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Module-I

PROBABILITY, RANDOM VARIABLES AND OPERATIONS 
ON RANDOM VARIABLES
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Index

 Why study probability

 What is probability

 Basic concepts

 Relative frequency

 Experiment

 Sample space

 Events

 Probability definitions and axioms
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Why study Probability?

 Nothing in life is certain. In everything we do, we gauge the 
chances of successful outcomes, from business to medicine

 A probability provides a quantitative description of the 
chances or likelihoods associated with various outcomes

 It provides a bridge between descriptive and inferential 
statistics

Population Sample

Probability

Statistics
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Probabilistic vs Statistical Reasoning

 Suppose I know exactly the proportions of car makes in India.
Then I can find the probability that the first car I see in the
street is a Maruthi. This is probabilistic reasoning as I know the
population and predict the sample

 Now suppose that I do not know the proportions of car makes
in India, but would like to estimate them. I observe a random
sample of cars in the street and then I have an estimate of the
proportions of the population. This is statistical reasoning
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What is Probability?

 We use graphs and numerical measures to describe data 
sets which were usually called samples.

 We measured “how often” using 

Relative frequency = f/n

Sample
And “How often”
= Relative frequency

Population

Probability

• As n gets larger,

6



Basic Concepts

 An experiment is the process by which an observation (or 
measurement) is obtained.

 An event is an outcome of an experiment, usually denoted by 
a capital letter. 

 The basic element to which probability is applied

 When an experiment is performed, a particular event 
either happens, or it doesn’t!
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Experiments and Events

 Experiment: Record an age
 A: person is 28 years old
 B: person is older than 55

 Experiment: Toss a die
 A: observe an even number
 B: observe a number greater than 4
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Basic Concepts

 Two events are mutually exclusive if, when one event occurs, 
the other cannot, and vice versa.

•Experiment: Toss a die
–A: observe an odd number
–B: observe a number greater than 2
–C: observe a 6
–D: observe a 3

Not Mutually 
Exclusive

Mutually 
Exclusive

B and C?
B and D?
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Basic Concepts

 An event that cannot be decomposed is called a simple 
event. 

 Denoted by E with a subscript.

 Each simple event will be assigned a probability, measuring 
“how often” it occurs. 

 The set of all simple events of an experiment is called the 
sample space, S.

 For a die tossing experiment the sample space consists of six 
events of discrete and finite, it is called discrete sample space 
(shown in next slide)
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Example

 The die toss:

Simple events: Sample space: 

1

2

3

4

5

6

E1

E2

E3

E4

E5

E6

S ={E1, E2, E3, E4, E5, E6}

S
•E1

•E6
•E2

•E3

•E4

•E5
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Basic Concepts

 An event is a collection of one or more simple events. 

•The die toss:
–A: an odd number
–B: a number > 2

S

A ={E1, E3, E5}

B ={E3, E4, E5, E6}

B
A

•E1

•E6
•E2

•E3

•E4

•E5
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The Probability of an Event

 The probability of an event A measures “how often” A will 
occur. We write P(A). 

 Suppose that an experiment is performed n times. The 
relative frequency for an event A is 

n

f

n


occurs A times ofNumber 

n

f
AP

n
lim)(




• If we let n get infinitely large, 

13



The Probability of an Event

 P(A) must be between 0 and 1. 

 If event A can never occur, P(A) = 0. If event A always 
occurs when the experiment is performed, P(A) =1. 
(axiom-1)

 The sum of the probabilities for all simple events in S equals 
1. (axiom-2)

• The probability of an event A is found by adding the 
probabilities of all the simple events contained in A. (axiom-3) 
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– Suppose that 10% of a city population has red hair. Then for 
a person selected at random

Finding Probabilities

 Probabilities can be found using

 Estimates from empirical studies

 Common sense estimates based on equally likely 
events.

P(Head) = 1/2

P(Red hair) = .10

• Examples: 

–Toss a fair coin.
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Example 1

Toss a fair coin twice. What is the probability of observing at 
least one head?

H

1st Coin     2nd Coin     Ei P(Ei)

H

T

T

H

T

HH

HT

TH

TT

1/4

1/4

1/4

1/4

P(at least 1 head) 

= P(E1) + P(E2) + P(E3)

= 1/4 + 1/4 + 1/4 = 3/4
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Example 2

A bowl contains three balls, one red, one blue and one green. A 
child selects two balls at random. What is the probability that 
at least one is red?

1st ball    2nd ball       Ei P(Ei)

RB

RG

BR

BG

1/6

1/6

1/6

1/6

1/6

1/6

P(at least 1 red) 

= P(RB) + P(BR)+ P(RG) + P(GR)

= 4/6 = 2/3

B

B

B

B

B

B

B

B

B
GB

GR
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Example 3

The sample space of throwing a pair of dice is
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Example 3 (contd..)



Index

 Permutations and Combinations

 Event relations

 Conditional probability

 Total probability

 Independent events

 Bay’s theorem
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Counting Rules

 Sample space of throwing 3 dice has 216 entries, 

 Sample space of throwing 4 dice has 1296 entries, …

 At some point, we have to stop listing and start thinking …

 We need some counting rules
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The mn Rule

 If an experiment is performed in two stages, with m ways 
to accomplish the first stage and n ways to accomplish the 
second stage, then there are mn ways to accomplish the 
experiment.

 This rule is easily extended to k stages, with the number of 
ways equal to 

n1 n2 n3 … nk

Example: Toss two coins. The total number of simple 
events is:

2  2 = 4
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Examples

Example: Toss three coins. The total number of simple 
events is: 2  2  2 = 8

Example: Two balls are drawn from a dish containing two red 
and two blue balls. The total number of simple events is:

6  6 = 36

Example: Toss two dice. The total number of simple 
events is:

4  3 = 12

Example: Toss three dice. The total number of simple events 
is:

6  6  6 = 216
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Permutations

 The number of ways you can arrange  n distinct objects, 
taking them r at a time is

Example: How many 3-digit lock combinations can we make 
from the numbers 1, 2, 3, and 4?

.1!0 and )1)(2)...(2)(1(! where

)!(

!






nnnn

rn

n
Pn

r

24)2)(3(4
!1

!44

3 PThe order of the choice is 
important!
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Example

Example: A lock consists of five parts and can be assembled in any
order. A quality control engineer wants to test each order for
efficiency of assembly. How many orders are there?

120)1)(2)(3)(4(5
!0

!55

5 P

The order of the choice is important!
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Combinations

 The number of distinct combinations of n distinct objects 
that can be formed, taking them r at a time is

Example: Three members of a 5-person committee must be 
chosen to form a subcommittee. How many different 
subcommittees could be formed?

)!(!

!

rnr

n
C n

r




10
1)2(

)4(5

1)2)(1)(2(3

1)2)(3)(4(5

)!35(!3

!55

3 


CThe order of 
the choice is 

not 
important!
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Example-1

 A box contains six balls, four red and two green. A child
selects two balls at random. What is the probability that
exactly one is red?

