—
Px(x) 2 8 4 |2
Then
My T npy(x)




Example 3 Let X be a continuous random variable with

Felx) = —2 —w  xlw,@ >0

1 1
;?T[x +& )

Then
BEY = Ixfx (x)dx

o
P 2x
ol
_md Tt

o .
_;ln (1+x )L

Hence EX does not exist. This density function is known as the Cauchy density function.

Expected value of a function of a random variable

Suppose ¥ = 2(&)js a real-valued function of a random variable X as discussed in the last

class.
Then,

BY = Fg(X) = [ g(x)fy (R)dx

We shall illustrate the above result in the special case £ when ¥ = €(%) is one-to-one
and monotonically increasing function of x In this case,

A
()

Fa | T

'_'_'__'_'_F’# M

Figure 2




Fy(o) = L2 ‘:"‘3’]
g(x) x=E (1]

EY = J‘yfy (W)

I Sxle" D
gz ‘llfy}

where 3y = g(—=) and )y = g(=).
Substituting x = g () so that ¥ = g(x) and dv = g'{ X1dx, we get

Y= g(x) fx (x)dx

The following important properties of the expectation operation can be immediately derived:

(a) If © isaconstant, £ =¢

Eo= [ ofy(Ddr=c | fy(Xdx=c
Clearly - -

(b) 1f &40 and galX) e o functions of the random variable X and & #94¢2 gre
constants,

Eleyg (X + eq 8, (X 0= 0 By (X + 0, B, (X))
Blog (X +oyg, (X)) = T alg(x)+ cygy (x)] fy (%)elx

= u?r 0181 (X) fy (X)dx+ T 0,8, X 5 (X)dx

= o [ & (@) fe(da+y | gy(x) fy (Rdx
=qlg (X)+ oy B, (X

The above property means that £ is a linear operator.
MOMENTS ABOUT THE ORIGIN:

Mean-square value

o = § A fy ()

MOMENTS ABOUT THE MEAN

Variance




Second central moment is called as variance

For a random variable X with the pdf /=) and mean #z the variance of X is denoted by

2
%% and

. oh = B~ py P = T (5= g1 fy (Rl
defined as -

......

Thus for a discrete random variable X with #x %3 =1

2
% =2 (5~ 1y pr(%)
— I|' _ 2
The standard deviation of is defined as % = E(X - i)

Example 4
Find the variance of the random variable in the above example

o% = B(X - py )
|:2'+f:')3 1

3
=£(x— d h—a

1 2, a+bd a+b ¥
E:l_a[ipf:.:)‘.'x 2% ; {m’x+[ : ]{dx

_(b-a)
1z

Example 5
Find the variance of the random variable discussed in above example. As already computed

17

#X=E

T = B~ )
17,1 17,1 17,1 17,1
=0 - PR+ (- — T o+ (2P K+ (2w S
(8)8(8)8(8:'4(8)2
!

64
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X, and X

For example, consider two random variables 2with pmf as shown below. Note that

o1 a0

Ty = X, 5. .
4 and Xapa5 7ero mean. The variances are given by 2 and 3 implying that

each of

% has more spread about the mean.

Properties of variance
(1) oy =EX -y

o = F(X ~ px)’
= (X% - 2uy X + py)
= BX? - Juy BX + Eus
= BX* - 2y + iy
= EX* - i

Oy = B gy
2

@) If ¥ =cX +b, wherec and & are constants, oo -:rf; =cjcrx

op = BleX +b—cp, —b)

= Ec*(X - My ¥
=ctal
(3) If ©'is a constant,
var(c) =10

nth moment of a random variable

We can define the nth moment and the nth central- moment of a random variable X by the
following relations

nth-order moment EX" = T A xdy m=12, .

nth-order central moment F0Y — g, 0% = ?(x—pﬂ"ﬁ.(x)cfx m=12 .
Note that -

e Themean #x= &X

moment

is the first moment and the mean-square value &4 is the second

4 _ I
o The first central moment is 0 and the variance “% = EX - py) is the second central
moment




SKEWNESS

e The third central moment measures lack of symmetry of the pdf of a random variable
ElX- ﬁx)z
3
“x is called the coefficient of skewness and if the pdf is symmetric this

coefficient will be zero.
o The fourth central moment measures flatness or peakedness of the pdf of a random

BX - #1}4
4
variable. “x Is called kurtosis. If the peak of the pdf is sharper, then the
random variable has a higher kurtosis.

Inequalities based on expectations

The mean and variance also give some quantitative information about the bounds of RVs.
Following inequalities are extremely useful in many practical problems.

Chebychev Inequality
; )
Suppose X a parameter of a manufactured item with known mean #x 3 vanianceosy. pe
quality control department rejects the item if the absolute deviation of X from #+-is greater

than 29z

The standard deviation gives us an intuitive idea how the random variable is distributed
about the mean. This idea is more precisely expressed in the remarkable Chebysev Inequality
2

stated below. For a random variable & with mean #x ¢ varianceas.

P{|X—,¢;X|zs}i'§§_

Proof: -
op = [ (x- py ) fy(x)dx

=[x pg) Sy (R

= e

Z .[} E'Efx':x:'dx

-y [

= &P X - px|z et

2
P{¥ -yl 2} =2




MODULE-II

SINGLE RANDOM VARIABLE TRANSFORMATIONS AND MULTIPLE
RANDOM VARIABLES

Characteristic function

Consider a random variable <% with probability density function Jx(x) The characteristic
function of <% denoted by ¥z (@), is defined as

&y (@) = Be’™*
= T g e* g (x)edx

where j = =1

Note the following:

. Hl@) is a complex quantity, representing the Fourier transform of Fx(x) and

traditionally using e instead of ~* This implies that the properties of the Fourier
transform applies to the characteristic function.

e The interpretation that (@), is the expectation of g% helps in calculating moments
with the help of the characteristics function. In a simple case ,
if ¥=aX+d

';éy (m} = Eg@'ux#ju

=™ ¢ (@)

Sy (x)dx=1
. As /=% aiways non-negative and = %2 (@) always exists. We can get

Fx (%] from P (@), by the inverse transform

Example 1

Consider the random variable X with pdf <= %2 given by

Sy (x)= aixlh
b-a = 0 otherwise. The characteristics function is given by




Solution:

dbh-a
_ 1 g ’
b-a Jo |
__ 1 (2 - o)
jr.ulif;' —cz)
Example 2

The characteristic function of the random variable X with
Fe(X) =A™ 1>0x>0is
(@) = [&=7 7
i}

= A[e P Mgy
]

A= ja
Characteristic function of a discrete random variable
Suppose X is a random variable taking values from the discrete set Ry ={m 7000

corresponding probability mass function Px IEx")for the value ™

Then,
B, (@) = Ba™*¥
= Z pX I(x!- }é‘jﬂxﬂ
X Ry
#y (@)= Ee™*
= Z Py (xi}é'j”
If Ry is the set of integers, we can write Himke

In this case (@), can be interpreted as the discrete-time Fourier transform with
g% substituting 7% in the original discrete-time Fourier transform. The inverse relation is

i = é_{e*%ﬂaﬂdm




2y =p-p)*, k=01, 1isgiven by

e (@) = 3 e p(1- p)*
Kl
=p3 e (1-p)f
Kl

__
1-(-p)®

Moments and the characteristic function

Given the characteristics function (@), the nth moment is given by

_14°
jﬁdmﬁ

BX dy (@)

2wl
. . . . Jan X
To prove this consider the power series expansion of €

IR T PR TR

e =1+ jmX +
Fl

Taking expectation of both sides and assuming to exist, we get

. w3 2 L oam "
g}x(m)=1+jmﬂ+ﬂ+ ______ Loy BE
21 !

Taking the first derivative of #x (@), with respect to #at &= 0 we get

d@;(w}L .
& e 0

Similarly, taking the %% derivative of % (@) \yith respect to @at @ =0 we get

" g (a3) O
= "HEY
daf L_u 4

Thus ,

j da
and generally
BAy® = in d Qﬁxiﬂ?)

j da

w=

=l




TRANSFORMATION OF A RANDOM VARIABLE

Description:

Suppose we are given a random variable X with density fX(x). We apply a function g
to produce a random variable Y = g(X). We can think of X as the input to a black
box,and Y the output.

Multiple Random Variables

In many applications we have to deal with more than two random variables. For
example, in the navigation problem, the position of a space craft is represented by three random
variables denoting the x, y and z coordinates. The noise affecting the R, G, B channels of colour
video may be represented by three random variables. In such situations, it is convenient to
define the vector-valued random variables where each component of the vector is a random
variable.

In this lecture, we extend the concepts of joint random variables to the case of multiple

random variables. A generalized analysis will be presented for /2 random variables defined on
the same sample space.

Jointly Distributed Random Variables

We may define two or more random variables on the same sample space. Let < and ¥ be
two real random variables defined on the same probability space WP The mapping

]
S— " guch that for £ 5+ (L(8).7() €R% g calied a joint random variable.

3
Y(s) Xis1Y(5)

L4

5 X(s)

Figure 1

Joint Probability Distribution Function

Recall the definition of the distribution of a single random variable. The event (L L) was

used to define the probability distribution function “*®'. Given #x'®) e can find the
probability of any event involving the random variable. Similarly, for two random variables

Xand ¥, the event (£ <Y <31 ={& <xh ll” £ s considered as the representative event.




]
The probability PUE LV Sy Vx e R ¢ called the joint distribution function or the
joint cumulative distribution function (CDF) of the random variables <X and { and denoted by

sz (x, ) .

(xy)

¥

Figure 2

Properties of JPDF

Fex(x5) satisfies the following properties:

1) By, M) 2 Py, ot 25, andy, =y,

Itz < xy and 3, <y,

W imlintc{d Ln,r Ly
SPE Sx P iw S PA Lx T L)
S By (xon) £ Fy (X 00)

3)  Fyy(=w.5) = Fyy(x,—=)=0

2)

Note that % & ~=.¥ Sy} C{X < -}

4) FX.F(CO,EO:I = ].

Fyy(x ) A :
5) “& is right continuous in both the variables.
6) Itx<xand v <y

P({xl AL i, ¥ ¥ i.?:;}:' = Fz,y(xgs}’gj' _Fx,}r':xp}’z:' _Fx,}r':xgs}ﬁ:' +Fx,y{x1=}’1:'

Given ‘xr(%y) -= (x{em oy e ,we have a complete description

of the random variables < and ¥ .

7y Fu(®) = Py (x40

To prove this




(K ixy={X £xm{f & 4w}
LER) = PUX <R = P((X <xY <)) = By, (x, +a)
Similarly r07) = ©@.57)

Giveanf(x,y], —m {x{m,-m {yw Fo(x) and 5, (y)

marginal

, each of is called a

Distribution function or marginal cumulative distribution function (CDF).

Jointly Distributed Discrete Random Variables

If £ and £ are two discrete random variables defined on the same probability space

(5, 7.5) such that - takes values from the countable subset Ry and I takes values from the

R

countable subset “¥ .Then the joint random variable (4.1} can take values from the countable

subset in By ® &y . The joint random variable L. F ) completely specified by their joint

probability mass function

pry(xy)=Ple| X (e =xVisl =y, Vixyle By* &

Given PX.}":XJ:'
Y

, we can determine other probabilities involving the random variables < and

Remark

. Pxyixmy)=0for (x,y) & Ry # Ry
> Pxylx oy =1

o [HE Ry ¥*Ry

> > Pxy (x.yy=FC U {x.yD)
ER R (mplekyx

=P(R, % R,)
=Ps| (X (s), Y (s)) e (Ry % By )}
This is because =5 =1

« Marginal Probability Mass Functions: The probability mass functions Px() and

Py are obtained from the joint probability mass function as follows

pxlx)=PUX = xRy
:JJZRF Px,}f{?fs.l”]'

and similarly




pyly) = > Pz,y':xs.l":'

xRy

These probability mass functions 7% ® and #¥ 7 obtained from the joint probability
mass functions are called marginal probability mass functions .

Example 4 Consider the random variables £ and ¥ with the joint probability mass function as

tabulated in Table 1. The marginal probabilities #*"® and £*” are as shown in the last
column and the last row respectively.

\K 0 I 2 | )
Y

0 0.25 0.1 0.15 0.5
| 0.14 0.35 0.01 0.5
px(x) 0.39 0.45 0.16

Table 1
Joint Probability Density Function

If A and I are two continuous random variables and their joint distribution function is

continuous in both* and | then we can define joint probability density function Txx(x.5) by
2
%Fx,f(xs by

provided it exists.

fx,E(xs}’:' =

¥}
FX,}’(xr.}?) = _r I fz‘}r(u,'l-")ﬁfvtfu
Clearly o e

Properties of Joint Probability Density Function

. Sxx(xy) is always a non-negative quantity. That is,

Sep(x)120 Wixy)eR

T T Fyylx, Vidady =1

 The probability of any Borel set can be obtained by

F(By= || Fyylx yidxdy
(x. ¥l B

Marginal density functions

The marginal density functions Sz (%) and S ) of two joint RVs < and  are given by
the derivatives of the corresponding marginal distribution functions. Thus




fxix)= %Fz ()

= £ 7, (xc0)

- £ 1] Frre e

- Fer )y

Fe()= ] Frey ()
Thus Fe)= T Fer(z )y

and similarly £ ()= | fyy (% y)dx

fx.f(xsy:'

Example 5 The joint density function of the random variables in Example 3 is

3
fz.}f (%)= —Fz,}r (x,7)

Axche
32
- e [(1-e™(1-e)] x20,320
=277 x2 0,320

Example 6 The joint pdf of two random variables <% and  are given by

Syp(xy)=cry 04xd2, 08y2<2

=0  otherwise
e Find .
« Find Txx (%5
« Find /%) ang H )
« What is the probability 7° <€ LB <¥<lg
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I: Ji Sz y (%, y)dydx = CJ‘; ﬁ xyelydx

= C\I:: xdx ‘ij.:fy
=4
Sde =1

1
===
4

Fyylny) = %Jf Lxuvdudv

2.2
1Y g<x<2 0¢y <2
16
*ay
fe(R)= [Ty 0<y<2
)
2
X
SO 0<y<2
similatly
g 0L p<7
f}fb’]‘ 5 =¥

FO<XelLo<an
= Fx.r(lslj + x.rﬂ:ls']:] _Fx.rmslj _Fx.rasnj
=1—+D -0-0
la
1
16

Conditional Distributions

We discussed the conditional CDF and conditional PDF of a random variable conditioned on
some events defined in terms of the same random variable. We observed that
P({X < x) nB)

Fy(xiB)= 26

P(B)=0

and

Fo(xi BY= 2, (x1 B)

dx

We can define these quantities for two random variables. We start with the conditional
probability mass functions for two random variables.




Conditional Probability Density Functions

Suppose % and ¥ are two discrete jointly random variable with the joint PMF £ %) The
conditional PMF of ¥ given X = % is denoted by #2%%'/ ) and defined as

PrxWix)=FUY =yi{&d=x)
_ P& = x0T =y

FlX=x
- Pzy(2y) provided py(x) =0
pxlxl
This,
pwx(yij=w provided p,(x) =0
2y(x)

Similarly we can define the conditional probability mass function

P‘:::,}f(xs}"]'
FrlY

Prylxiyl= provided p, () =0

Conditional Probability Distribution Function

Consider two continuous jointly random variables < and ¥ with the joint probability

distribution function Frr(xy) We are interested to find the conditional distribution function of
one of the random variables on the condition of a particular value of the other random variable.

We cannot define the conditional distribution function of the random variable ¥ on the

condition of the event ' = %) py the relation

Foiyin=PF=ylX=x
YiX

_PYEyX=x)
PlX=x

as ¥ =2=0 i1 the above expression. The conditional distribution function is defined in the
limiting sense as  follows:

Foolyixi=fim
YiX

P¥eyirc X 2x+ Ax)

x—0

Py xacX Sx+ 4%
PlraX2x+ 4

=12mﬂx—}ﬂ

T for (ke
=limﬂx—>ﬂ =
Fe (0

Tf;mf (7, 14 s

—

()




T oy (ol
SR 1= T

Conditional Probability Density Function

Fx I & =21 = Frx ! Xjs called the conditional probability density function of
¥ given &

Let us define the conditional distribution function .

The conditional density is defined in the limiting sense as follows

Sz X =x)=hmy ((Fy(y+ /X =x) - By, (/X =x)l Ly
STyl = x = m o P (A (A St ) - By, (0 n (X St My

Because, & =) Sl (x <X S x4 ix)

The right hand side of the highlighted equation is

UMy ey (P x (4 8900 X < X x4 ) = Fyp (p X < <+ AN Ay
=i,y g g o (PLY <V 2 y+ Ayl x <X Sx+ AN Ay
=l g gy o (PP <Y Sy g x <X Sx+ AX)IP(x < X S x4+ Ax)dy

= limny—m,ﬁx—m Fry (X )AxbY ! fy (x)Axiy
= fxy (2 ) fz(x)

L xR = Ty (2 0 ()

Similarly we have
LYY= Sy ) )

2
Two random variables are statistically independent if for all t%:¥)€ &,

ﬂwx(yfx:'= f}f(}’:‘

or equivalently

Frr(xyl= Fa(2fr )

Example 2 X and Y are two jointly random variables with the joint pdf given by

Fyplxy) =k for 0Lz 21

= [ otherwize

find,




() %
(b)fx':x:' and fy ()

() Frmlxiy)

Solution:

([ for b = 1
Since " =

We get
1
Ex—xlxl=1
2
= k=2

S fyyplxy) =2 forOixSlasySx

= D otherwize

1) [ a9y =2y = 2

o 1
F0) = [ Fralr )z = 2dx = 201-)
- by

Independent Random Variables (or) Statistical Independence
Let % and I be two random variables characterized by the joint distribution function
Foy(xy) = PLX {xY Ly)
_ &2
ny)= Fowix,
and the corresponding joint density function Tep(%2) = gy ey (2.)

2
Then £ and ¥ are independent if ¥ - € R {X £ 2} 504 (77 S5 are independent events.
Thus,




Fyy(xy)=P{XLxY <y}
=P{X < x}PY <)
= My (x5 ()

X¥) =
fx,}r( ¥ Ay

_ dFy(x) dF ()
ax dy
= Fx (25 0)
L S (xy) = f (D fr ()

and equivalently Friz) =5y )

Sum of Two Random Variables

We are often interested in finding out the probability density function of a function of two or
more RVs. Following are a few examples.

 The received signal by a communication receiver is given by

Z=X+F

where £ is received signal which is the superposition of the message signal - and the noise
r,

* The frequently applied operations on communication signals like modulation, demodulation,
correlation etc. involve multiplication of two signals in the form Z = XY.

We have to know about the probability distribution of £ in any analysis of < . More
formally, given two random variables X and Y with joint probability density function

Jzx(%) 304 a function < = gl4.7) *we have to find fz(z).

In this lecture, we shall address this problem.
Probability Density of the Function of Two Random Variables

. ]
We consider the transformation £ - B =R




. i . . .
Consider the event (Z <z corresponding to each z. We can find a variable subset

Dy C® ot Dz ~{(x0) g(xy) <2}

k J

Figure 1

L Fy(z) =P Z <Zp
= P{(x2)|(x.2)€ Di)
= | J Fr (%) dydx

[T

and £y ()= dﬂizj

Probability density functionof Z=X+Y .

Consider Figure 2




Figure 2

We have
& iz
= X+¥=Z=z

0

Therefore, ~Zis the colored region in the Figure 2.

FOTE: ‘r Suy (x.0)dxdy
(x.¥

-
=¥

_j e (% Jf)rff] d

Il
é"—;"‘ di— & jboi—=&

Ifz.f (%2 - x)du |dx  substituting y =u - x

J‘f}” xu x .:;t’x i interchanging the order of integration

I[Ifﬂ xu-x .:fx].:i’u

= Ifx,F (x,u—x)dx

L fr(2)= Tffff (x,u—x)dx

If X and Y are independent
Frp(mz =)= Sy (%) fy(z %)
Ifz Vi (2 ~x)dx
= fx(2)* A (2)
Where * is the convolution operation.

Example 1

Suppose X and Y are independent random variables and each uniformly distributed over (a, b).

Jx () And Fr () are as shown in the figure below.




Fux)
1b-a |
' a b X
frly)
1/b-a
& b Y
fz{z)
2/b-a
a h 2b-a zZ

The PDF of £ =&+ js a triangular probability density function as shown in the figure.

Central Limit Theorem

X, Xy, X

Consider * independent random variables 7 The mean and variance of

each of the random variables are assumed to be known. Suppose B = iy, and

var () = o, . Form a random variable

V=Xt X, vt X,

The mean and variance of 7 are given by
BY, = fy = by iy Ty

var (V)= o2 = E{ (X~ py)

iml

= SEE )t S Y EE - ) (K- )
im1 im]l =l e
- A,

and w4, and Xi.aremdepmdmtfurx?fj.

Thus we can determine the mean and the variance of f ",

Can we guess about the probability distribution of e ?
The central limit theorem (CLT) provides an answer to this question.

¥ = ZX!}
The CLT states that under very general conditions { -l converges in distribution to

Y~ N( pty, 0 ) as # =@ _The conditions are:

1. The random variables Ay Ay Ly are independent and identically distributed.
2. The random variables X, Hgpos Ky are independent with same mean and variance, but

not identically distributed.




3. The random variables v %2> ¥z e independent with different means and same
variance and not identically distributed.

4. The random variables %3- %2 ¥rare independent with different means and each
variance being neither too small nor too large.

We shall consider the first condition only. In this case, the central-limit theorem can be stated as
follows:

Proof of the Central Limit Theorem:
We give a less rigorous proof of the theorem with the help of the characteristic function.

Further we consider each of XI’XE’““’X”to have zero mean. Thus, Ly =+, +X*:”f“"‘£'

My o =0
n = Ox
Clearly, E(F}) = E(X*) i\ and so on.
The characteristic function of 7 is given by

i L .
(@) = E[e™™) = E Q[J :‘;E&]

We will show that as # —®*the characteristic function ?r, is of the form of the characteristic
function of a Gaussian random variable.
Expanding € ™ in power series
. 2 : 3
(Jm) }rﬂ + (ij }r3 +
2l 0" 3 "

g = 14+ jar, +

Assume all the moments of Ly to be finite. Then

. s . a
i@ = E() =1 Jou, + L mwh + Lm0

p, =0 and B} =oy =g, weget

Substituting H
gy (@) =1-(@"12))ay + R(@,x)

. : . 3 .
where (@) i the average of terms involving & and higher powers of @ .

Note also that each term in @) involves a ratio of a higher moment and a power of * and
therefore,
lim R({ax) =0
o _ b
Clim o gy (@)=1 —Eaﬂx =g 2

which is the characteristic function of a Gaussian random variable with 0 mean and




2
variance “x .

Y, —> N0, o3)




MODULE Il

OPERATIONS ON MULTIPLE RANDOM VARIBLES-
EXPECTATIONS

Operations on multiple random variables

Expected values of functions of random variables
If ¥=gld) is a function of a continuous random variable &, then

if ¥ = 040 s a function of a discrete random variable <+ then
EY =Eg(X)= 2 g(xX)py(x)

ya Ry

SupposeZ =2(4.7) §s a function of continuous random variables 4 24 ¥ then the
expected value of £ is given by

EZ = Eg(X.y) = [ 2fy(2)dz

-0

= [ 1 gx ) s (x.)dicdy

Thus £Z can be computed without explicitly determining Fz(z) .

We can establish the above result as follows.

suppose £ = 8T has Rrgots (Boid 1= b2t g 7 =2 Then

bl

(2¢Z Cz+ ) =| J(m.p)e an)

iml
Where

AL Is the differential region containing (% ’-yi:"The mapping is illustrated in Figure 1

forz=13,

{z < Z £z + 4z}

aﬂlfb, 4l




Figure 1

Note that
Pz Zz+tel)= (e = D fyypln, )bty
(%0l
LafyEite = D afy (%, y)Anly,
(AT T
= Z E0% Vi) Py (2, ) A By
1% J=bl)

As Z is varied over the entire £ axis, the corresponding (non-overlapping) differential regions
in ¥ — ¥ plane cover the entire plane.

w

L[ #2@d = | [ g (xy)dny

-

Thus,

Bg(X.) = | [ g(x.y) fyy (x3)dxdy

- =0

if £ =875 a function of discrete random variables & and ¥ , we can similarly show that

EZ=FEg(X. V)= 2 2Zglx)yipzy(xy)

¥Ry By

Example 1 The joint pdf of two random variables A and ¥ g given by

fx‘y(x,y)=%xy Da2x£2, 02yp22

=0 otherwize

— ]
Find the joint expectation of 8641} = 47

Eg(X ¥y=EX*Y

= T [ 2(x2) Fyp(x,y)dxdy

2z
= [[ %y = xydxdy
oo 4

12 2
= E I x3.:1!’x_[y2dy
0 i




Example 2 If Z=aX +5Y, whereq and & are constants, then

EI =aRX +bEY

Proof:
EZ = [ [ (ax+ ) fxz (x.y)dxdy

— =

= iianfz,}f':x,yjdxdy + iibyfx'}r (e, )iy
=[x [ Surr)dds [ by [ Srg Gr)dsdy
=a [ fy (dx+b [ yfy (V)
= ﬂ_;;f + hEY -
Thus, expectation is a linear operator.
Example 3

Consider the discrete random variables 4 and ¥ discussed in Example 4 in lecture 18.The
joint probability mass function of the random variables are tabulated in Table . Find the joint

expectation of &+ ¥) =T

\Y\ 0 1 2 | oy
Y

0 0.25 0.1 0.15 0.5
1 0.14 0.35 0.01 0.5
px(x:] 0.39 045 0.16

Clearly, EXY = % EE(I,J’)PJ{,F(X:J”)

.?‘i‘]-'EExer
=1x1=035+1=x2=x0.01
=037

Remark
(1) We have earlier shown that expectation is a linear operator. We can generally write

Blayg (X, F)va,g, (X, F)]=a Bg (X, ) +a,Bg, (X, F)

Thus E(XY +5log, X¥) = EXY +5Elog, XY

(2) If ¥ and ¥ are independent random variables and 8- 12 = £ 40
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EglX,¥)=Eg (X)g,(¥)

- T T g0 ) frp(x ydx

—ra =g

— I g X)g, ) Fy (0 f (dy

—£a —a

- T (D) fr(Rdx | g, ) fr 0y
= FBg {X}Egz (¥

Joint Moments of Random Variables

Just like the moments of a random variable provide a summary description of the random
variable, so also the joint moments provide summary description of two random variables. For

two continuous random variables £ ¢ ¥ the joint moment of order # * % s defined as
BT )= [ [ 2V fyy (5 y)dxdy
And the joint central moment of order # * #is defined as

E(X -y = sy = T T (x= gt P (i gV f (5. )y

— =0

where #x = EX gng #r = £Y

Remark

(1) If 4 and ¥ are discrete random variables, the joint expectation of order # and 7 is
defined as

EX"r)= T mxV'pyy(ny)
(xR r
EX-py Y-yl = % Blr—py -y oy iz y)

EpleRy o

(2) If ® =land #=1 we have the second-order moment of the random variables
X and ¥ gjven by

T T W gy (% V)dEdy 1f X and ¥ are continous
E(m= — -

ORI E ) if X and ¥ are discrete
(v ¥Ry ‘

(3) If ¥ and ¥ are independent, £ Y1 = EXEY

Covariance of two random variables

The covariance of two random variables £ and ¥ s defined as




CoV(X )= BOX - iy X ¥~ uy)

Cov(X, Y) is also denoted as Txr
Expanding the right-hand side, we get

Cov(E,F) = B(X - )T - pir)
= BXY -y = X+ gy piy)
= EXY - jy BX - py BY + piy ity
= BXT - iy iy

_ Cov( A, 1)

O pliy

AT

The ratio is called the correlation coefficient.

if Pxx 7 Yihen X and ¥ are called positively correlated.
if Pxr <Ythen X and ¥ are called negatively correlated
if % ~Y4hen X and ¥ are uncorrelated.