The order of 
the choice is 
not important!

balls. 2 choose  toways

15
)1(2

)5(6

!4!2

!66

2 C

ball.green  1

 choose  toways

2
!1!1

!22

1 C

ball red 1

 choose  toways

4
!3!1

!44

1 C 4  2 =8 ways to choose 1 
red and 1 green ball. P(exactly one red) 

= 8/15
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Example-2

A deck of cards consists of 52 cards, 13 "kinds" each of four suits
(spades, hearts, diamonds, and clubs). The 13 kinds are Ace (A),
2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (J), Queen (Q), King (K). In many
poker games, each player is dealt five cards from a well shuffled
deck.

 hands possible

 960,598,2
1)2)(3)(4(5

48)49)(50)(51(52

)!552(!5

!52
  are There 52

5 


C



Example-2 (Contd..)

 Four of a kind: 4 of the 5 cards are the same “kind”. What is 
the probability of getting four of a kind in a five card hand?

and

• There are 13 possible choices for the kind of which to have 
four, and 52-4=48 choices for the fifth card. 

• Once the kind has been specified, the four are completely 
determined: you need all four cards of that kind. 

• Thus there are 13×48=624 ways to get four of a kind.

• The probability=624/2598960=.000240096
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Example-3

 One pair:  two of the cards are of one kind,  the other three are 
of three different kinds. 

 What is the probability of getting one pair in a five card hand? 

 kind that of cardsfour   theof

  twoof choices possible 6 are there

 choice, given the pair; a have  which toof

 kind for the choices possible 13 are There

4

2 C



Example-3 (Contd..)

 There are 12 kinds remaining from which to select the other 
three cards in the hand. 

 We must insist that the kinds be different from each other 
and from the kind of which we have a pair, or we could end 
up with a second pair, three or four of a kind, or a full house.
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Example-3 (Contd..)

422569.

989601098240/25 y probabilit The

  1,098,240.  64220613

  is hands pair" one" ofnumber   theTherefore

   three.all of suits for the choices 64  4 of

  totala cards,  three thoseofeach  ofsuit  for the

 choices 4 are There cards.  threeremaining the

 of kinds pick the  to ways220 are There

3

12

3









C
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S

Event Relations

 The beauty of using events, rather than simple events, is that we 
can combine events to make other events using logical 
operations: and, or and not.

 The union of  two events, A and B, is the event that either A or B 
or both occur when the experiment is performed.  We write 

A B

A BBA
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S

A B

Event Relations (Contd..)

 The intersection of two events, A and B, is the event that both
A and B occur when the experiment is performed. We write A
B.

BA

• If two events A and B are mutually exclusive, then P(A B) = 
0.
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S

Event Relations (Contd..)

 The complement of an event A consists of all outcomes of the 
experiment that do not result in event A.  We write AC.

A

AC
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Example

 Select a student from the classroom and record his/her hair color 
and gender.
 A: student has brown hair
 B: student is female
 C: student is male

What is the relationship between events B and C?

•AC: 

•BC: 

•BC:

Mutually exclusive; B = CC

Student does not have brown hair

Student is both male and female = 

Student is either male and female = all students = S
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Calculating Probabilities for 
Unions and Complements

 There are special rules that will allow you to calculate 
probabilities for composite events.

 The Additive Rule for Unions:

 For any two events, A and B, the probability of their union,  P(A 
B), is

)()()()( BAPBPAPBAP 
A B
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Example: Additive Rule

Example: Suppose that there were 120 students in the classroom, 
and that they could be classified as follows:

Brown Not Brown

Male 20 40

Female 30 30

A: brown hair
P(A) = 50/120

B: female
P(B) = 60/120

P(AB) = P(A) + P(B) – P(AB)
= 50/120 + 60/120 - 30/120 
= 80/120 = 2/3 Check: P(AB)

= (20 + 30 + 30)/120
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Example: Two Dice

A: red die show 1

B: green die show 1

P(AB) = P(A) + P(B) – P(AB)
= 6/36 + 6/36 – 1/36
= 11/36



A Special Case

• When two events A and B are mutually exclusive,   
P(AB) = 0 
and P(AB) = P(A) + P(B).

Brown Not Brown

Male 20 40

Female 30 30

A: male with brown hair
P(A) = 20/120

B: female with brown hair
P(B) = 30/120

P(AB) = P(A) + P(B)
= 20/120 + 30/120
= 50/120

A and B are mutually 
exclusive, so that
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Example: Two Dice

A: dice add to 3

B: dice add to 6

A and B are mutually 
exclusive, so that

P(AB) = P(A) + P(B)
= 2/36 + 5/36
= 7/36



Calculating Probabilities for Complements

 We know that for any event A:

 P(A AC) = 0

 Since either A or AC must occur, 

P(A AC) =1

 so that P(A AC) = P(A)+ P(AC) = 1

P(AC) = 1 – P(A)
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Example

Brown Not Brown

Male 20 40

Female 30 30

A: male 
P(A) = 60/120

B: female
P(B) = ?

P(B) = 1- P(A)
= 1- 60/120 = 60/120

A and B are 
complementary, so that

• Select a student at random from the classroom. Define:

43



Calculating Probabilities for Intersections

 In the previous example, we found P(A  B) directly from the 
table. Sometimes this is impractical or impossible. 

 The rule for calculating P(A  B) depends on the idea of 
independent and dependent events.

Two events, A and B, are said to be independent if the
occurrence or nonoccurrence of one of the events does not
change the probability of the occurrence of the other event.
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Conditional Probabilities

 The probability that A occurs, given that event B has occurred 
is called the conditional probability of A given B and is 
defined as 

0)( if 
)(

)(
)|( 


 BP

BP

BAP
BAP

“given”
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Example-1

 Toss a fair coin twice. Define
 A: head on second toss

 B: head on first toss

HT

TH

TT

1/4

1/4

1/4

1/4

P(A|B) = ½

P(A|not B) = ½ 
HH

P(A) does not 
change, whether 
B happens or 
not…

A and B are 
independent!
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Example-2

 A bowl contains five balls, two red and three blue. 
Randomly select two balls, and define
 A: second ball is red.

 B: first ball is blue.

B

B

B

B

B

P(A|B) =P(2nd red|1st blue)= 2/4 = 1/2

P(A|not B) = P(2nd red|1st red) = 1/4

P(A) does change, 
depending on 
whether B happens 
or not…

A and B are 
dependent!
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Example-3: Two Dice

Toss a pair of fair dice. 
Define

 A: red die show 1

 B: green die show 1

P(A|B) = P(A and B)/P(B)

=1/36/1/6=1/6=P(A)

P(A) does not 
change, whether 
B happens or 
not…

A and B are 
independent!



Example-3: Two Dice (Contd..)

 Toss a pair of fair dice. Define

 A: add to 3

 B: add to 6

P(A|B) = P(A and B)/P(B)

=0/36/5/6=0

P(A) does change 
when B happens 

A and B are dependent! 
In fact, when B happens, 
A can’t



Independence

 We can redefine independence in terms of conditional 
probabilities:

Two events A and B are independent if and only if

P(A|B) = P(A) or P(B|A) = P(B)

Otherwise, they are dependent.

• Once you’ve decided whether or not two events are 
independent, you can use the following rule to calculate their 
intersection.
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The Multiplicative Rule for Intersections

 For any two events, A and B, the probability that both A and B 
occur is

P(A B) = P(A) P(B given that A occurred)     
= P(A)P(B|A)

• If the events A and B are independent, then the probability that 
both A and B occur is

P(A B) = P(A) P(B) 
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Example-1

• In a certain population, 10% of the people can be classified as
being high risk for a heart attack. Three people are randomly
selected from this population. What is the probability that exactly
one of the three are high risk?