We will also show that e, 7)|<1. To establish the relation, we prove the following result:

2 2 2
For two random variables X and ¥ & (X¥) < EXEY
Proof:

Consider the random variable £ =aX +¥

ElaX +¥y 20
= @*EX* + EY? 42aRXY >0

Non-negativity of the left-hand side implies that its minimum also must be nonnegative.

For the minimum value,

AEZ* EXY
=l=a=-—=
da EX

so the corresponding minimum is

By By
—+ BV 2 -
EY EXY
e Bxv
Byt

Since the minimum is nonnegative,




_ Cov(Z,T)
Oxly
_ BT - pg )Y - py)
BT - u) BT - i)’
| BT - 10T - i)
JECT - )" BT - i)’
BT ~ ) BT - gy
JET - ) BT - )’
=1

AL

NreasE

Thus DI

Uncorrelated random variables

Two random variables 4 and ¥ are called uncorrelated if

Cov(X,7) =0

which also means

E(XY ) =iylty

Recall that if 4 and ¥ are independent random variables, then Frr &)= 2 0)

XY = T T 0y v (% yidxdy assuming & and ¥ are continuous
= T T e (0 fp Gy
= T (0 | oty (ly

then = RXREY

Thus two independent random variables are always uncorrelated.

Note that independence implies uncorrelated. But uncorrelated generally does not imply
independence (except for jointly Gaussian random variables).

Joint Characteristic Functions of Two Random Variables

The joint characteristic function of two random variables X and Y is defined by
dyy (@, @) = B0




If 4 and ¥ are jointly continuous random variables, then

wom

';éx‘}r (ﬂ]i, &32] = I I fx,}" (x,y:lé' j"‘lx-'-‘ilﬂq}ldyfix

Note that Py (@, @) is same as the two-dimensional Fourier transform with the basis
a Jeagk+ Jioa
function
EiMHﬁﬁ{
f}:,}f (x.»)

instead of

is related to the joint characteristic function by the Fourier inversion formula

1 = I
Tey(z ¥ =F‘|‘ ‘l‘éﬁz,y':mp%j'é AT ad @,

If £ and { are discrete random variables, we can define the joint characteristic function in
terms of the joint probability mass function as follows:

‘;E:'X,}' (@, an) = Z Z Pry (x,e Jong+ oy

(. eRy= By

Properties of the Joint Characteristic Function

The joint characteristic function has properties similar to the properties of the chacteristic
function of a single random variable. We can easily establish the following properties:

1 P (@) = @y y (@, 1)
2 (@) = gy (U, @)
3. If 4 and ¥ are independent random variables, then

Jio K e X

By (@, @) = He
= E(ej""xej‘"*}rj
— Egju.XE:Ejuq}"
= Gy (@) (@)

4. We have,

e

by (@, @) = Be

A . 1
=Ea+j@X+j%F+iﬁﬂ£%ﬂﬁEL+ .............. )
J-Z EIIEEXE N jﬂwzﬂE}rﬂ

=1+ ja B + ja, BY + > 3

+@ay ELY +




Hence,
fryy (0,00 =1

1 4
B =—— gy (@, @)
Jda

t.l|-|:|

1 3

BY = ———dy ey, @)
Jday

sy o L Tr(@ @)

2

g dada,

g =]

el o, =l

(p2 + m)ih

In general, the order joint moment is given by

1 gy (o, @)

;4N

EX™Y® =
J Ay day

3y =l gl

Example 2 The joint characteristic function of the jointly Gaussian random variables ¥ and
¥ with the joint pdf

'zil—;}.rJ[[tﬂi'g”"’[tf][y;:b]{y;_ﬂi]

f.l’.}’ (%)= £

Let us recall the characteristic function of a Gaussian random variable

A~ N(#X,Ui-:'
P (@) = Felod
)

= # & A ox .E‘jmdx

2moy 4,

1 oo L X220 iy o b xH sy —ohje )~y o b 1
2

- _[ e X dx

2roy .

%(—a}m2+2§§55}3'u) L = _l[?f—w-ﬂ';.i"ﬂ]?

— e Oy Ao dx

Joro, A

Aren.urmwn Cranaes sy

: 2
_ E,ﬂﬁju—ﬂ'}m 251

_ iz —ida? p

If £ and { is jointly Gaussian,




1
2': l_Px.r:l

(5o )
zngwal B p?r:,}'

f.l’.}’ (%)= £

we can similarly show that

Py y (&, @) = Be't¥a mji:‘

. o
_ e i by =g TG A2 o TP

We can use the joint characteristic functions to simplify the probabilistic analysis as
illustrated on next page:
Jointly Gaussian Random Variables
Many practically occurring random variables are modeled as jointly Gaussian random variables.

For example, noise samples at different instants in the communication system are modeled as
jointly Gaussian random variables.

Two random variables 4 and ¥ are called jointly Gaussian if their joint probability density

Cx (P Gy ) G P
T SR

) e |

The joint pdf is determined by 5 parameters

Py

0 < x <00, 40 <y <00

« means A% Ay

- |::r2 atid |::r2
e variances “ & ¥

« correlation coefficient ¥
We denote the jointly Gaussian random variables <t and I with these parameters as

(X, 7)~ Ny, fly, 0%, O3, Oyy)

The joint pdf has a bell shape centered at (bt ) as shown in the Figure 1 below. The

2 2
variances ¥ ™% ¥ determine the spread of the pdf surface and “¥*¥ determines the orientation




of the surface in the X — ¥ plane.

o e A
fiyyie )

Figure 1 Jointly Gaussian PDF surface

Properties of jointly Gaussian random variables

(1) If £ and I are jointly Gaussian, then <€ and { are both Gaussian.

We have

£ R = [ Lo, I

L (P s Moy e B

= Mt | 2 Xty =2
_ .[ 1 e T x ¥ d_}-’
o Em_;:a'}r ﬁ_;l',}r
_1 K—piy _ 1 P.%f,}rl: K_M_X F _2.-‘25;'}"( x_}"'_x :':J"‘.“ir 1 +|:J"_.“1r :’2
. o T 1 ﬂl:l—pi‘}.-:l cri, ATy nrf, d
Frax 2, Ty Ry i
_]_ K=y _ E}'_,ﬁ}r _PX,FF][i x‘.“z:'
_e X b 1 dogil-gt vl X d_}’
ST e g T ﬁﬂ'}r‘ﬂ—p‘%‘,f
4]
-1 “x
ﬁﬁﬂ'x
Similarly
2
L[y
Oy

SO = e

(2) The converse of the above result is not true. If each of < and ¥ is Gaussian, < and ¥ are
not necessarily jointly Gaussian. Suppose




4 [n—;iﬁ rrﬂ%ﬁ] . .
" {1+sin xsn ¥w)

- 1
Syl F—

fz,y (x,7)

in this example is non-Gaussian and qualifies to be a joint pdf. Because,

fzf(x:}”:‘ 2 DAnd

- 1 [ emaet?

1 [ Fx-i * Fri . .

J‘ J' e {1+ sin xsin ¥ idvdx
— —1o

wowo _1 ”_"Y:F_,_”'_"F]i wowo _1 ”_"Y:F ”'_"'f':"E
- 1 S cr v + 1 T # : ; dved
_‘I“I‘mé AL ‘I‘J‘mé 10 X510 vl
-0 =0 ]
wo oy P i o ro—u, 1
=1+ gmlrwr Ig sin xdx IE ¥ osiny dy
— —
Fitegration o an odd fimction
=1+10
=1
. . Xl .
The marginal density Jx(x) is given by
o 1 |:N—J-I¥]1+n--#,-]?:|
B . .
Felx)= J‘ﬁe " A0+ an xain yidy
w n—%:]? ”,_#]1: - | n—uy:l? ry-u,.]?
d r e prrm Sl [ . :
= ‘I‘zmlxi'ré * Toldy+ J‘ﬁe el T dsin xsin wdy
- - irtegration of anodd functon
1[x-»,,]*
=“ﬂ_1 g v 4
IEy
T
2
=1 . A ey
IF*.-
3
L[ X Ty
2o,

__ 1,
similarly, 7”2~ 7%
Thus < and ¥ are both Gaussian, but not jointly Gaussian.

(3) If € and ¥ are jointly Gaussian, then for any constants € and & the random variable

Z given by £ = aX + &Y js Gaussian with mean #z ~ %#x * &4y and variance

2 _ 2 2 1,12

(4) Two jointly Gaussian RVs % and { are independent if and only if < and  are

uncorrelated (zy =0) .Observe that if < and ¥ are uncorrelated, then




_1 cx_}*x:'z_'_':y_}"}r:'z
1 : X ¥

Frxlxy) = W'E

{ iy (P 12
_ 1 e_z_"-’f 1 ET},
«.fi;ﬂm'f qiﬁa},
= Fr Gy ()

Example 1 Suppose X and Y are two jointly-Gaussian 0-mean random variables with variances
of 1 and 4 respectively and a covariance of 1. Find the joint PDF Sxz(x.¥)
= iy =0, 0% =1, a3 = damd coviX ) =1

Cov(X, 7y 1 _1

Sy

oo, 1x2 2

and

fz,}r (%)= lez"hj' g
q

_ 1 e-% [xi_%ﬂ“i]

We have PRy

=[5 Ed]

¥

Example 2 Linear transformation of two random variables
Suppose £ =aX + 2F . then

i (ar) = Felo% = gplltirotle - $y yla@,ba)

If A and I are jointly Gaussian, then

$r (@) = fy y(a@, ba)
J’{;ﬁ.+;-]u—%iazﬂ'i +18, 0B, +atrd et

Which is the characteristic function of a Gaussian random variable with

73 2
mean * =#x *# and  variance 7% =% T2y oy +0y

thus the linear transformation of two Gaussian random variables is a Gaussian random
variable.

Example 3 If Z=X+Y and X and Y are independent, then
fo (@) =gy yl@, @)

= gy l@) gy (@)




Using the property of the Fourier transform, we get

Jziz) = fy(z)* fyl2)

Hence proved.

Univariate transformations

When working on the probability density function (pdf) of a random variable X, one
is often led to create a new variable Y defined as a function f(X) of the original variable X.
For example, if X~N(, #2?), then the new variable:

Y=fX)=(X-Wlz
IsN (0, 1).
It is also often the case that the quantity of interest is a function of another (random)

quantity whose distribution is known. Here are a few examples:
*Scaling: from degrees to radians, miles to kilometers, light-years to parsecs, degrees

Celsius to degrees Fahrenheit, linear to logarithmic scale, L to the distribution of the
variance

* Laws of physics: what is the distribution of the kinetic energy of the molecules of a gas
if the distribution of the speed of the molecules is known ?

So the general question is:
*If Y = h(X),
* And if f(x) is the pdf of X,
Then what is the pdf g(y) of Y?
TRANSFORMATION OF A MULTIPLE RANDOM VARIABLES
Multivariate transformations
The problem extends naturally to the case when several variables Y;jare defined from

several variables X; through a transformation y = h(x).
Here are some examples:

Rotation of the reference frame

Let f(X, y) be the probability density function of the pair of r.v. {X, Y}. Let's rotate
the reference frame {x, y} by an angled. The new axes {x', y'} define two new r. v. {X',
Y'}. What is the joint probability density function of {X", Y'}?

Polar coordinates

Let f(x, y) be the joint probability density function of the pair of r. v. {X, Y},
expressed in the Cartesian reference frame {x, y}. Any point (x, y) in the plane can also be
identified by its polar coordinates (r,f). So any realization of the pair {X, Y} produces a
pair of values of r and®), therefore defining two new r. v. R and#.

What is the joint probability density function of R and? What are the (marginal)
distributions of R and of?



http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_Pos_Q.htm#Probability density function

Sampling distributions

Let f(x) is the pdf of the r. v. X. Let also Z; = z1(X1, X2... Xn) be a statistic, e.g. the
sample mean. What is the pdf of Z;?
Z; is a function of the n r. v. X; (with n the sample size), that are lid with pdf f(x). If it
is possible to identify n - 1 other independent statistics Zi, i = 2... n, then a transformation
Z = h(X) is defined, and g(z), the joint distribution of Z = {Z;, Z,, ..., Z,} can be
calculated. The pdf of Z; is then calculated as one of the marginal distributions of Z by
integrating g(z) over z;,i=2, .., n.

Integration limits

Calculations on joint distributions often involve multiple integrals whose
integration limits are themselves variables. An appropriate change of variables sometimes
allows changing all these variables but one into fixed integration limits, thus making the
calculation of the integrals much simpler.

Linear Transformations of Random Variables

A linear transformation is a change to a variable characterized by one or more of the
following operations: adding a constant to the variable, subtracting a constant from the variable,
multiplying the variable by a constant, and/or dividing the variable by a constant.

When a linear transformation is applied to a random variable, a new random variable is
created. To illustrate, let X be a random variable, and let m and b be constants. Each of the
following examples show how a linear transformation of X defines a new random variable Y.

= Adding aconstant: Y = X +b

= Subtracting a constant: Y = X -b

= Multiplying by a constant: Y = mX

= Dividing by a constant: Y = X/m

= Multiplying by a constant and adding a constant: Y = mX + b
= Dividing by a constant and subtracting a constant: Y = X/m - b

_ T .

Suppose the vector of random variables X' = (X1 AN) has the joint

distributionf) = Ax1----.xn) get ¥ = AX+ Bgor some square matrix A and vector® . If
o L W

det4 # Opon ¥ pas the joint distribution s’ A &'~ 5))-

Indeed, suppose F2(v) (this is the notation for "the g0")js the distribution density of I") and
X-Ax) For any domain Dot the T space we can

Iﬂg(y)@= Prob(Y € D) = Prob{dX+ B € D) =
write




—Prob(X € A1(D-B)" = I 5, 0N
l We make the change of variables

v =Ax+Bjpy the last integral.

_ 1y gy | 2D | 4 ey_ gy 1 (Linear transformation of
.Ilmﬂ:"i v B)D‘D@)‘@ .Ilpf@l v B)D:hul@' random variables)

2
The linear transformation @€ + #is distributed asmr@'["ur ) The & was defined in the section (
Definition of normal variable).

For two independent standard normal variables (s.n.v.) &1and €2 the combination

N{0, ,EI+ 2
o181+ 02825 distributed as ( 1 01).

A product of normal variables is not a normal variable. See the section on the chi-squared
distribution.
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MODULE-IV
RANDOM PROCESSES-TEMPORAL CHARACTERISTICS

Random Processes

In practical problems, we deal with time varying waveforms whose value at a time is
random in nature. For example, the speech waveform recorded by a microphone, the signal
received by communication receiver or the daily record of stock-market data represents random
variables that change with time. How do we characterize such data? Such data are
characterized as random or stochastic processes. This lecture covers the fundamentals of
random processes.

Recall that a random variable maps each sample point in the sample space to a point in
the real line. A random process maps each sample point to a waveform.

Consider a probability space W.F.#} A random process can be defined on 5F. 5l 5

an indexed family of random variables X(5:#} $€8.£€Th yhere Tis an index set, which may
be discrete or continuous, usually denoting time. Thus a random process is a function of the

sample point ¥ and index variable ¥ and may be written as X8

Xts1) o | o W
s ’ ) LA ™ e AT |
;l:‘ 1;: '_;: i ~Jl. '3( .;: 0 C;. El.. 10

e

Figure : Random Process

| K =Acos o

Example 1 Consider a sinusoidal signa where < is a binary random

variable with probability mass functions 24U =2 gng P4l =12

A (E) =cosax

Clearly, (X t €I s 3 random process with two possible realizations and

A, () = —cos g, KAt

At a particular time % is a random variable with two values

Cos &, and ~ ¢F &y

Classification of a Random Process

a) Continuous-time vs. Discrete-time process




If the index set I'is continuous, (4. €T s called a continuous-time process.

If the index set T'is a countable set, (4. 1€ T} s called a discrete-time process. Such a

random process can be represented as (Xlnl nez]

(X, nz0

and called a random sequence. Sometimes

the notation
integers.

is used to describe a random sequence indexed by the set of positive

We can define a discrete-time random process on discrete points of time. Particularly,

we can get a discrete-time random process (Xlnl nez] by sampling a continuous-time process

\(XE. 2213 ot 3 uniform interval T such that X1 = X (=T

The discrete-time random process is more important in practical implementations.
Advanced statistical signal processing techniques have been developed to process this type of
signals.

b) Continuous-state vs. Discrete-state process

The value of a random process X8 js at any time ' can be described from its
probabilistic model.

The state is the value taken by 1) 3t a time I and the set of all such states is called the
state space. A random process is discrete-state if the state-space is finite or countable. It also
means that the corresponding sample space is also finite or countable. Otherwise , the random
process is called continuous state.

Firtst order and nth order Probability density function and Distribution functions

As we have observed above that + % at a specific time Tis a random variable and can be

described by its probability distribution function Py (0) = PLAE) £ le'This distribution
function is called the first-order probability distribution function.
We can similarly define the first-order probability density function

=.:1’Fxm(xj
fzm(x} —.:ix :

To describe € €. € 1] , We have to use joint distribution function of the random variables at

A (L)

all possible values of . For any positive integer # X)L, represents % jointly

distributed random variables. Thus a random process (. L€ T} can thus be described by

i1—th order

specifying the joint distribution function .

FX(&LXML..,X(?.J(XPXE ..... r =P s, A=, A =x ), Yazland ¥E e

or th the # ~ #8747 jgint nrobability density function




If 4@ 2€ T s 5 discrete-state random process, then it can be also specified by the collection

of T~ th order joint probability mass function

Moments of a random process

We defined the moments of a random variable and joint moments of random variables. We can

define all the possible moments and joint moments of a random process Ll eely
Particularly, following moments are important.

. Hx(t) = Mean of the random process at t= E(XE)

. Bylt,t,) = autocorrelation function of the processattimest), i, = E(X ()X (t,))

Note that

Ryll,t) = Rylty,hy) and

Ry (t,f) = EX*(t) = second moment or mean square value attime ¢

« The autocovariance function Cxlh.t) of the random process at time fands, is defined by

Cylh.ty) = B — e (N 0A () —ud(G )
= Ry(f).8y) = My (8 fy (2,
Clearly
CL(8,8) =Xt - ﬁz(fj)g =vaniance of the process at timne’

These moments give partial information about the process.

Cxlh.4)

Oyt t) =
R T .8

The ratio

is called the correlation coefficient.

The autocorrelation function and the autocovariance functions are widely used to characterize a
class of random process called the wide-sense stationary process.

We can also define higher-order moments like

Ry (8, 8,.860 = B(X (8, X (2,0, X(£,)) = Triple correlation function at £, £,,£; etc.

The above definitions are easily extended to a random sequence (£1l.n e 2] .

Cross — covariance funcfion of the processses at times £ 2,
Coy (.85 = BCAG) — pix (DT (&) — iy (5 ])
= Ry () — ()14, 6)




(_rogs-cotrelation codfh o ent
O (8.5 )

Oy ) = e U2
) et Cott )

On the basis of the above definitions, we can study the degree of dependence between two
random processes

This also implies that for such two processes

Ry (01, 8) = fy () iy ()

Orthogonal processes: Two random processes (&) eel} gpq T 2T

are called orthogonal if
Rt ) =0¥6, el

Stationary Random Process

The concept of stationarity plays an important role in solving practical problems involving
random processes. Just like time-invariance is an important characteristics of many

deterministic systems, stationarity describes certain time-invariant property of a class of random
processes. Stationarity also leads to frequency-domain description of a random process.

Strict-sense Stationary Process

(£0)

A random process is called strict-sense stationary (SSS) if its probability structure is

invariant with time. In terms of the joint distribution function,{X@)} is called SSS if
qu:r, LEit, L...,X(;,J(xb Koo Kgd = FXI:!‘|+!‘|]:I...XI:!‘1+§ 3...,x¢r"+¢u3(x1= Kavooos Ty )

Wue N, ¥i, el andfer all choices of sample points 4,4, 4, €1

®

Thus, the joint distribution functions of any set of random variables Xl Xlty), - Xltn) does
not depend on the placement of the origin of the time axis. This requirement is a very strict.
Less strict form of stationarity may be defined.

Particularly,

called &% order stationary.

(L@} s called %% order stationary does not depend on the placement of the origin of the time
axis. This requirement is a very strict. Less strict form of stationary may be defined.

If £40) is stationary up to order 1




Fff(ﬁ Il[xljI - FX(:,H,,;.'(XJ, Vi, eT

Let us assume 0~ ~%r Then

P (7} = Fypy(%) which s independent of time.

As a consequence

EX() = EX(0) = g, (0) = constant

If (L@ is stationary up to order 2
put o=

Fxin 1z 1 %) = Fapyz0) (1 72)
Thisimplies that the second-order distnbution depends only on the time-lag £ —£,.

As a consequence, for such a process
Rylh. ) = B(A) X))
= } }xlxzfxim.xir. _{,“(xl,xz Jedxdx,
=Ry(f —4)
Similarly,
Cxlh.b )= Cylfy 4]
Therefore, the autocorrelation function of a SSS process depends only on the time lag
i~

We can also define the joint stationary of two random processes. Two processes

(£®) And £49) are called jointly strict-sense stationary if their joint probability distributions
of any order is invariant under the translation of time. A complex random process

(2@ =X+ ) is called SSS if £40) and £40) are jointly SSS.
Example 1 A random process is SSS.

This is because *




-----

= FX(J(& )Ff(xz)...FX(xn}
= F_Jf(sl Hy AT ), X, "Tu:l(x:l’xzﬂ'“ ,}(-,n:l

Wide-sense stationary process

It is very difficult to test whether a process is SSS or not. A subclass of the SSS process called
the wide sense stationary process is extremely important from practical point of view.

(£0)

A random process is called wide sense stationary process (WSS) if

EX () =y = constant
and
EX(4)X(t,) =R, (-t iz afunction oftime lag 4, — ¢,

Remark

(1) For a WSS process % )

EX*(#) = Ry ()= constant
var( X (H=EX* () — (EX (1)) = constant
Cy (h.ta) = BEX(H) X (8 )— EX (1)) EX ()

=Ryl —4)- .“;I
L Cyih.ty )15 a function of the lag &, -4

(2) An SSS process is always WSS, but the converse is not always true.

Example 3 Sinusoid with random phase

(£

Consider the random process given by

Aty =Acos(aps + 4

between 0 and 2.

where 4 @9 % are constants and #are unifirmly distributed

This is the model of the carrier wave (sinusoid of fixed frequency) used to analyse the
noise performance of many receivers.

Note that




1 oocpcon

Jold) =42m

0 otherwize

By applying the rule for the transformation of a random variable, we get

1

fx(:](x:' = FT-\.,IHE -7

0 otherwize

Aixid

X

Which is independent of ¢ Hence { is first-order stationary.

Note that
BEX(8) = Edcos{ayt + &)

1x

1
[[Acostas+)d

0 which 15 a constant

and

Rylfty) = BX(8)X(4)
= Bdcos(ayt, + §) Acos( @ g, + &)

2
- %E[cos(%zl @+ ans, + @) toos(ayh - @t — @]
ﬂﬂ
=S Bloos(@y(4 +4) +28) +cos(@y (4 ~4)]

2
= %cos(mu(zl — &) which 1z afunction of the lag £ —£,.

X

Hence { is wide-sense stationary

Properties of Autocorrelation Function of a Real WSS Random Process

Autocorrelation of a deterministic signal

Consider a deterministic signal %) such that

0 < tim Tf(s)dﬁ @
T ET—T

Such signals are called power signals. For a power signal Z(£) the autocorrelation function is
defined as




r
R.(r)= }i_r}xi 21_T {“ x(E+ ) x(E)ads

£, (%) Measures the similarity between a signal and its time-shifted version.

1T,
R0 = lim — [ x'(0)s

Particularly, is the mean-square value. If * s a voltage waveform

£(0

across a 1 ohm resistance, then Is the average power delivered to the resistance. In this

£

sense, represents the average power of the signal.

Example 1 Suppose @ = 4505 2 The autocorrelation function of % at lag  is given by

r
R.(r)= 11"1_% % J;J'Elcos it + 1A cos aidt

iy
= }iﬂﬁ_g[ms(zﬂ’f + 1) + cos T |dff
_ A cosar
2
We see that £.(2) of the above periodic signal is also periodic and its maximum occurs when
2
T=D,12—H,i4—ﬂ, etc. RK(D}=A;.
@ & The power of the signal is 2

The autocorrelation of the deterministic signal gives us insight into the properties of the
autocorrelation function of a WSS process. We shall discuss these properties next.

Properties of the autocorrelation function of a real WSS process

Consider a real WSS process S Since the autocorrelation function Rylh.5) of such a

4

process is a function of the lag © ~ %2 we can redefine a one-parameter autocorrelation

function as fx(F) = EX{t+0)X(D)

If £40) is a complex WSS process, then

R,(r) = EX (¢ + D)X *(0)

Where < Jis the complex conjugate of Z18)-For a discrete random sequence, we can define
the autocorrelation sequence similarly.

The autocorrelation function is an important function charactering a WSS random process. It
possesses some general properties. We briefly describe them below.

Ry (0= EX*

1. @ 1s the mean-square value of the process? Thus,




R, (Iy= EX*(t) =0

Remark If <@ js a voltage signal applied across a 1 ohm resistance, and then 25D js the
ensemble average power delivered to the resistance.

2. For areal WSS process (). R¢(7) i3 an even function of the time © Thus,
Fy(-7)= Fx(7)
Because,

R (-r)=EX{f 1) X%
=EX (O X(E-1)
=HEX (4 +r) X (40 (Gubstituting £ =£-1)
= R,(7)

Remark For a complex process 7~/ = (%)

3. R ()] £ Rz (O This follows from the Schwartz inequality
|« @), &t +) =f < |k |2+

We have

Ry (D={EX (X @+ DY
SEXNOEX 1+ 1)
= Ry (0] Ry (1)

|Rx (f:'| =Ry ()

4. Fx(isa positive semi-definite function in the sense that for any positive integer * and
RN
i R (1 — 1020
real czj.,.:zj,z%gla!a.? x4 .i':'—

Proof

Define the random variable

Y= % @ Xt
a=1
Then we have

028V - 5 3 ae, EX ()X Q)
iclil

= ﬁ i ﬂiﬂj'ﬁx(fi —IJ.-:I

iml j=1




It can be shown that the sufficient condition for a function “x ¥ to be the autocorrelation
function of a real WSS process (L s that Bx(7 pe real, even and positive semidefinite.

if €& js Ms periodic, then £2(7) s also periodic with the same period.

Proof: Note that a real WSS random process (s called mean-square periodic ( MS

periodic ) with a period 5 if for every {€T

EX+T)-X(@)' =0
= BX (¢ +T)+ BEX () - 2BX (¢ + T) X(z) =0
= Ry (D) + Ry (0) - 2R, (T,) =0
= Ry(T,) = Ry (0)

Again

(EXE+T+T) - X+ TNXE ¢ BX+T+T,) - X+ EX (1)
{Bv applwnng Cauchy Schwartz inequality)
= (R (T+T,) — Ry (2))? L2(Ry(0) - Ry(T, IR, (0)
= (R (T+T,) - Ry (z)* <0 v R (0) =R, (T,)
SR (T T = Ry(T)

Cross correlation function of jointly WSS processes

if @ and TN are two real jointly WSS random processes, their cross-correlation

functions are independent of £and depends on the time-lag. We can write the cross-correlation

function
Rop(r) = EX{t+10)Y(£)
The cross correlation function satisfies the following properties:

R (r) = BX(t+ 1) ()
= EY(OX(t+1)
= Ry (—7)

(z1) |Rx1' ':le it 4f By (DR, (0

We Have




Ry (O =|EX ¢+ DY @)

LEX*+DEYA) using Canchy-Schwartz Inequality
= Ry (D) R, (0}

R ()] < R ()R, (0)

Further,

B (R, (D) & é[RX(D} + RF(U]:] o Geometric mean £ Anthmaticmean

iii.  1f £ and Y (t) are uncorrelated, & (F) = EXE+ )BT () = uz sty
iv. IfX(t)andY (t) are orthogonal processes, Ry (1) = EX(t+7)7(2) =0

Example 2

Consider a random process Z8) \which is sum of two real jointly WSS random processes.
) ad Y0 e have

Z{) =X +T(E
R (r) = BZ(t+D)Z ()
= B[Xg+r)+ Y (s +n)][X ) +T(2)]
= Ry(r) + By (1) + Ryp (1) + R ()
1f £ and ¥ are orthogonal processes then X F) = £ () =0

S Rg(T) = Bylr) + Ry(r)

Example 3

Suppose

2,08 = X(fcos(ani + D) and
2,08 =X () sin(ayg + )

Where X (t) is a WSS process and ®~ U102




1 2a
Rmzz'{ﬂ = E[X1(51'X2'{5_T]']=§L xlt)xle - T)dg
[X(8)X(t - )| E[coslay + ®)sin{ayt — @yt + D]

bal — I

Ry () E[sin(2ay¢ - @yt + 2] - E[sin(ay,7)])

= §Rz(r}|5|ﬂ(wnr)

Time averages and Ergodicity

Often we are interested in finding the various ensemble averages of a random process{X(ﬂ}
by means of the corresponding time averages determined from single realization of the random
process. For example we can compute the time-mean of a single realization of the random
process by the formula

!
(e —};_rzlﬁfrx(ﬁ)dz
which is constant for the selected realization. Note that (& }i" represents the dc value of * 0y

Another important average used in electrical engineering is the rms value
given by

. 1 .r
{ X >r = 11"1_1}139 Jﬁ I—r x4t

Time averages of a random process

R40)

The time-average of a function & () of a continuous random process

1
(g O), = o[ & )

is defined by

where the integral is defined in the mean-square sense.