Define H: high risk N: not high risk

P(exactly one high risk) = P(HNN) + P(NHN) + P(NNH)

= P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H)

= (.1)(.9)(.9) + (.9)(.1)(.9) + (.9)(.9)(.1)= 3(.1)(.9)2 = .243
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Example-2

• Suppose we have additional information in the previous example.
We know that only 49% of the population are female. Also, of the
female patients, 8% are high risk. A single person is selected at
random. What is the probability that it is a high risk female?

Define H: high risk F: female

From the example, P(F) = .49 and P(H|F) = .08. Use the 
Multiplicative Rule:

P(high risk female) = P(HF)

= P(F)P(H|F) =.49(.08) = .0392
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The Law of Total Probability

 Let S1 , S2 , S3 ,..., Sk be mutually exclusive and exhaustive 
events (that is, one and only one must happen).  Then the 
probability of any event A can be written as

P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) 

= P(S1)P(A|S1) + P(S2)P(A|S2) + … + P(Sk)P(A|Sk)
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The Law of Total Probability (Contd..)

A
A Sk

A  S1

S2….

S1

Sk

P(A) = P(A  S1) + P(A  S2) + … + P(A  Sk) 

= P(S1)P(A|S1) + P(S2)P(A|S2) + … + P(Sk)P(A|Sk)
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Bayes’ Rule

Let S1 , S2 , S3 ,..., Sk be mutually exclusive and exhaustive events 
with prior probabilities P(S1), P(S2),…,P(Sk). If an event A occurs, 
the posterior probability of Si, given that A occurred is

 
)|()(

)|()(

)(

)(
)|(

)|()()(
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)(
)|(
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We know:
P(F) = 
P(M) =  
P(H|F) =  
P(H|M) =  

Example-1

From a previous example, we know that 49% of the population are 
female. Of the female patients, 8% are high risk for heart attack, 
while 12% of the male patients are high risk. A single person is 
selected at random and found to be high risk. What is the 
probability that it is a male?

Define H: high risk     F: female     M: male

61.
)08(.49.)12(.51.

)12(.51.

)|()()|()(

)|()(
)|(









  

 

 
FHPFPMHPMP

MHPMP
HMP

.12

.08

.51

.49
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Example-2

 Suppose a rare disease infects one out of every 1000 people in 
a population. And suppose that there is a good, but not 
perfect, test for this disease: if a person has the disease, the 
test comes back positive 99% of the time. On the other hand, 
the test also produces some false positives: 2% of uninfected 
people are also test positive. And someone just tested positive. 
What are his chances of having this disease? 
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We know:
P(A) = .001        P(Ac) =.999  
P(B|A) =  .99      P(B|Ac) =.02  

Example-2 (contd..)

Define A: has the disease     B: test positive

0472.
02. 999.99.001.

99.001.

 
)|()()|()(

)|()(
)|(










cABPcAPABPAP

ABPAP
BAP

We want to know P(A|B)=?
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Example-3

A survey of job satisfaction of teachers was taken, giving 
the following results

Satisfied Unsatisfied Total

College 74 43 117

High School 224 171 395

Elementary 126 140 266

Total 424 354 778

Job Satisfaction

L

E

V

E

L
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Example-3 (contd..)

If all the cells are divided by the total number surveyed, 
778, the resulting table is a table of empirically derived 
probabilities.

Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction
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Example-3 (contd..)

For convenience, let C stand for the event that the 
teacher teaches college, S stand for the teacher being 
satisfied and so on. Let’s look at some probabilities and 
what they mean.

is the proportion of teachers who are college teachers.P(C) 0.150

is the proportion of teachers who are satisfied with 

their job.
P(S) 0.545

is the proportion of teachers who are college teachers 

and who are satisfied with their job.
P(C S) 0.095

Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction
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is the proportion of teachers who  are college 

teachers given they are satisfied. Restated: 

This is the proportion of satisfied that are 

college teachers.

P(C S)
P(C | S)

P(S)

0.095
0.175

0.545



 



is the proportion of teachers who  are satisfied 

given they are college teachers. Restated: 

This is the proportion of college teachers that 

are satisfied.

P(S C)
P(S | C)

P(C)

P(C S) 0.095

P(C) 0.150

0.632



 







Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job SatisfactionExample-3 (contd..)
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P(C S) 0.095
P(C) 0.150 and P(C | S) 0.175

P(S) 0.545
   



Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.342

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction

P(C|S)  P(C) so C and S are dependent events.

Are C and S independent events?

Example-3 (contd..)
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Satisfied Unsatisfied Total

College 0.095 0.055 0.150

High School 0.288 0.220 0.508

Elementary 0.162 0.180 0.658

Total 0.545 0.455 1.000

L

E

V

E

L

Job Satisfaction

P(C) = 0.150, P(S) = 0.545 and 

P(CS) = 0.095, so

P(CS) = P(C)+P(S) - P(CS) 

= 0.150 + 0.545 - 0.095

= 0.600

P(CS)?

Example-3 (contd..)
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Example-4

 Tom and Dick are going to take a driver's test at the nearest 
DMV office. Tom estimates that his chances to pass the test 
are 70% and Dick estimates his as 80%. Tom and Dick take 
their tests independently.    

 Define D = {Dick passes the driving test}

 Define  T = {Tom passes the driving test}

T and D are independent.

P (T) = 0.7, P (D) = 0.8
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Example-4 (contd..)

What is the probability that at most one of the two friends will 
pass the test?

P(At most one person pass) 

= P(Dc  Tc) + P(Dc  T) + P(D  Tc)

= (1 - 0.8) (1 – 0.7) + (0.7) (1 – 0.8) + (0.8) (1 – 0.7)

= .44 

P(At most one person pass) 

= 1-P(both pass) = 1- 0.8 x 0.7 = .44 
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Example-4 (contd..)

What is the probability that at least one of the two friends will 
pass the test?

P(At least one person pass) 

= P(D  T) 

= 0.8 + 0.7 - 0.8 x 0.7

= .94 

P(At least one person pass) 

= 1-P(neither passes) = 1- (1-0.8) x (1-0.7) = .94 
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Example-4 (contd..)

Suppose we know that only one of the two friends passed the 
test. What is the probability that it was Dick?

P(D | exactly one person passed) 

= P(D  exactly one person passed) / P(exactly one    
person passed)

= P(D  Tc) / (P(D  Tc) + P(Dc  T) )

= 0.8 x (1-0.7)/(0.8 x (1-0.7)+(1-.8) x 0.7)

= .63
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Index

 Random Variables- Definition

 Conditions for a Function to be a Random Variable, Discrete,

 Continuous and Mixed Random Variable, 

 Distribution and Density functions, Properties,

 Binomial, Poisson, Uniform, Gaussian, Exponential, 
Rayleigh, 

 Methods of defining Conditioning Event, 

 Conditional Distribution, Conditional Density and their 
Properties.
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Random Variables

 A quantitative variable x is a random variable if the value that 
it assumes, corresponding to the outcome of an experiment is 
a chance or random event.

 Random variables can be discrete or continuous.

• Examples: 
 x = Exam score for a randomly selected student
 x = number of people in a room at a randomly selected time of 

day
 x = number on the upper face of a randomly tossed die
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Probability Distributions for Discrete Random Variables

 The probability distribution for a discrete random variable x
resembles the relative frequency distributions. It is a graph, 
table or formula that gives the possible values of x and the 
probability p(x) associated with each value.