Similarly, the time-average of a function gl of a continuous random process 9 is
defined by

1 N
{E(Xn}}N = migﬁg(fﬂ

The above definitions are in contrast to the corresponding ensemble average defined by

HEe(X(tn = I: gLy X)dx for continuous case

= Z ELX) Py () for discrete case

ieRyrn




The following time averages are of particular interest

(@) Time-averaged mean

(,HX >r = % Ji" BAEATL (continuous case)
|

=— X discrete case
{#X}N 2N+1:’§N ! ( )

(b) Time-averaged autocorrelation function

(Rg(T))y ——J‘ XX+t

(continuous case)

{Rz[m]}N =Tl !__E_NX;-XEM (discrete case)

Note that, E1040) }f and e (X"}}N are functions of random variables and are governed by
respective probability distributions. However, determination of these distribution functions is
difficult and we shall discuss the behaviour of these averages in terms of their mean and

variances. We shall further assume that the random processes (£0) and () are WSS.

Mean and Variance of the Time Averages

Let us consider the simplest case of the time averaged mean of a discrete-time WSS random
{Xx} i
process given by

1w

TR

The mean of {““ X }N

s
E{#X }N =& 20+ lz'ENXi
1

EX,
2N+1:§M

and the variance

Bty — stz ) = E[

g :
O Ll

1 2
=E[zm+1z§ e —,ux:l]

m[g B~ +2 T T B~ )X, o)

I i i e N




If the samples Xoare H e K1 A Ky are uncorrelated,

Bty —tx) =B )
(ﬂx}m Hy 2N+1=‘§N i My
=%[§ (X, - i :F]
e+ L 0 T
_ T
O+

lim 2({tty ), ~ ) =0
We also observe that == Hx o~ Hx

From the above result, we conclude that <’MX>N — o Hx

Let us consider the time-averaged mean for the continuous case. We have
K (&t
{.ﬂx 2 I £}

By h f EX ()t
- %.I‘—T Hydl = fiy
and the variance
2
2 1
B({pthy —ttz) = E[Efrxmdz —,HX]
2
1 7
= E[_I—r (X - ﬂzjﬂﬁ]
Mﬂ P [ BUE () - 1) (X (8) - st )ity
4?2 ITT J‘FTC l:gl ﬁﬂjdzldﬁg
The above double integral is evaluated on the square area bounded by b= iTand ty =27 We

divide this square region into sum of trapezoidal strips parallel to h-5H=0 (See Figure

1)Putting 1 ~% = T and noting that the differential area between & ~% = Tand & & = T+ aTg
(er- MMT, the above double integral is converted to a single integral as follows:




_ 1
47"

1
= ﬁffr'iz? - |[ehCy (Tt

) ({.ﬂx }r —iy )2 fr fr gty — £ )ddi,

1 T
= ﬁfgr[l_%]cz(fﬁf

bt //—\51—52=T+d1‘7

<5 T
7 -t =27
~
T e
Y
Figure 1

Ergodicity Principle

If the time averages converge to the corresponding ensemble averages in the probabilistic sense,
then a time-average computed from a large realization can be used as the value for the

corresponding ensemble average. Such a principle is the ergodicity principle to be discussed
below:

Mean ergodic process

A WSS process{X(ﬂ} is said to be ergodic in mean, if <’HX}T " Mg T =@ Thyusfora

mean ergodic process{‘}f(ﬂ}

m E{pty )y = iy
and

litn var {,{,{X }r =0

Fam
We have earlier shown that
E{:'L{X }r = -"5'{.7{

and




1 ar |T|
ar { fiy by "o LCX(T) l_ﬁ dT

therefore, the condition for ergodicity in mean is

lim— I Ci J[ mullfs

Further,

o7 J Ty ()1

-H ]cf < etk
Therefore, a sufficient condition for mean ergodicity is

ar
J;_|tf:Jf (DT (=

Example 1 Consider the random binary waveform @)
32.The process has the auto-covariance function given by

discussed in Example 5 of lecture

2 e

CylT) = T

!
0 otherwize

Here

ar ar
3!;|CX (T}I|:I'T=2J|CX(T]|:I'T
g ;! ]
=2111-— &7
i3

I ]
oz BT
¥ z]

=T

ar
J;|CX (THT o
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X}

hence { is mean ergodic.

Autocorrelation ergodicity

1 r
(Ry(D)}, = EJ; KX +0de

We consider & = X@XE+T) oo tna, #2 = Rx(T)
Then (L@ will be autocorrelation ergodic if 2 is mean ergodic.

Thus 40 will be autocorrelation ergodic if

ar
limi 1—E L(Tdn =0
Tow 2T ), 2T
where

Cp(5) = BZ(OZ (- 1) - B2 EZ (-~ )
= EXOX(¢-DX(-DX(-T-1)-R:(D)

Tt :'involves fourth order moment.

Simpler condition for autocorrelation ergodicity of a jointly Gaussian process can be found.

Example 2
Consider the random—phased sinusoid given by
Ay =Acos(aps+ @)

have earlier proved that this process is WSS with Hx =Uang

For any particular realization =& = Acosmi + &),
1
(), = Efyﬂcos(wnﬁ )t

-1 dsingw,T)

Hy

where Aand % are constants and §~ U0, 27] is a random variable. We

R, (T = % Cos T




and

T
{RX (1) }r = % lﬂcos{wuﬁ +d cos(w (+T) + ) de

3T
= T ‘Ucos w, T+ Acosw, (28 + 1)+ 240 ]de

_ Alcoswr .\ A% sin{w, (2T +T0)
2 S, T

A coswT

B (T) e —
We see that as¥ — @ {’E’I"}T%Uand< }r 2

For each realization, both the time-averaged mean and the time-averaged autocorrelation
function converge to the corresponding ensemble averages. Thus the random-phased sinusoid is
ergodic in both mean and autocorrelation.

LINEAR SYSTEMS RESPONSE TO RANDOM INPUTS

Consider a continuous LTI system with impulse response h (t). Assume that the
system is always causal and stable. When a continuous time Random process X (t) is applied
on this system, the output response is also a continuous time random process Y (t). If the
random processes X and Y are discrete time signals, then the linear system is called a discrete
time system. In this unit we concentrate on the statistical and spectral characteristics of the

output random process Y (t).

System Response: Let a random process X (t) be applied to a continuous linear time

invariant system whose impulse response is h(t) as shown in below figure. Then the output
response Y (t) is also a random process. It can be expressed by the convolution integral, Y (t)
=h (1) *X ()

X(t) Y ()
— h (1) >

That is, the output response is

Y(t) =/ h(D)X(t — D)dr.

Mean Value of Output Response: Consider that the random process X (t) is wide sense

stationary process.
Mean value of output response=E[Y (1)],

Then E[Y ()] = E [h () * X (1)]




=E [~ h(@)X(t — D)d1]

=[2 R@EX(t — D]de

But E[X(t — 7)] = X =constant, since X (t) is WSS.

ThenE[Y (t)]=Y = X me h(t) dt. Also if H (w) is the Fourier transform of h (t), then

H(w)= f_mm h(t)e /@t dt. At w=0,H (0) = _[jom h(t) dt is called the zero frequency response

of the system. Substituting this we get E[Y ()] =¥ = X H (0) is constant. Thus the mean

value of the output response Y (t) of a WSS random process is equal to the product of

the mean value of the input process and the zero frequency response of the system.

Mean Square Value of Output Response:
Mean square value of output response

is E [Y*())] =E [(h (® * X (1))°]
=E[(h @ *X@®) (h(t)* X ()]
—E[ [ hG)X(t—t)dty [ h(T)X(t — 15)d 15]
e[ [0 X —1)X(t — )h(rh(ry)d 1,d7s]
EIVAO1= [T, [ E[X(t — )X (t — t)]h(r)h(r)d T1d 7,

Where 1, and 5 are shifts in time intervals. If input X(t) is a WSS random process then

E[X(t —1)X(t —712)] = Rxx(t1 —72)

Therefore E [Y*(t)] = _f_mm jjom Ryx (11 — 15) h(t)h(r;)d 1,d1,

This expression is independent of time t. And it represents the Output power.
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Autocorrelation Function of Output Response: The autocorrelation of Y (t) is

Ryy(ty, T2) = E[Y (£1) Y (£2)
= E[(h (tz) * X (ts)) (h (t2) * X (t2))]
—E[ [ h(x(ty —t)d 1y [ h(1)X (6, — 15)d 15
=ElT 7 Xt — )Xt — 1R DR()d 14d7,]
- j_c’; f_cl E[X(t; — 1)X(t; — )]t Dh(r;)d T,d 7>
We know that E [X(t; — 1)X(t5 — 12)] = Ryx(ts — t; + 11 — T2).
If input X (t) is a WSS random process, Let the time difference T =t;-t; and t=t; Then
E[X(t —1)X(t +T—15)] =Ryx(t + 74 — 7). Then
Ryy(t,t +7) = Ryy(t,7) = | |7 Ryx(t + 11 — 15) h(zDh(r,)d 7,d,

If = Ryx (1) is the autocorrelation function of X (t), then Ryy(t) = Rxx(t) * h(t) h(-1)
It is observed that the output autocorrelation function is a function of only 1. Hence the output

random process Y (t) is also WSS random process.

Cross Correlation Function of Response:

If the input X (t) is WSS random process, then the cross correlation function of input X (t) and
output Y(t) is
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Ryy(t,t +7)=E[X (1) Y (t+7)]
Rxy(t) = E[X (0 h(zy) X (t+ T- 71) d1,]

Ryy(t) =[ " E [X (©) X (t + T~ 71)] h(zy)dry]

Rxy(t) =[" Rxx(t — t,)] h(r,)dt, which is the convolution of Rxx(t) and h (1).

Therefore Ryxy(T) = Rxx(t) * h (t) similarly we can show that Ryx(t) = Rxx(t) * h (-T)

This shows that X (t) and Y(t) are jointly WSS. And we can also relate the autocorrelation functions

and the cross correlation functions as
Ryy(t) =Rxy(t) * h (-1)

Ryy(t) = Ryx(t) * h (1)

Spectral Characteristics of a System Response: Consider that the random process X (t) is a

WSS random process with the autocorrelation function (t) applied through an LTI system. It
is noted that the output response Y (t) is also a WSS and the processes X (t) and Y (t) are
jointly WSS. We can obtain power spectral characteristics of the output process Y (t) by taking

the Fourier transform of the correlation functions.

Power Density Spectrum of Response: Consider that a random process X (t) is applied on an

LTI system having a transfer function H(w). The output response is Y (t). If the power

spectrum of the input process is Sxx (). then the power spectrum of the output response is
m I

_ —jwT

= f_m Ryy(1)e drt

We know that Ryy(t) = f_z f_i Ryx(t + 11 — 13) h(rh(r;)d 11d1,

Then Sy (w) = f_cl ffom ffjm Ryx(t + 11 — 73) h(rh(1,)d 1;d1, e 7°TdT
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= [ Rey(@e /@7 dr

We know that Ryy(7) = [ [% Ryx(t + 14 — 75) h(r)h(1,)d 11d7,
Then Sy (w) = [ % [% Ryx(t + 13 — 1) h(th(z,)d T,dt, e /97dT
= jj;, h(ty) fj;:, h(z;) f_wm Ryx(1+ 11 — 12) e /"dr d1, d1y

= fjom h(t)el®™ f_cl h(ty)el®™ f_mm Ryx(T + 1, — 15) e /Te/®T1eJ9%2d1 d1, d1,
Let T +1;-1,=t, dt = dt

Therefore Sy (w) = f:a h(r,)e/*"dr, fjom h(t,)el®2dr, _f-_mm Ryx(t) e 1¢tdt
We know that H (w) = Jr_mm h(r)e %t dt.

Therefore SYY () = H¥(0) H(®) SXX (0) = H(-0)H(®) SXX

(o) Therefore SYY (®) = |[H(W)|2 SXX (®). Hence proved.

Similarly, we can prove that the cross power spectral density function

IS Sxvy ((D) = Sxx ((D) H((D) and Svyx (CO) = Sxx ((1)) H(-(D)

Spectrum Bandwidth: The spectral density is mostly concentrated at a certain frequency

value. It decreases at other frequencies. The bandwidth of the spectrum is the range of
frequencies having significant values. It is defined as “the measure of spread of spectral

density” and is also called rms bandwidth or normalized bandwidth. It is given by

(e 2o
J-_.:;} w 'gxxl: widw

2 _
Widns =2
—oo P xx(wldw

Types of Random Processes: In practical situations, random process can be categorized into

different types depending on their frequency components. For example information bearing
signals such as audio, video and modulated waveforms etc., carry the information within a

specified frequency band.
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The Important types of Random processes are;

Low pass random processes
Band pass random processes

Band limited random processes

S N

Narrow band random processes

(1).Low pass random processes:

A random process is defined as a low pass random process X (t) if its power spectral
density Sxx (®) has significant components within the frequency band as shown in below
figure. For example baseband signals such as speech, image and video are low pass

random processes.