1)( and 1)(0

havemust  We

 xpxp
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Example-1

 Toss a fair coin three times and define

 x = number of heads.

1/8

1/8

1/8

1/8

1/8

1/8

1/8

1/8

P(x = 0) =  1/8
P(x = 1) =  3/8
P(x = 2) =  3/8
P(x = 3) =  1/8

HHH

HHT

HTH

THH

HTT

THT

TTH

TTT

x

3

2

2

2

1

1

1

0

x p(x)

0 1/8

1 3/8

2 3/8

3 1/8

Probability Histogram 
for x
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Example-2

 Toss two dice and define 

 x = sum of two dice.
x p(x)

2 1/36

3 2/36

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36



Probability Distributions

 Probability distributions can be used to describe the 
population.

 Shape: Symmetric, skewed, mound-shaped…

 Outliers: unusual or unlikely measurements 

 Center and spread: mean and standard deviation. A 
population mean is called m and a population standard 
deviation is called .
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The Mean and Standard Deviation

Let x be a discrete random variable with probability 
distribution p(x). Then the mean, variance and standard 
deviation of x are given as

2

22

 :deviation Standard

)()( :Variance

)( :Mean



m

m







xpx

xxp
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Example

Toss a fair coin 3 times and record x the number 

of heads.

x p(x) xp(x) (x-m)2p(x)

0 1/8 0 (-1.5)2(1/8)

1 3/8 3/8 (-0.5)2(3/8)

2 3/8 6/8 (0.5)2(3/8)

3 1/8 3/8 (1.5)2(1/8)

5.1
8

12
)(  xxpm

)()( 22 xpx m 

688.75.

75.28125.09375.09375.28125.2








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Example

The probability distribution for x the number of 
heads in tossing 3 fair coins.

• Shape?

• Outliers?

• Center?

• Spread?

Symmetric; mound-
shaped

None

m = 1.5

 = .688

m
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Probability Distribution



80

Properties of Distribution
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Properties of Distribution
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Properties of Distribution
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Probability Density
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Probability Density
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Properties of Density
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Gaussian Density
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Gaussian Density
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Gaussian Distribution
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Gaussian Distribution
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Gaussian Distribution
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Binomial Density
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Binomial Density
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Binomial Distribution



94

Poisson Density
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Poisson Density
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Uniform Density
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Uniform Distribution
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Uniform Distribution
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Exponential Density
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Exponential Distribution



101

Exponential Density
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Rayleigh Density
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Rayleigh Distribution
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Rayleigh Density
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Conditional Distribution
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Properties of Conditional Distr..
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Conditional Density
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Properties of Conditional Dens..
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Methods of Conditioning
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Methods of Conditioning
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Methods of Conditioning
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Methods of Conditioning
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Methods of Conditioning



Expected value
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Expected value
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Conditional Expected value
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Conditional Expected value
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Moments about origin
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Moments about origin
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Moments about mean
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Moments about mean
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Variance 
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Variance 
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Skew
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Skew
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Module-II
SINGLE RANDOM VARIABLE TRANSFORMATIONS-

MULTIPLE RANDOM VARIABLES
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Functions give moments
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Characteristic function
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Characteristic function
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Moment generating function
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Moment generating function
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Transformations of a Random Variable
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Monotonic Transformations of a Random Variable
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Monotonic Transformations of a Random Variable
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Monotonic Transformations of a Random Variable
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Monotonic Transformations of a Random Variable
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Monotonic Transformations of a Random Variable
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Monotonic Transformations of a Random Variable
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Non-Monotonic Transformations of a Random Variable
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Non-Monotonic Transformations of a Random Variable
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Non-Monotonic Transformations of a Random Variable
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Transformations of a Discrete Random Variable
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Transformations of a Discrete Random Variable
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Vector random variables

 There are many cases where the outcome is a vector of
numbers. We have already seen one such experiment, in,
where a dart is thrown at random on a dartboard of radius r.
The outcome is a pair (X, Y) of random variables that are such
that X2 + Y2 ≤ r2.

 we measure voltage and current in an electric circuit with
known resistance. Owing to random fluctuations and
measurement error, we can view this as an outcome (V, I)of a
pair of random variables.



Vector random variables

Mapping the sample space to joint sample space



Vector random variables

Comparison of sample space s with sj



Joint distribution function

 Let X and Y be random variables. The pair (X, Y) is then called a 
(two-dimensional) random vector.t

 The joint distribution function (joint cdf) of (X, Y) is defined as 
F(x, y) = P(X ≤ x, Y ≤ y) 

for x, y ∈ R.



Joint distribution function

 Assume the joint sample space SJ has only three possible 

elements (1,1),(2,1),(3,3).The probabilities of the elements are 

to be P(1,1)=0.2,P(2,1)=0.3 ,P(3,3)=0.5.We find FX,Y(X,Y)



Joint distribution function

 In constructing joint distribution function we observe that has

no elements for x<1,y<1.only at the point (1,1)does the

function assume a step value. So long as x≥1,y≥1 this

probability is maintained.For larger x and y the point(2,1)

produces a second stair step of 0.3 which holds the region

x≥2,y≥1.The second step is added to the first.Finally third step

of 0.5 is added to the two for x≥3,y≥3



Joint distribution function



Joint density function



Properties of Joint Distribution

 properties: 

1) 

Note that 

2)



Properties of joint distribution

3)

is right continuous in both the variables4)

5)



Properties of joint distribution

6)

Called marginal cumulative distribution function



Marginal distribution functions

 The distribution of one random variable can be obtained by 
setting the other value to infinity in FX,Y(x,y).The functions 
obtained in this manner FX(x),FY(y) are called marginal 
distribution functions.



Marginal distribution functions

 Example:

FX,Y(x,y)=P(1,1)u(x-1)u(y-1)+P(2,1)u(x-2)u(y-1)+ P(3,3)u(x-3)u(y-3)

P(1,1)=0.2, P(2,1)=0.3, P(3,3)=0.5 if we set y=∞ then

FX(x)= 0.2u(x-1)+0.3u(x-2)+ 0.5u(x-3)

similarly

FY(y)= 0.2u(y-1)+0.3u(y-1)+ 0.5u(y-3)

 =0.5u(y-1)+0.5u(y-3)



Marginal distribution functions



Marginal distribution functions

 Consider two jointly distributed random variables  and with the joint 
CDF

1)Find the marginal  CDFs

2) Find the probability  P(1<x≤2, 1<y≤2)

2

,

(1 )(1 )  0, 0
( , )

0                        otherwise   

x y

X Y

e e x y
F x y

     
 




Marginal distribution functions

a)
2

,

,

1     0
( ) lim ( , )

0             elsewhere

1     y 0
( ) lim ( , )

0             elsewhere

x

X X Y
y

y

Y X Y
x

e x
F x F x y

e
F y F x y









  
  



  
  



, , , ,

4 2 2 1 2 2 4 1

{1 2,   1 2} (2,2) (1,1) (1,2) (2,1)

                                       (1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )

                                        =0.02

X Y X Y X Y X YP X Y F F F F

e e e e e e e e       

       

           
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Joint Probability Density Function

If  and are   two   continuous random variables and their joint 
distribution function is continuous in both   and  then we can 
define joint probability density function by

provided it exists.

Clearly  

2

, ,( , ) ( , ),X Y X Yf x y F x y
x y



 

, ,( , ) ( , )
yx

X Y X YF x y f u v dvdu
 

  



Properties of Joint Probability Density Function

is always a non-negative quantity. That is,

The probability of any  Borel can be obtained by

),(, yxf YX

2

, ( , ) 0   ( , )X Yf x y x y  

, ( , ) 1X Yf x y dxdy
 

 

 

,
( , )

( ) ( , )X Y
x y B

P B f x y dxdy


 

1)

2)

3)



Marginal density functions

 The marginal density functions and  of two joint RVs are given by the 
derivatives of the corresponding marginal distribution functions. 
Thus 

,

,

,

          ( ) ( )

                   ( , )

                   ( ( , ) )

                   ( , )

and similarly    ( ) ( , )

d
X Xdx

d
Xdx

x
d

X Ydx

X Y

Y X Y

f x F x

F x

f u y dy du

f x y dy

f y f x y dx



 











 

  

 

 



Marginal density functions

 The marginal CDF and pdf are same as the CDF and pdf of the 
concerned single random variable. The marginal term simply 
refers that it is derived from the corresponding joint 
distribution or density function of two or more jointly random 
variables.

 With the help of the two-dimensional Dirac Delta function, we 
can define the joint pdf of  two discrete jointly random 
variables. Thus  for discrete jointly random variables  and 

, ,
 ( , ) .

( , ) ( , ) ( ,  )
i j X Y

X Y X Y i j
x y R R

f x y p x y x x y y
 

   



Marginal density functions

 The joint density function

2

,

(1 )(1 )  0, 0
( , )

0                        otherwise   

x y

X Y

e e x y
F x y

     
 


2

, ,

2
2

2

( , ) ( , )

               [(1 )(1 )]   0, 0

               2     0, 0

X Y X Y

x y

x y

f x y F x y
x y

e e x y
x y

e e x y

 

 



 


    
 

  



Marginal density functions

 The joint pdf of  two random variables X and Y are given by

1)Find c

2)Find 

3)Find         and 

4)What is the probability  P(0<x≤1, 0<y≤1)

, ( , )    0 2,  0 2

                0  otherwise

X Yf x y cxy x y    



y)(x,fXY

)(xfX )(yfY



Marginal density functions

 Solution:

2 2

,
0 0

y

,
0 0

2 2

2

0

( , )   

1

4

1
( , )   

4

                
16

( )  0 2     
4

              0 2     
2

Similarly

( )          0 2     
2

X Y

x

X Y

X

Y

f x y dydx c xydydx

c

F x y uvdudv

x y

xy
f x dy y

x
y

y
f y y

 

 


 





  

  

  

   

 





Marginal density functions

, , , ,

(0 1, 0 1)

                                      (1,1) (0, 0) (0,1) (1, 0)

1
                                        = 0 0 0

16

1
                                        =

16

X Y X Y X Y X Y

P X Y

F F F F

   

   
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CONDITIONAL DISTRIBUTIONS 

We discussed the conditional CDF and conditional PDF of a random 
variable conditioned on some events defined in terms of the same 
random variable. We observed that 



Conditional Probability Density Functions

Suppose and are two discrete jointly random variable with the joint 
PMF  fxy(x,y)  . The conditional PMF of y given x=x is denoted by and 
defined as 

)/(/ xyf xy



Conditional Probability Distribution Function 

 Consider two continuous jointly random variables and with the joint
probability distribution function We are interested to find the
conditional distribution function of one of the random variables on
the condition of a particular value of the other random variable.

 We cannot define the conditional distribution function of the 
random variable on the condition of the event by the relation 

)(

),(

)/()/(/

xXP

xXyYP

xXyYPxyF XY










Conditional Probability Distribution Function



CONDITIONAL PROBABILITY DENSITY FUNCTION

 is called the conditional probability density function 
of given Let us define the conditional distribution function . 



Point conditioning

First consider the case when X and Y are both discrete. Then the 
marginal pdf's

fY(y)=P(Y=y)         fX(x)=P(X=x)

The joint pdf is, similarly

fX,Y(x,y)=P(X≤x,Y≤y)

Conditional density function is given by

fX(x/B)=



Point conditioning

The conditional pdf of the conditional distribution Y|X is

Distribution function of one random variable X conditioned by that second 
variable Y has some specific values of y. This is called point conditioning
B={y-Δy<Y≤y+Δy}
Where Δy is a small quantity that we eventually let approach 0.



Point conditioning

Fx(x/ y-Δy<Y≤y+Δy)= 



 

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
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Now the specific value of y of interest is yk

)(
)(

),(
=yk)=fx(x/Y

)(
)(

),(
 =yk)=Fx(x/Y

1

N

1i

i

N

i k

ki

i

k

ki

xx
yP

yxP

xxu
yP

yxP

















Point conditioning

 As Δy->0 denominator becomes zero. For smaller Δy values 
conditional density may exist.

Fx(x/ y-Δy<Y≤y+Δy)=

yyf

ydyf

Y

YX

x



 

2)(

2),( 11, 

)(

),(
 =y)=YFx(x/ 

,

yf

dyf

Y

x

YX 




Interval Conditioning

 Distribution function of one random variable X conditioned by 
that second variable Y has some specific values of y. This is 
called point conditioning

B={ya<Y≤yb}



Example

P(x1,y1)=2/15,P(x2,y1)=3/15.etc.since P(y3)=4/15+5/15=9/15 find 
fx(x/y=y3)



Statistical independence

Let and be two random variables characterized by the joint 
distribution function

and the corresponding joint density function 



Statistical independence



Statistical independence

 Statistical independence

In other words the conditional distribution ceases to be
conditional and simply equals the marginal distribution for
independent random variables. It can also be shown that



EXAMPLE

 For discrete variables independence means the probability in a cell
must be the product of the marginal probabilities of its row and
column. In the first table below this is true: every marginal
probability is 1/6 and every cell contains 1/36, i.e. the product of the
marginal's. Therefore X and Y are independent. In the second table
below most of the cell probabilities are not the product of the
marginal probabilities. For example, none of marginal probabilities
are 0, so none of the cells with 0 probability can be the product of
the marginal's.



EXAMPLE



EXAMPLE

 For continuous variables independence means you can factor
the joint pdf or cdf as the product of a function of x and a
function of y. (i) Suppose X has range [0, 1/2], Y has range [0, 1]
and f(x, y) = 96x 2 y 3 then X and Y are independent. The
marginal densities are fX(x) = 24x 2 and fY (y) = 4y 3 . (ii) If f(x, y)
= 1.5(x 2+y 2 ) over the unit square then X and Y are not
independent because there is no way to factor f(x, y) into a
product fX(x)fY (y). (iii) If F(x, y) = 1/2 (x 3y + xy3 ) over the unit
square then X and Y are not independent .because the cdf does
not factor into a product FX(x)FY (y).



Sum of two random variables

We are often interested in finding out the probability density function 

of a function of two or more RVs

The received signal by a communication receiver is given by 



Sum of two random variables

corresponding to each z.        We can find a variable subset  



Probability density function Sum of two random 
variables

Probability density function of Z = X + Y . 