S.._\'(.Ul |

SN
SN
y \

{

(2).Band pass random processes: A random process X (t) is called a band pass process if its

power spectral density Sxx (o) has significant components within a band width W that does
not include ®

=0. But in practice, the spectrum may have a small amount of power spectrum at ® =0, as
shown in the below figure. The spectral components outside the band W are very small and
can be neglected.

For example, modulated signals with carrier frequency o and band width W are band pass
random processes. The noise transmitting over a communication channel can be modelled as a

band pass process.
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(3).Band Limited random processes: A random process is said to be band limited if its

power spectrum components are zero outside the frequency band of width W that does not

include ® =0. The power density spectrum of the band limited band pass process is shown in

below figure.

]
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‘UTJ WD{J _(’
fe— —>| fe—T—|

(4).Narrow band random processes: A band limited random process is said to be a narrow

band process if the band width W is very small compared to the band centre frequency, i.e.

W<< g, where W=band width and w, is the frequency at which the power spectrum is

maximum. The power density spectrum of a narrow band process N(t) is shown in below

figure.
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Representation of a narrow band process: For any arbitrary WSS random processes N(t),

The quadrature form of narrow band process can be represented as N(t) = X(t) Cos wot —

Y(t)Sin wot

Where X(t) and Y (t) are respectively called the in-phase and quadrature phase components of

N(t). They can be expressed as

X (t) = A (t) Cos[©(t)]
Y (t) = A (t) Sin[©(t)] and the relationship between the processes A(t) and ©(t) are given by

A1) = VX20 + Y20 and 6 (t) = tan~1( %}

Properties of Band Limited Random Processes: Let N (t) be any band limited WSS random

process with zero mean value and a power spectral density, Syn(®). If the random process is

represented by

N (t) = X (t) Cos wot — Y(t)Sin wot then some important properties of X (t) and Y (t) are given
below

If N (t) is WSS, then X (t) and Y (t) are jointly WSS.

If N (t) has zero mean i.e. E [N(t)] = 0, then E [x ()] =E [Y (1)]=0

The mean square values of the processes are equal i.e. E [N?(t)] = E [X*(t)] = E[Y*(1)].
Both processes X (t) and Y (t) have the same autocorrelation functions i.e. .

The cross correlation functions of X (t) and Y (t) are given by Ryx(T)=-Ryx(T). If the

processes are orthogonal, then Ryx(T) =0.

A N

6. Both X (t) and Y (t) have the same power spectral densities

SN(w—wo)+5N(w+m0) for |W|=wg

Svv (W) = Ssoc (w) ={ 0

7. The cross power spectrums are Sxy (o) = -Syx (®).

8. If N (t) is a Gaussian random process, then X (t) and Y (t) are jointly Gaussian.

9. The relationship between autocorrelation and power spectrum Syy (®)is
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1 oo
RX)((T) = ; f[] Swm'mjcos[{m—mn)’{]dw and
1 rom
RY}’(T) :;fg SNN(w)cos[q'm—mg)T]dm

10. If N (t) is zero mean Gaussian and its psd, Sy(®) is symmetric about +/-w0 then X (t) and Y (t)
are statistically independent.
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MODULE-V
RANDOM PROCESSES—SPECTRAL CHARACTERISTICS

Definition of Power Spectral Density of a WSS Process

Let us define the truncated random process (e} as follows

Xeftd=Xye)  -T<eLT

=1 otherwi ze

- X(z)mz(;_T)

t
ract(—)
where 2T is the unity-amplitude rectangular pulse of width 27 centering the origin. As

e, (A2l will  represent the random process X define the mean-square integral

r
FTX (@)= J;Xr(z)e-f“’dz

Applying the Pareseval's theorem we find the energy of the signal

r w
[ 0t - [lFtr(e)aa

Therefore, the power associated with SEIO) IS

2

15 1=
— [ Xitht = — [|FTX o) de
ET_L 2T Jﬂ And

The average power is given by

FTX,
—Eng()dz - —EI|FTX (m)| da = E‘I‘ﬂ
E|FTx (o)
Where ar the contribution to the average is power at frequency w and represents the

power spectral
density of (e} .As T = the left-hand side in the above expression represents the
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average power of (X}

Therefore, the PSD Sz (@) of the process X )} is defined in the limiting sense by

- E|lFrx (e
s A

Relation between the autocorrelation function and PSD: Wiener-Khinchin-Einstein
theorem

We have
E| FTX (@) [ _ z FTX (@) FTX, (@)
2T 2T

1 r r

= P ()X (2 ) Mg 0 g s,
ma
iy

_LT X(z]_ zz:lé,—.i'"‘itl &jfif d%

& T £
,’ /:/f\'\x_ ra zl _!'2 =1
!,’ [u[ﬂb‘ _
< i .
< T
/=0T
Tl
Y
Figure 1

5= iTand

iTas illustrated in Figure 1.Substitute hTE " Tgothat 1”4 Tisa family of straight
£ =& =10

Note that the above integral is to be performed on a square region bounded by
52 =

lines parallel to "The differential area in terms of ©is given by the shaded area and
equal to (2T~ T T The double integral is now replaced by a single integral in ©

131




Therefore,

FTX (@)X, (@) _ 1%

E — [ B, (De T @2T-|t)dT

o7 oT 4
=T R e -har
ar ¥ 2T

T Rx(r}e'jmd T
(¥ s integral then the right hand integral converges to — as T —w

i BT

If B

[ Ry(n)e ¥ ar

TFom -

2
. B|\FTY
) ] Sx(ﬁ]:l = 11mﬂ )
As we have noted earlier, the power spectral density e ar is the
contribution to the average

power at frequency @ and is called the power spectral density of X Thus :

Sy (@) = TRX (D™ gt

and using the inverse Fourier transform
]' y jr.u:
Ry () =— J‘ SylaNe’™ da
2

Example 1 The autocorrelation function of a WSS process CLOIN given by
Ryt =ate™ b0
Find the power spectral density of the process.

J R (e et

—

S la)
) e _b |1-|£_jmfdf

oo

] . o 3 .
_ jazebfe JdeTJrJ.aEQ E:n*.rg Ja:r*.rdr
— @ 0
cIE ﬂz
= +
b—jm b+ j@
_ 2a%
E:nzﬂ‘rr2

The autocorrelation function and the PSD are shown in Figure 2
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Figure 2

Example 3 Find the PSD of the amplitude-modulated random-phase sinusoid

X(£) = M() cos{ae+ D), $ ~ [0, 27]

Where M(t) is a WSS process independent of ¥

Ry(D)=FE M(+1T) cos(@(t+T) +D) M{E) cos(ar+d)
=B ME+D) M) Ecos(@(t+1)+ D) cos(@r+F)
{ Tsing the independence of M (¢ and the sinuscid)

3
= RM[T) ? cos &T

- 5(0) = A (su(0+0) + Su(0-a)

where S, [mj 1z the PSD of A(E)

Figure 4 illustrates the above result.

g ()
il
Sy (a)
A /I\
—mc—E —a —.:z."rc+E .:‘f:rc—E @ g “
2 2 2 coa

Figure 4
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Properties of the PSD

iz (@) being the Fourier transform of Ry (T) it shares the properties of the Fourier transform.
Here we discuss

important properties of Iz (@)

1) the average power of a random process A()js

EX(t)= Ry (1)

1 w
=— [X& Je
EH_'L 5 L dw

2) If X js real, () is a real and even function of T .Therefore,

5, (@) = }RX (e VT4

oo

= ‘[RX{T}(COS @T+ jsin @DdT
= IRX(TJ cos @ET

= EJRX (Ticos @TdT

Thus for a real WSS process, the PSD is always real.

3) Thus Syl is a real and even function of & .

2
L Sx(W)=1iﬂ1r_}mM_ . St 20
4) From the definition 2 is always non-negative. Thus “***/ = ™

5) If £t has a periodic component, Rxllis periodic and so S (@ will have impulses.

Cross Power Spectral Density

Consider a random process (Z 2} which is sum of two real jointly WSS random processes
(L2} and (X8} Ag we have seen earlier,

Ry (T) = Ry (1) + Ry(T) + Ry () + Roy (T)

If we take the Fourier transform of both sides,
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Sy (@) = Sy (@) + Sy (@) + FT(Ryy (1)) + FT (R (1)

Where FT() stands for the Fourier transform.

Thus we see that Sz (@)
correlation functions
Ry (T) and R

includes contribution from the Fourier transform of the cross-

ESf'(i_:"These Fourier transforms represent cross power spectral densities.

Definition of Cross Power Spectral Density

Given two real jointly WSS random processes (42} and {79} the cross power spectral
density (CPSD) “=(@) s defined as

S 0= 5O T @

Where FIX, (@) and FTTp (@) are the Fourier transform of the truncated processes

o) = X(trect(——) and ¥, (¢) = V(rect(——) .
2T 2T respectively and ~ denotes the complex
conjugate operation.

We can similarly define S () by

5. (@) tim 5 FTE @OF T (@)
o Pty >

Proceeding in the same way as the derivation of the Wiener-Khinchin-Einstein theorem for the
WSS process, it
can be shown that

Sy (@)= | Ry (D)%%

and
Sy (@)= | Ry (D)%% d1

The cross-correlation function and the cross-power spectral density form a Fourier transform
pair and we can
write
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Ry ()= | S (@) da
and
Ry (D)= [ Sy (@)’ da

Properties of the CPSD

The CPSD is a complex function of the frequency *w’. Some properties of the CPSD of two
jointly WSS processes

(X} and (¥} qpe listed below:
(1) SX}’ (ﬁ]) = Séz(m}
Note that %r(®) = Fx(-1)

LS la)= T Ry (te”dx

Ry (-0 7%t

[y R

Ry (D)™ dx

(ar)

ﬁt’lé

(2) el (@) s an even function of @ and "™ (#) is an odd function of @ .

We have

S (@) = ?Rﬂ(r)(cnsm T+ janatat

= ?Rﬂ(ﬂ cosa el T+ j? Rgltsnat)dt

= Re(Syy (@))+ Flm{Sey (@)
where

Re(Sy (a))= T[ Rplt)cosatdt 15 an even function of @ and

-

I Sy (e 1 = T R Tian wtdt 15 an odd function of @ and

(3) If (L)} and (X8} o yncorrelated and have constant means, then
Sy la) = Sppla) = fypty dla)
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Where da@) is the Dirac delta function?

Observe that

Rplt)= EX+T)F ()
= BEX(t+ 0)FF(
= My iy
= HyHx
= Ry lz)
LS (@) = S () = ey ity ()

@) 1f (X&) and (T8} gre orthogonal, then
gy () = Sy () = T
If (L0} and (T gpe orthogonal, we have

Fone (01 = EX Tt + 0)F()
=0

= Ry (1)
LA la) =S la)=1

(5) the cross power T between (X&)} and (It} s defined by
P, =lim— B XY (d
=lim — DY ()de
= o fl
Applying Parseval's theorem, we get
.1 T
Py =lim o B | XY (©)ae

1 =
=lim B [ X @

- 1imLE2L T FTX (@) FTY (@)d @
T

F—m 2T
%y BTG @FT (@),
29T o T 2T

- Y5 (@da
2w

L By = zi T Sy (@de

-0
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Similarly,
B, =Lt (ede
2T
-1 [ Spia@da
2T

= p}:}r
Example 1 Consider the random process given by 2(8) = X+ Y1) giscussed in the beginning
of the lecture. Here ‘<@t js the sum of two jointly WSS orthogonal random processes

{Af) ) and {F{D)}
We have,
Ry (T) = By(T) + By (T) + Ry (1) + R (T)
Taking the Fourier transform of both sides,

Spla) =Sy (@)t &y (m)+3ﬂ{m}+3n(ﬂ-‘f)
—J’S (m}dm-z—jS .:fm+2—j3 .:fa:r+2—J’S {m}dm+2—j3

Therefore,

Flan =P (@ + 5 (@) + P (@) + b (@)

Wiener-Khinchin-Einstein theorem

The Wiener-Khinchin-Einstein theorem is also valid for discrete-time random processes. The

power spectral density 5z (@) of the WSS process (€171} is the discrete-time Fourier transform
of autocorrelation sequence.

Sy la)= 5 Rx[m]e'j"’“ -TEwWET

Mem—r

Ee [M] |5 related to iy (@) by the inverse discrete-time Fourier transform and given by
R [m]) -1 5, (ae’™d @
4 EJ’TJ, X

Thus & U1 and iy (@) forms a discrete-time Fourier transform pair. A generalized PSD can be

defined in terms of Z — transfortn g5 follows
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Sy@) = 3 R [m]z™

Pt i1

clearly,

Sy (@)= 52|,

Linear time-invariant systems

In many applications, physical systems are modeled as linear time-invariant (LTI) systems.
The dynamic behavior of an LTI system to deterministic inputs is described by linear differential
equations. We are familiar with time and transform domain (such as Laplace transform and
Fourier transform) techniques to solve these differential equations. In this lecture, we develop the
technique to analyze the response of an LTI system to WSS random process.

The purpose of this study is two-folds:

e Analysis of the response of a system

e Finding an LTI system that can optimally estimate an unobserved random process from
an observed process. The observed random process is statistically related to the
unobserved random process. For example, we may have to find LTI system (also called a
filter) to estimate the signal from the noisy observations.

Basics of Linear Time Invariant Systems

A system is modeled by a transformation T that maps an input signal * ) to an output signal
y(t) as shown in Figure 1. We can thus write,

»(e) = T[x(t)]

x(t) ¥

Figure 1
Linear system
The system is called linear if the principle of superposition applies: the weighted sum of

inputs results in the weighted sum of the corresponding outputs. Thus for a linear system
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T [‘31x1 (£)+ @z, [5:'] N alT[x.l [5)] *a,T [x:: (¢ )]

Example 1 Consider the output of a differentiator, given by

_ dxif)
re=—
d
Then EI[ X (8] + a,x, (£) :l

d d
= ﬂlE%(ﬂ' + ﬂzﬁxz (£)

Hence the linear differentiator is a linear system.
Linear time-invariant system

Consider a linear system withy (t) =T x (t). The system is called time-invariant if
Txle—g) =ylt-t,) ¥ g

It is easy to check that that the differentiator in the above example is a linear time-invariant
system.