.'')','()(
'

, 









xz
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Probability density function Sum of two random 
variables



Probability density function Sum of two random 
variables

Thus the pdf for the sum of two random variables is given by a
superposition integral. If X and Y are independent random variables,
then the pdf is given by the convolution integral of the margial pdf’s of
X and Y :

Where * is the convolution between X and Y



Example

 Suppose X and Y are independent random variables and each 
uniformly distributed over (a, b).     And      are as shown in the 
figure below.



Example



Central Limit Theorem 

Consider n independent random variables x1,x2,x3……xn ,The 
mean and variance of each of the random variables are assumed to be 
known. Suppose E[x]=µx var(x)=ςx

2 and . Form a random variable

YN=X1+X2+…….XN

The mean and variance of YN are given by

E[yn]= µx 1 + µx 2 + µx 3………. + µx n



Central Limit Theorem 

Thus we can determine the mean and the variance of YN using central limit 
theorem 



Central Limit Theorem 

The CLT states that under very general conditions          

converges in distribution to                as 

1. The random variables are independent and identically 
distributed.

2.    The random variables are independent with same mean and 
variance, but not identically distributed. 

3.    The random variables are independent with different means and 
same variance and not identically distributed. 

4.    The random variables are independent with different means and 
each variance being neither too small nor too large. 

n



Proof of Central Limit Theorem

Consider the characteristic function of Yn is given by

By expanding   nyj
e





Proof of Central Limit Theorem

Where R(ω,n) average terms involving ω3 and higher powers of ω



Proof of Central Limit Theorem

which is the characteristic function of a Gaussian random variable 
with 0 mean and variance  2

x



Module-III
OPERATIONS ON MULTIPLE RANDOM VARIABLES –

EXPECTATIONS 
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Expected Values of Random Variables 

 
X,Y

i k X,Y i k

i k

 Cong(x,y)f (x,y)dxdy
g = E g(X,Y)  = 

g(x ,y )P (x ,

tin

y Disc

uou

r

s

t) e e

 

 







 


If g(x,y) is a function of a continuous random variables X and Y 
then then the expected value of is given by 



Example

The joint pdf of two random variables is given by

xyyxf XY
4

1
),(  20  x 20  y

=0       otherwise

Find the joint expectation of g(X,Y)=x2y 

Sol: E(g(x,y)=  E (x2y)



Example
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Example

Consider the discrete random variables  x and y. The joint probability mass function 
of the random variables are tabulated in Table . Find the joint expectation of  g(x,y)=xy.



Example

37.0

01.02135.011

),(),(][






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Properties

 Expectation is a linear operator. We can generally write 

E[a1g1(x,y)+a2g2(x,y)=a1E(g1(x,y)+a2E(g2(x,y))

E[xy+5logexy]=E[xy]+5E[logexy]



Properties

If  x and y are independent random variables and g(x,y)=g1(x,y)×g2(x,y) then 
E[g(x,y)]=E[g1(x,y)]×E[g2(x,y]



Joint moments about the origin

For two continuous random variables X and Y, the joint moment 
of order m+n is defined as 
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Joint moments about the origin

For two discrete random variables X and Y, the joint moment of 
order m+n is defined as 

And the joint central moment of order  m+n is defined as
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Covariance of two random variables 

The covariance of two random variables X and Y is defined 
as 

Cov(X, Y) is also denoted as  ςXY.

Cov(X,Y)=E(X-μx)E(Y- μy)
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Covariance

By expanding and simplifying the right side of (10-10), we 
also get

It is easy to see that

To see (10-12), let                       so that 
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Covariance of two random variables 

The ratio                            is called the correlation 
coefficient.

If ρX,Y>0      then are called positively correlated. 

If ρX,Y <0    then are called negatively correlated 

If ρX,Y  =0     then are uncorrelated.

We will also show that 
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Uncorrelated random variables 

Two random variables are called uncorrelated if

Cov(X,Y)=0

Which also means E(XY)=μxμy

If are independent random variables, then

Thus two independent random variables are always uncorrelated. 
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Uncorrelated random variables
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joint characteristic function

The joint characteristic function of two random variables X and Y is defined by 

If and are jointly continuous random variables, then
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Joint moments about the origin

For two discrete random variables X and Y, the joint moment of 
order m+n is defined as 

And the joint central moment of order  m+n is defined as
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Covariance of two random variables 

The covariance of two random variables X and Y is defined 
as 

Cov(X, Y) is also denoted as  ςXY.

Cov(X,Y)=E(X-μx)E(Y- μy)
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Transformations of multiple random variables

The joint density function of new random variable  Yi=T(X1,X2,……XN) i=1,2,3….n

The random variable Xj can be obtained from inverse transformation
X j=Tj

-1(Y1,Y2,…..YN)
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Transformations of multiple random variables

 Assuming that the partial derivatives                  exist at every 

point (y1, y2,…,yk=n). Under these assumptions, we have the 

following determinant J 
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Transformations of multiple random variables

called as the Jacobian of the transformation specified by (**). 

Then, the joint pdf of Y1, Y2,…,Yk can be obtained by using 

the change of variable technique of multiple variables.
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Transformations of multiple random variables

 As a result, the new p.d.f. is defined as follows:
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Linearly transformation  of Gaussian random variables

 Linearly transforming set of Gaussian random variables 
X1,X2,…..XN for which the joint density function exists.The new 
variables Y1,Y2,…..YN are

 Y1=a11X1+a12X2+……+a1NXN

 Y2=a21X1+a22X2+……+a2NXN.

 YN=aN1X1+aN2X2+……+aNNXN



Linearly transformation  of Gaussian random variables

 where the coefficients aij I and j=1,2,..N are real numbers. Now we 
define the following matrices

=

[Y]=[T][X]   

Xi=Ti-1(Y1…..YN)=ai1Y1+ai2y2+….+aiNYN

Xi-=Ti-1(Y1…..YN)=ai1Y1+ai2y2+….+aiNYN



N random variable case

2
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For  the special case N=2 The covariance matrix becomes
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N random variable case
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Example :Suppose X and Y are two jointly-Gaussian 0-mean 
random variables with variances of 1 and 4 respectively and a 
covariance of 1. Find the joint PDF 
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Module-IV
RANDOM PROCESSES – TEMPORAL CHARACTERISTICS
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Random Process 

 The concept of random variable was defined previously as mapping 
from the Sample Space S to the real line as shown below 

Sample Space  

S

2ns 
1ns 

ns

1ns 

1nx 

2nx 

nx

1nx 

 A random process is a process (i.e.,
variation in time or one dimensional
space) whose behavior is not
completely predictable and can be
characterized by statistical laws.

 Examples of random processes
Daily stream flow
Hourly rainfall of storm events
Stock index
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 The concept of random
process can be extended to
include time and the outcome
will be random functions of
time as shown beside
Where s is the outcome of
an experiment

 The functions

are one realizations of many of
the random process X(t)

2 1 1( ), ( ), ( ), ( ),n n n nx t x t x t x t   

 A random process also represents a random variable when time is fixed

1X(t ) is a random variable 

Random Process (Contd..) 