Response of a linear time-invariant system to deterministic input

As shown in Figure 2, a linear system can be characterised by its impulse response
Ae) = T3() \yhere 9@ js the Dirac delta function.

5t

LTI Bt
: (3

gystern ——

Figure 2

Recall that any function x(t) can be represented in terms of the Dirac delta function as follows

o

xif) = Ix(s] 5(t-s) ds

—o

If x(t) is input to the linear systemy (t) =T x (t), then
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YiE) T }x(sj c‘i‘(.ﬁ - S) e

Ix(s) TE!‘I:E - sj ds [ Tzing the linearity property ]

-

w

Ix(s} hits) ds

—

—E-‘:l

= TE[:—S)

Where k(.5) is the response at time t due to the shifted impulse? ac

If the system is time invariant,
?z[z,sjl = Ezl[.ﬁ—sjl
Therefore for a linear-time invariant system,

yid) = J'x(s} Bt—s)ds = x(£) *h(e)

-0

where * denotes the convolution operation.

We also note that xig) ®h(t) = hif)*x(f).

Thus for a LTI System,
yiey = z2(e) * Alz) = k() *xiz)
Taking the Fourier transform, we get

F(e)=H(e)X(a)
where H(m) = Fﬂs[.ﬁ) = Ik(ﬁ) 2% Jt 15 the frequency response of the system

]

Figure 3 shows the input-output relationship of an LTI system in terms of the impulse response
and the frequency response.
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x(t) EEI) System yit) I

X () LTI Syst v(
¢ H(m)ys Efm ;ﬂ).

Figure 3

Response of an LTI System to WSS input

Consider an LTI system with impulse response h (t). Suppose A} jsawss process
input to the system. The output TR of the system is given by

P()= [h() X(1-s)de - [h(1-3) () ds

-

Where we have assumed that the integrals exist in the mean square sense.

Mean and autocorrelation of the output process i

=py ]‘}'2 (5)ds

= 44 (0]

Where (% is the frequency response at 0 frequency (¢ =0 ) and given by

142




Hw),, = [ [.z)e‘-"”’dzL = [(e)
— -] —
T The Cross correlation of the input {X(t)} and the out put {Y (t)} is given by

E(x(t+)¥ ()= EX(t+1)

é-—-ﬂ

_ Tk[s) E X(t+7) X(t-5)ds

= Ioﬁz[s:l Ry (t+5)ds

- [h(ow) Ry (o-u)a [ Puts = —u]
=;:E‘T) * Rylr)

Raglr) = h{r) ™ Rylr)
cd 5o RH[T) = RH[—T)= Ez[r:l * RX[—T)

= }z[r) * Ry [r)

Therefore, the mean of the output process T} is a constant

The Cross correlation of the input {X (t)} and the out put {Y (t)} is given by

E(x(t+)¥ ()= EX(t+1)

é-—-ﬂ

- Tkl[s) EX(tec) X(t-5)ds

- Ioﬁz[s:l Ry (t+5)ds

- [h(ow) Ry (o-u)a [ Puts = —u]
=§:|f—r) ¥ Rylr)




Thus we see that ~ ()i a function of lag @ only. Therefore, X1} and &)} are jointly
wide-sense stationary.

The autocorrelation function of the output process {Y(t)} is given by,

E(F(e+0)F () = B [h(s) X(t+r-5)dsF(e)

hee 2

= }k[s) E}f[r.+r—s) T ds

—

}k[s) Rylr—s)ds

B(E) * R 4lv) = h(r) *h(-1) *R ,(z)

Thus the autocorrelation of the output process ey depends on the time-lag ¥ , i.e.,
EY(a)¥(e+r)=Ry(r)
Thus
Byl(r) = Ry (z)*h(z)*h(7)
The above analysis indicates that for an LTI system with WSS input

« the output is WSS and
e The input and output are jointly WSS.

The average power of the output process e s given by

Power spectrum of the output process

Using the property of Fourier transform, we get the power spectral density of the output
process given by

Sy (@) =Sy (o) H (@) 2 ()
=Sy [m)|H[”J)|2
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Also note that

Ralr) = h(=2) * Rilr)
and Ry (1) = k(r) * Ry(r)

Taking the Fourier transform of R IIT:'we get the cross power spectral density
Sa [m)given by

Sw(@) = H (&) 5z (@)

and

Sp (@) = H (@) 5z (@)

Rt Fy(T)
—E®) Wy ) -
Sy () Sy ()

—Sx-(g\’l—.' H‘(ﬁvjl —- H(ﬂJ}I e

Figure 4

Example 3

A random voltage modeled by a white noise process () with power spectral density
My

2 js input to an RC network shown in the Figure 7.
Find (a) output PSD Sy (@)

(b) output auto correlation function Ry(r)

(c) average output power EY* £)

145




X ¢ =¥

L ]

Figure 7
The frequency response of the system is given by

1
JC e
1
2+
JC
_ 1
JRCa+1

H(w) =

Therefore,

_R2C2m2+13‘¥[ )
1M
(a) RiCw +1 2
(b) Taking the inverse Fourier transform
M -H
R lry=—L g &€
¢ (7) 4RC
(c) Average output power
Al
EY*(t) =R, (0)=—22
(1)=& (0) =%

Rice's representation or quadrature representation of a WSS process

An arbitrary zero-mean WSS process @) can be represented in terms of the slowly

A1) L) 55 follows:
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A=A (flcosapt — &, () sin ant )

3 | b

b
o, . . Lela+=0) p
where “"is a center frequency arbitrary chosen in the band 2 ¥ and

X, are respectively called the in-phase and the quadrature-phase components of @)
Let us choose a dual process )} such that

X+ Y@ = (X 0+ X, 0) ™
= [Xc{.ﬁ} cosapt — X, (£ sn ﬂ_in.ﬁj +”.r'|':}f¢{.ﬁ]lsin apé + X, (f) cos ﬂ.]:,ﬁ:l

., il [

) ¥ir) J
then ,
A ()= A(f)cosapt + Ff)sin ey f @)
and
A ()= Kt cosayt —F(£) sin st 3)

For such a representation, we require the processes L)) and (L, () to be WSS.

Note that

X)) = cosa B, (£) — sin apd BY | (£)

As E 8 is zero mean, we require that
EX.(6) =0

And
EX (=0

Again
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EX (#) =cosept EX (1) +sineng BV (2)
EX () = cos epdBX (1) —sin ep FFIE)

Ageach of £X_(#), BX (t) and BX(}) 15 zero-mean, we require that
EVity=10.

Alsn
Ry (t+7.8)= E[X[r+r)cnsaln [.-.?+ f)+ F[r+ r)sin alu[r+r)][£f(:) cos et + ¥ (1) sin ayd]

= Rylr)coseayit+ r)oos ayt + By (T ) sin ey |[.-.?+ r) St engt + Ry () cO3 (24 T) 510

+ Ry (T sit ey (2 + T) cos et
atud

Ry (+7.8) = Ry(ricos aqif +r)cosapt + Ry(r)sin g |[.ﬁ + r:lsin ap
— Ry (ricosay (£ +7)dnay — Ry, (v)sinay (£ +7) cosays

and
Ry x (E+T.8) =Ry(T)cosaylf + Thcos @y — Ry (Than &y (£ + T) sin @yt
— R (Ticos@ (E+ T @ + K, (Tsin @ (f + Thcosalf

Thus, Ry (¢ + 7.0, Ry (t+T.0) and By o (¢ +7,£) will be independent of t 1f and only 1f

and

Ry x (T)= Ry(ricosan( +7)cos apt — Ry (7) sin ay (£ +7) sin ayd

—Rp(ricosay,(f+r)sin ayé + R (T)sin ay, (f +T)coz ayf
= R (r)[cosay(f +T)cos eyl —sin ay (f + 1) sin agé ]

~ Ry (r)lcosay +7)sinayt —sinay ¢t + 1) cos ayf]
= Ry(ricosmyT — Ryplr)an(-ayr)
= Ry(r)cosayt — Ry (r)sin ayr

How to find (' €)) satisfying the above two conditions?

For this, consider 46 to be the Hilbert transform of {X(.t)}’ i.e.

¥(£) = }X(s);g(z — &)ds
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k{z}=i

Where 7t and the integral is defined in the mean-square sense. See the illustration in
Figure 2.
Xit Fip
T e L Q)
it
Figure 2

The frequency response G of the Hilbert transform is given by

—i i @=0
Hia)=4 J if @<
o, if @=0

SCH{@ = —jegnia)
and |H (@) =1
" Sy (@) =|H (@) 5@ = 5 (@)

and

JSl@),  for @ >0

Spr(@) = H (@) Sy (@) = {—jSH(m), for @<

— e [m) for =0

Sm(@) =4 [mjgﬂ'@:{jsﬂ(mj, For @<0)

The Hilbert transform of Y(t) satisfies the following spectral relations

Sy{@)= 5y (@)
atd
Sy (@) = =Sy (m)

From the above two relations, we get
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Ry(T) = Ky (T)
and

Ry (T) = — By (T

The Hilbert transform of <& i generally denoted as X ':fz"Therefore, from (2) and (3) we
establish

Xolf) = Xt vos @y + X sin @y,
X () = X () cos @yt ~ X(£) sin e

and

AlE) =X (flcosapi — A (¢ sin ayf

The realization for the in phase and the quadrature phase components is shown in Figure 3
below.

G0 ikl

* +
A ) )
Xei®) "Tsﬁ}
+ -
Hilbert
transfarm

‘ singnt

Figure 3

From the above analysis, we can summarize the following expressions for the autocorrelation
functions
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Ry (1) = Ry (D)
=R (Ticos ayT+ R (Than @ T
=R (Ticos ayT+a(O*R, (Tan T VR (T =h(T)* R, (T)
=R (TicosayT+ ﬁz (Thein @T

Where
R, () = Hilbert transform of R, (7)

=ILR_X(T—S:ICI1.S'
A s

See the illustration in Figure 4

=

Ry (r k(r)=i— i(fj
TT

Figure 4

The variances aic and Uis are given by

%, = Ox, = R (0)
Taking the Fourier transform of Ry (7) and Ry, I(T]"we get
Se(@ @)+ Sgl@+ @) || < B
Sy fan =58, (an =
7 (@) = 5z, (@) {U otherwise

Similarly,

R&XE (r) =R, (T)sinmr — R, (t)cosm,T

=R, (risinayr - ﬁx (T)cosayT
and

i -5 - LB
Sy, (@) = {;[ x(@+ay) - Sy(w-a)]  |o

otherwize
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(a7

Notice that the cross power spectral density Sxexs
Sy ()

is purely imaginary. Particularly, if

is locally symmetric about o
Sy, (@) =0
Implying that

Ry () =0

Consequently, the zero-mean processes L) and (6 are also uncorrelated.
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MODULE-V

NOISE SOURCES & INFORMATION THEORY
Resistive (Thermal) Noise Source

Suppose we have an ideal (noise-free, infinite input impedance) voltmeter that
responds to voltages that fall in a small ideal (rectangular) frequency band dw/2n
centered at angular frequency w. If such a voltmeter is uscd to measure the
voltage across a resistor of resistance R (ohms), it is found, both in practice and
(heoretically, that a noise voltage e, (t) would cxist having a mcan-squared value
given by

70 = ZRT.:: dw

Here k = 1.38(1072%) joule per Kelvin is Boltzmann's constant, and T is tem-
perature in Kelvin, This result is independent of the value of w

In other words, the noisy resistor can be modeled as a Thevenin voltage source
An equivalent current source is shown in (b) where '

2kT dw
R

i) = elt)/R* =

is the short-circuit mean-squared current.

the incremental noise power dN, delivered
to the load in the incremental band dw by the noisy resistor as a source is
e}()R,  2kTRR, dw
dN]" = : = 2
(R + Ry) n(R + ;)

The maximum delivered power occurs when R, = R,

incremental available power of the source is given by

kT dew
in

dN,, = eX(1)/4R =
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Nuisy Noise
resistor free

I m

Arbitrary Noise Source

Suppo.?c an actual noise source has an incremental available noise power dN,,,
open-circuit output mean-squared voltage eX(1), and impedance as measured

between its output terminals of Zfw) = Ry(w) + jX (w). The available noisc
power is easily found to be
ex(r)

IN, & =—"
s 4R (w)

where  ¢X(1) = 2kT, R, (w) ﬂ}?

T, 15 effective noise temperature

available power is independent of (he source tmpedance but depends on the
source's temperature
dw

= kT, —
dN,, .
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Resistor Noise Sources in Series

Temperature T, R,
or
W=
Temperature T, R, }wo r:‘.smors at dilferent mperntures
in series.
o

Thevenin equivalent circuits for the combination.

Substituting the previous expressions, we have

r . d
KLTR, + T3 Ry) == = 2K{TR, + Ry)] =
._ TR+ Th Ry
TR+ R,
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A Two Port Network

Z, o——— o—l
Lincar I\
-, ¢

e, L, i two-port o Z

nelwork J
o

o

Available Power Gain

Consider first a linear, noise-lree, (wo-port (d4-terminal) network having an inpul
impedance Z; when the outpul port is open-circuited. Its oulput impedance,
found by looking back into its output port, is Z, when being driven by a source
with source impedance Z,. The source open-circuit vollage is e,(t) and the
network’s open-circuit output voltage is e,(t).

The available power, denoted dN,,, of the source is
—
dN,, = &)
" 4R,
where R, is the real part of Z,. This power is independent of Z,, The available
power, denoted dN,,,, in the oulput due to the source is
0
4R,
where R, is the real part of Z,. This power does depend on Z, through its influ-
cnce on the genecration of e,(1) but does not depend on the loud impedance Z,.

We define the available power gain denoted G, of the two-port network as the
ratio of the available powers

AN 104

Ny R, eX(1)
dN,,  R,eX(t)

G, =

A Noisy Network driven by Noise Source
Consider a lincar two-port network with internally generated
noise. The network is assumed to be driven from a source with efective noise
lemperature 7; as shown in Figure a. If G, is the network’s available power
gain, the available output noise power due to the source alone is
dw

‘INlns =G, dNu = Gu k?; .
2n
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Noisy

4 + '\; '= L\t ,
network et Ny # BV = R

Souree temperature 7, ===t

(u)

Total available output noise power dN,, is larger than dN,,, because of inter-
nally generated noise. Let AN,, represent the excess available noise power at the
output. We shall imagine that AN,, is generated by the source by defining effec-
tive input noise temperature T, as the temperature increase that the source would
require to account for all output available noise power, 1t thercfore follows that

AN,, = G, k'r"ﬁ

With this definition, the noisy network is replaced by a noise-free network driven
by a source of temperature T; - T, as shown in Figure b,

N e
netwoik

i T————————— . -

(h)

Equivalently the above circuit can also be represented with two separate
inputs as

Sowee temperataee 1 0 1, e LATTTLIT: b T A o

VAN
f Iy Noise-{ree l!N.m + ANW s dl\lw
r neiwork
kT i’."f.’- ()

¢z

Noisy Networks in Cascade
the effective input noisc temperature 7, of the cascade is determined o be

T., ) T,
T‘ _I __'__ ¢ . 3 e M
atG *ea T e G, 6,

where 1., and G,,,m =1, 2, ..., M, arc the cllective input noise temperature and
availuble power gain, respectively, for the mth stage when all m =1 previous
stages are connccted and form its source,

A useful application is to the cascade of stages in an amplifier.
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(i

G, (iy Um e T ANy
. . . = fwor
Source N.:.T‘,,k N\!h;'nrk [—‘ [ r Nu::tuk ¢ o :—N”
r Jw
Cdw g M KT o 5
Kt B T 5 kT en "33 e
]

. G=G,Gy " On
5-.:—'.||.'l.:l.'——"'J Caxeade f—o— dNge * AN

r_._.__.-

th)

In praclice, a given nctwork might be driven by a varicty of sources. For
example, an amplifier might be driven by an antenna, mixer, altenuator, other
amplificr, ctc. Itsspot noisc figure is therefore a function of the eflective noise tem-
perature of the source. However, by defining a standard source as having a stan-
dard noise temperature Ty = 290 K and standard spot noise figure Fo, given by

Fo=1+ ’—f
IO
a nelwork can be specified independent of its application,

When a network is used with the source for which it is intended to operate F
will be called the operating spot noise figure and given the symbol F,.
(8.8-9)

T,
F"9=1+"ﬁ

Practical Noisy Networks

Ina isti '

m ST:}:MLC ne'u_vork. the 'frcqucncy band of interest is notl incremental. There-

fore su q a?ll?tes as available power gain, noise temperature, and noise figure
ot necessirily constant but become frequency dependent
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Average Noise Figures

We define average operating noise figure F,, as the total output available noise
power N,, from a network divided by the total output available noise power N,,,
due to the source ulone. Thus, '

Similarly

=IE Fo,T,G, dw
* = T8 TG, do

In many cases the source’s temperature is approximately constant. Operaling
average noise figure then becomes

F =E_’," F,, G, dw
* |8 G, dw

An antenna is an example of a source having an approximately constant noise
temperalure

T, constant

For a standard noise source, we also have average standard noise figure as

_ 8 Fo G, do
[§ G, dw

Average Noise Temperatures

Fo
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Incremental available output noise power from a network with available power
gain G, that is driven by a source of temperature T, is

!
dN,, = G KT, + T) ‘E‘f (1)

Total available power is therefore

[ <) k 0
N,, = J IN,, = = f GAT, + T)) duw 2)
0 2n Jo

Next, we define average effective source temperature T, and average effective
input noise temperature T, as constant temperatures that produce the same total
available power as given by eq(2) Hence

N,, = 5 (T.+ T) J G, dw (3)
2n 0

7 10“’ T,G, dw

a f& G, dw

and 'f; [l‘l ?r ('u dew (4)

T (e G, dw

Correspodning noise figures are given by

T. T
Fo=1+;; F,p=l+?: (5)
K fa X
Fom 142 Fuy=1) Fop el .|.%‘{,ﬁ"” ~1) (6
Noise Bandwidth
We know that
k _ w0
Nau =_{’T;+ T:-)J Gn dw
211‘ 0

This equation can be rewritten as
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@ G (w) dw
Noo = 5 (T, + TG00 : Gu(wo)

2n W
" Wa
= G(wok(T, + T) 5,

tion G (w).
where g is the centerband angular frequency of the function G,

IE’ Gy(w) do is noise bandwidth of the nelwork
Gu{{uﬂ]

PVH =

Narrowband Noise

A band-limited random process is suid to be narrowband il W < wy, where w, is
some conveniently chosen frequency near band-center or near where the power

spectrum is al its maximum, A power spectrum of a narrowband nrocess is
sketched.

The narrow band noise might be represcnted by a cosine Huncuion with angu

lar
frequency w, and slowly varying amplitude A[:]_ and phase ©(r) (hat _

is, by
N(1) = A(1) cos [wyt + O(1)]

For gaussian N(1). it is known that A(f) and ©(1) have Rayleigh and
uniform (over 2n) first-order pdfs respectively. The processes A(r) and (1)

are not statistically independent when N(t) is gaussian but for any

one instant in time the process random variables are independent.

Quadrature representation of Narrowband Noise
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Narrow band noise can'bc represented as inphase and quadrature’

components as
N(t) = X(1) cos (wo t) = Y(r) sin (wqt)

where the processes X(1) and Y{1) are given by
X(1) = A1) cos [©(1)]
Y1) = A(1) sin [©(1)]
Expressions relating A(n) and ©(r) to X(1) and Y(1) are

Alt) = /X3 + Y3(0)
Of) = tan™"' [Y(1)/X(1)]

. Carrier with (1) Randomly
3 wwiw) randomly Nuetuating
Nuctuating envelope
ph.m ,--*
W <€w, ]\[—/“
=y 0
PSD of narrowband noise Sample function of a narrowband noise
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Information Theory
Discrete InNnformation Source

Discrete Sk by x
memoryless o il A
source

output is modeled as a discrete random variable, S, which takes on symbols
from a fixed finite alphabet

P = {so, 515 - - - 5 Sx-1}

Information Rate

1. Also called as Entropy

2. entropy* of a discrete memoryless source with sourcc alphab'ct— P is
the average information content per source symbol.

H(F) = ElI(s0)]
=3

= > pid(sp)

x »
-°

1
. Pi 1082 pk)

>
1

The idea of information is closely related to that of “‘uncertainty™ or
‘e 4 " l s
surprise, Vs log(E)

1. I(s) = 0 for px = 1

Obviously, if we are absolutely certain of the outcome of an event, even
before it occurs, there is no information gained.

B I(s;) =0 for0=p, <1

the occurrence of an event S = s, either provides some or no
information but never brings about a loss of information.

163




The idea of information is closely related to that of ““uncertainty’ or
“h < " l <
surprise, P log(i_’: )

1. I(syp) = 0 for pe = 1

Obviously, if we are absolutely certain of the outcome of an event, even
before it occurs, there is no information gained.
p B I(s;) =0 for0=p, =<1

the occurrence of an event § = s, either provides some or no
information but never brings about a loss of information.

Properties of Entropy

1. H(¥) =0, if and only if the probability p; = 1 for some k, and the remaining

probabilities in the set are all zero. This lower bound on entropy corre-
sponds to no uncertainty.

2. H(¥) = log:K, if and only if px = 1/K for all k (i.e., all the symbols in the

alphabet ¥ are equiprobable). This upper bound on entropy corresponds to
maximum uncertainty.

Entropy of Binary Symmetric Channel

H(¥) = —pologapo — pilogapy LB
= —pologapo — (1 — polloga(l — po), bits

‘leo)

1
I
|
|
1
|
|
|
|
1
|
1
1

| |
o 0.2 0.4 05 06 0.8 1.0
Symbol probability, po
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Variable Length Coding

For the source encoder 1o be efficient, we
require knowledge of statistics of the source.

short code-words to
frequent source symbols, and long code-words to rare source symbols.

Morse code.

Source Coding

An important problem in communications is the efficient representation of data
generated by a discrete source. The process by which this representation is
accomplished is called source encoding. The device that performs the repre-
sentation is called a source encoder.

1. The code-words produced by the encoder are in binary form.
2. The source code is uniquely decodable, so that the original source se-
quence can be reconstructed perfectly from the encoded binary sequence

Huffman Coding

The Huffman code* is a source code whose average word length approaches
the fqndamental limit set by the entropy of a discrete memoryless source,

Huffman encoding algorithm proceeds as follows:

1) The source symbols are listed in order of decreasing probability. The two

. source symbols of lowest probability are assigned a 0 and a 1. This part of
(splitting stage.)

2) These two source symbols are revgard;d‘as being combined into a new

. ;(.)ll.lrce symbol with probability equal to the sum of the two original proba-
ilities.

3) The procedure is repeated until we are left with only two source symbols
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4)

The code for each (original) source symbol is found by working backward and

tracing the sequence of 0s and 1s assigned to that symbol as well as its suc-
Cessors.

Problem:

The ﬁv.e. source symbols of the alphabet of a discrete memoryless source and their
probabllmcs are given. Build a Huffman code for the given source.

Also compute its average code word length and compare with the
source entropy. Commenton the results.

Symbol Stage | Stage || Stage |11 Stage |V
0
0.6 —
So 0.4 0.4 —— 0.4
0.2 —»02\\04 0 0.4 a2y
81 : : J _—1 :
\\020\'\ -2k %
sz 0.2 & L —
53 0.1 0.2
1
Sa 0.1 —

Average Code Length 2

Symbol Probability Code word
So 0.4 o0
S 0.2 10
52 0.2 11
S 5 0-1 010
Sa 0.1 o111
. = 0.4C¢2) + 0.2(2) + 0.2(2) + 0.1(3) + 0.1(3)
= 2.2

0.4 log-> (6%47) + 0.2 log: (61—-2) + 0.2 log> (61—2)

+ 0.1 log> (ﬁl—l-) + 0.1 log» (%) = 2.12193

we may make two observations:

I exceeds the entropy H(¥) by only 2 percent.

I does indeed satisfy H(¥) < L < H(¥) + 1
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Shannon-Fano Codes

SHANMNNOM - FaANO CODES is another binary coding technique to
construct U.D. codes (not necessarily optimum!)

1. Order probabilities in decreasing order.

2. Partition into 2 sets that one as close to equally probable as
possible. Label top set with a "'0"" and bottom set with a "1™

3. Continue using step 2 over and over

e 0
3 = 1 0
5 — 0
o L S 1 1 0 O
15— 1 1 0 e Y
| A— -l ==
Lo Lol 05 — 1 1 1 1 0
05 — 1 1 0 1 1
T =7 T = 2.3

Compare with Huffman coding. Same length as Huffman code?!

Discrete Memorviess Channel

A discrete memoryless channel is a statistical model with an input X and an
output Y that is a noisy version of X; both X and Y are random variables. Every

Xo Yo
X, 1
x - X ———— Plyg 1 x4) l——— Y - )
xJ.1 K-
inptt alphabert output alphabet,
0 ==pOulx) =1 for all j and k&

The transition probability p(yi|x;) is just the conditional probability that the
channel output Y = y,, given that the channel input X = x;.

when k& = j,
p(yi|x;) represents a conditional probability of correct reception,

when k # J, it represents a conditional probability of error.
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the channel matrix

[P(yolxd) pPDilxe) . . . P(Yx-1lx0)
p(yo|x1) plyilx) i G s plya—iix

| p(Yolxs=1) POlxs-1) - . . P(Yr-1lxs-1)]

each row corresponds to a fixed channel input,
each column corresponds to a fixed channel output

sum of the elements along any row is always equal to one:
K—1

> p(ylx) =1  forallj

k=0
Joint probability distribution of X and Y is given by

p(xj, yx) = .P(}’klxj)P(xj)
J=1

pP(ye) = E p(yklxj)p(xj) fork=0.1 " s K =1

Jj=0

For J = K, the average probability of symbol error, P,, is defined as the
probability that the output random variable Y, is different from the input ran-
dom variable X;, averaged over all k#j. We thus write

K~-1

P.= 2 P(Y =)

k=0
k+j

J—1 K—}

= > X pulx)p(x)
j=0 k=0
k#j
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Discrete Memorviess Channel

channel input X (selected from alphabet %),
channel output Y (selected from alphabet V)
Y is the noisy version of Input

the conditional entropy of X selected from alphabet %, given that Y = y;.

1
HEY =y = |
x| Yi) JZOP(XJI.VA) o8| S0
This quantity is itself a random variable that takes on the values H(Z|Y = yg),
- . . » H(Z|Y = yx-—) with probabilities p(y0), - - - , p(¥Yx-1), respectively.
The mean value of H(Z|Y = yx) over the output alphabet ¥ is therefore given

by
H(ZE|Y) = p HZE|Y = y)pr(y)
K1
H(2|Y) = > H(Z|Y = y)po(ye)

k=0
K—1 J—1 l

- om0 tomal ]
22 22 pP(xily)p(yi) log: e ey
K—1 J-—1

I
M
M

»
|
c
.
'l
<)

1
p(x;. Yi) logz[m]

Where p(x_,-lyk)p(yk) = P(xj, Vi)

H(%) represents our uncertainty about the channel input before observing the channel output

H(%t’loy) represents our uncertainty about the channel input afrer observing the channel
H(Z) — HZ|Y)

represent our uncer-ainty about the channel input that is resolved by observing the channel output.
is called the mutual information of the channel.

I(%;%) = H®) - HZ|%Y)
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Binary Symmetric Channel

Consider a discrete memoryless source that emits equally likely binary symbols
(0s and Is) once every T, seconds. With the source entropy equal to one bit per

Since the source entropy is 1 bit/symbol,
the information rate of the source = 1/T, bits/second

_the channel.coding tﬂcbrem [part (1)] implies that if

where r= T/T, = the code rate of the encoder

That is, for r < C, there exists a code (with code rate less than or equal to C)
capable of achieving an arbitrarily low probability of error.

The capacity of a channel of bandwidth B hertz, perturbed by additive white Gaussian
noise of power spectral density Nyo/2 and limited in bandwidth to B, is given by

C=B8B log;(l + bits/s

[)
)

where P is the average transmitted power.
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