),( stx
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Classification of Random Process

Classification of random process

Continuous random process

Discrete random process

Continuous random sequence

Discrete random sequence

Continuous time t => x(t) = Random process
Discrete time n => x[n] = Random sequence
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Continuous Random Process

 Continuous random process

Continuous time t

x(t) = Continuous 
Random process
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Discrete Random Process

 Discrete random process

Continuous time t

x(t) = Discrete Random 
process
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Continuous Random Sequence

 Continuous random sequence

discrete time n

x(n) = Continuous 
Random sequence
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Discrete Random Sequence

 Discrete random sequence

discrete time n

x(n) = discrete Random 
sequence
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Random Process Concept

0( ) cos( ),X t A t   0, , : r.v.'sA  

 Deterministic random process
Future values of any sample function can be predicted exactly from 
the past values

 Non deterministic random process
 Future values of any sample function can not be predicted exactly 
from the past values
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What is a distribution and density?

 A distribution characterises the probability (mass) associated with each 
possible outcome of a stochastic process

 Distributions of discrete data characterised by probability mass 
functions

 Distributions of continuous data are characterised by probability density 
functions (pdf)

 For RVs that map to the integers or the real numbers, the cumulative 
density function (cdf) is a useful alternative representation

1)( 
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Stationary and Independence

 Stationary Random Process
 all its statistical properties do not change with time

 Non Stationary Random Process
 not stationary

234



Stationary and Independence (Contd..)

 First-order densities of a random process

 A stochastic process is defined to be completely or totally
characterized if the joint densities for the random variables

are known for all times and all
n.

)(),(),( 21 ntXtXtX  nttt ,,, 21 

 For a specific t, X(t) is a random variable with distribution 

 The function  F(x,t) is defined as the first-order distribution of the 
random variable X(t). Its derivative with respect to x

is the first-order density of X(t).
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Stationary and Independence (Contd..)

 If the first-order densities defined for all time t, i.e. f(x,t), are all the
same, then f(x,t) does not depend on t and we call the resulting
density the first-order density of the random process {x(t)} ;
otherwise, we have a family of first-order densities.

 The first-order densities (or distributions) are only a partial
characterization of the random process as they do not contain
information that specifies the joint densities of the random variables
defined at two or more different times.
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 For t = t1 and t = t2, X(t) represents two different random variables
X1 = X(t1) and X2 = X(t2) respectively. Their joint distribution is given by

and

represents the second-order density function of the process X(t).

 Similarly represents the nth order density
function of the process X(t).
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Stationary and Independence (Contd..)
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Mean and variance of a random process 

 The first-order density of a random process, f(x,t), gives the
probability density of the random variables X(t) defined for all time t.
The mean of a random process, mX(t), is thus a function of time
specified by





 ttttX dxtxfxXEtXEtm ),(][)]([)(

 For the case where the mean of X(t) does not depend on t, we have

 The variance of a random process, also a function of time, is defined 
by

constant) (a  )]([)( XX mtXEtm 

  2222 )]([][)]()([)( tmXEtmtXEt XtXX 
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 The random process X(t) can be classified as follows:

Stationary and Independence 

 First-order stationary

 A random process is classified as first-order stationary if its first-order
probability density function remains equal regardless of any shift in time 
to its time origin.

 If we Xt1let represent a given value at time  t1then we define a first-
order stationary as one that satisfies the following equation: 

X t1 X t1f (x ) = f (x + τ) 

 The physical significance of this equation is that our density function, 

X t1f (x ) is completely independent of  t1

and thus any time shift  t  

For first-order stationary the mean is a constant, independent of 
any time shift 

239



Second-order stationary

A random process is classified as second-order stationary if its second-
order probability density function does not vary over any time shift
applied to both values.

 In other words, for values Xt1 and Xt2 then we will have the following
be equal for an arbitrary time shift t

X t1 t2 X t1+τ t2+τf (x ,x ) = f (x ,x ) 

From this equation we see that the absolute time does not affect our
functions, rather it only really depends on the time difference between
the two variables.

Stationary and Independence (Contd..) 
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 For a second-order stationary process, we need to look at the
autocorrelation function ( will be presented later) to see its most
important property.

 Since we have already stated that a second-order stationary
process depends only on the time difference, then all of these types
of processes have the following property:

XX

XX

R (t,t+τ) = E[X(t)X(t+τ)]

                 = R (τ)

Stationary and Independence (Contd..) 
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Wide-Sense Stationary (WSS)

 A process that satisfies the following:

 E X(t)  = X = constant

  XXE X(t)X(t + τ)  = R (τ)

is a Wide-Sense Stationary (WSS)

Second-order stationary Wide-Sense Stationary

The converse is not true in general

The mean is a constant and the autocorrelation function depends only 
on the difference between the time indices
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Similarly 
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So given X(t) is WSS 

Constant 
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Nth order and Strict-Sense Stationary 

 In strict terms, the statistical properties are governed by the joint
probability density function. Hence a process is nth-order Strict-Sense
Stationary (S.S.S) if

 For any c, where the left side represents the joint density function of
the random variables
and the right side corresponds to the joint density function of the random
variables

 A process X(t) is said to be strict-sense stationary if equation (1)
true for all
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A stationary random process for which time averages equal ensemble
averages is called an ergodic process:

Ergodic Process

  xmnx 

     mnxmnx xx

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Ergodic Process (Contd..)
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In practice, we cannot
compute with the limits, but
instead the quantities.

Similar quantities are often
computed as estimates of
the mean, variance, and
autocorrelation.

It is common to assume that a given sequence is a sample sequence of
an ergodic random process, so that averages can be computed from a
single sequence.
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Time Average and Ergodicity

 The time average of a quantity is defined as

Here A is used to denote time average in a manner analogous to E
for the statistical average.

 The time average is taken over all time because, as applied to random
processes, sample functions of processes are presumed to exist for all
time.

1
[ ] lim [ ]

2

T

TT
A dt

T 
  
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 Let  x(t) be a sample of the random process X(t) were the lower case 
letter imply a sample function.

We define the mean value  x = A x(t)

( a lowercase letter is used to imply a sample function)  
and the time autocorrelation function 

XX (τ) as follows:

 
T

TT  

1
x = A x(t)  = lim x(t) dt

2T   

 XX (τ) = A x(t)x(t + τ)
T

TT  

1
= lim x(t)x(t + τ) dt

2T   

 For any one sample function  ( i.e.,  x(t) )  of the random process X(t), 
the last two integrals simply produce  two numbers. 

x A number  for the average
XX (τ)

for a specific value of  

and a number  for

Time Average and Ergodicity (Contd..)
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 Since the sample function x(t) is one out of  other samples functions 
of the random process X(t), 

 The average x
XX (τ)and the autocorrelation are random variables

 By taking the expected value  for x
XX (τ)and ,we obtain

T

TT  

1
E[x] = E[A[x(t)]] = E lim x(t) dt

2T  
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1
lim X dt 

2T  
  T  

= lim  X(1)


= X

T

XX
TT  

1
E[ (τ)] = E [A[x(t)x(t + τ)] ]  = E lim x(t)x(t + τ) dt

2T  

 
  

 
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T T

XX XX
T TT  T  

1 1
= lim E[x(t)x(t + τ)] dt = lim R (τ) dt = R (τ)

2T 2T     

Time Average and Ergodicity (Contd..)
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Time Average and Ergodicity (Contd..)

 Time cross correlation 

 Ergodic  =>

 Jointly Ergodic  =>  Ergodic X(t) and Y(t)

)()(  XYxy R
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Autocorrelation 
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Introduction      

 Autocorrelation occurs in time-series studies when the errors
associated with a given time period carry over into future time periods.

 For example, if we are predicting the growth of stock dividends, an
overestimate in one year is likely to lead to overestimates in
succeeding years.

 Times series data follow a natural ordering over time.

 It is likely that such data exhibit intercorrelation, especially if the time
interval between successive observations is short, such as weeks or
days.
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 We expect stock market prices to move or move down for several days
in succession.

 We experience autocorrelation when

 Tintner defines autocorrelation as ‘lag correlation of a given series
within itself, lagged by a number of times units’ whereas serial
correlation is the ‘lag correlation between two different series’.

Introduction (contd..)      

0)( jiuuE
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 The autocorrelation function of a random process X(t) is the correlation 

 1 2E X X of two random variables 
1 1X = X(t ) 2 2X = X(t )and 

by the process at times  t1  and  t2 

 XX 1 2 1 2R (t ,t ) = E X(t )X(t )

 Assuming a  second-order stationary process

 XXR (t, t + τ) = E X(t)X(t + τ)  XXR (τ) = E X(t)X(t + τ)

Autocorrelation and its Properties
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 Autocorrelation : 

 The value of x() at  equal to 0 is the variance, x
2

   


T

0T
x dt x-τ)x(t.x-x(t)

T

1
Lim)(

 The autocorrelation, or auto covariance, describes the general 
dependency of x(t) with its value at a short time later,  x(t+)

time, t

x(t)



T

 Normalized auto-correlation  : R()= R(0)= 1

Autocorrelation and its Properties (Contd..)

x()/x
2
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 The autocorrelation for a random process eventually decays to
zero at large 

R()

Time lag, 

1

0

 The autocorrelation for a sinusoidal process (deterministic) is a
cosine function which does not decay to zero

Autocorrelation and its Properties (Contd..)
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 The area under the normalized autocorrelation function for the
fluctuating wind velocity measured at a point is a measure of the
average time scale of the eddies being carried passed the
measurement point, say T1

R()

Time lag, 

1

0

 If we assume that the eddies are being swept passed at the mean
velocity,U.T1 is a measure of the average length scale of the eddies.
This is known as the ‘integral length scale’, denoted by lu





0

1 )dR(T 

Autocorrelation and its Properties (Contd..)
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( , ) [ ( ) ( )] ( )XX XXR t t E X t X t R     

2

(1) ( ) (0)

(2) ( ) ( )

(3) (0) [ ( ) ]

XX XX

XX XX

XX

R R

R R

R E X t



 



 



(4) stationary & ergodic ( ) with no periodic componentsX t
2

| |
lim ( )XXR X





 

(5) stationary ( ) has a periodic componentX t

( ) has a periodic component with the same period.XXR 

Autocorrelation and its Properties (Contd..)

 Properties of Autocorrelation function
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 Cross-correlation 

   


T

0T
xy dt y-τ)y(t.x-x(t)

T

1
Lim)(c

 The cross-correlation function describes the general dependency 
of x(t) with another random process y(t+), delayed by a time 
delay, 

time, t

x(t)



T

time, t

y(t)

T

x

y

Cross-correlation  
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Correlation coefficient 

 The correlation coefficient, , is the covariance normalized by the 
standard deviations of x and y

When x and y are identical to each other, the value of  is +1 (full
correlation)

When y(t)=x(t), the value of  is  1

In general,  1<  < +1

yx .σσ

(t)(t).y'x'
ρ 

 Correlation coefficient  
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Application of correlation

 Correlation - application : 

 The fluctuating wind loading of a tower depends on the correlation 
coefficient between wind velocities and hence wind loads, at 
various heights 

For heights, z1, and z2 

: 
)(z).σ(zσ

)(z).u'(zu'
)z,ρ(z

2u1u

21
21 

z1

z2
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Properties of Cross Correlation

( ) [ ( ) ( )]XYR E X t Y t  

 

(1) ( ) ( )

(2) ( ) (0) (0)

1
(3) ( ) (0) (0)

2

XY YX

XY XX YY

XY XX YY

R R

R R R

R R R

 





 



 

2[{ ( ) ( )} ] 0,E Y t X t     

1
(0) (0) [ (0) (0)]

2
XX YY XX YYR R R R 

Properties of cross-correlation function of jointly w.s.s. r.p.’s:
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Example of Cross Correlation

0, : r.v.'s constA B  

2 2 2[ ] [ ] 0, [ ] 0, [ ] [ ]E A E B E AB E A E B     

0 0 0 0( ) cos( ) sin( ), ( ) cos( ) sin( )X t A t B t Y t B t A t      

0 0 0 0[ ( )] [ cos( ) sin( )] [ ]cos( ) [ ]sin( ) 0E X t E A t B t E A t E B t       

2

0 0 0 0 0 0

2

0 0 0 0 0 0

2 2

0 0 0 0 0 0 0

( , ) [ ( ) ( )]

[ cos( )cos( ) cos( )sin( )

sin( )cos( ) sin( )sin( )]

{cos( )cos( ) sin( )sin( )} cos( )

XXR t t E X t X t

E A t t AB t t

AB t t B t t

t t t t

 

       

       

           

  

   

   

    

( ) : w.s.s.X t
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( ) : w.s.s.Y t

0 0 0 0

2

0 0 0 0 0 0

2

0 0 0 0 0 0

( ) [ ( ) ( )]

   {[ cos( ) sin( )][ cos( ( )) sin( ( ))]}

   [ cos( )cos( ) sin( )cos( )

                        cos( )sin( ) sin( )sin( )]

 

XYR E X t Y t

E A t B t B t A t

E AB t t B t t

A t t AB t t

 

     

       

       

 

    

   

   

2

0 0 0 0 0 0

2

0

    [sin( )cos( ) cos( )sin( )]

      = sin( )

t t t t        

  

   



( ) & ( ) : jointly w.s.s.X t Y t

Example of Cross Correlation
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 Covariance 

  


T

0T
xy dt y-y(t).x-x(t)

T

1
Lim(t)y(t).x(0)c

 The covariance is the cross correlation function with the time 
delay, , set to zero

 Note that here x'(t) and y'(t) are used to denote the fluctuating 
parts of x(t) and y(t) (mean parts subtracted)

Covariance  

265



Auto Covariance  

 The auto covariance Cx(t1,t2) of a random process X(t) is defined as the 
covariance of X(t1) and X(t2)

Cx(t1,t2)=E[{X(t1)-mx(t1)}{X(t2)-mx(t2)}]

Cx(t1,t2) = Rx(t1,t2)-mx(t1)mx(t2)

 The variance of X(t) can be obtained from Cx(t1,t2)

VAR[X(t)] = E[(X(t)-mx(t))2] = Cx(t,t)

 The correlation coefficient of X(t) is given by

1)t,(tρ

),(),(

),(
)t,(tρ

21x

2211

21
21x




ttCttC

ttC

XX

X
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Auto Covariance Example#1  

Example:

Let X(t) = Acos2πt, where A is some random variable
The mean of X(t) is given by

The autocorrelation is

And the autocovariance

tAEtAEtmX  2cos][]2cos[)( 

)2cos()2cos(][),(

)]2cos()2cos([),(

21

2

21

2121

ttAEttR

tAtAEttR

X

X









 
)2cos()2cos(][),(

)2cos()2cos(][][),(

)()(),(),(

2121

21

22

21

212121

ttAVARttC

ttAEAEttC

tmtmttRttC

X

X

XXXX










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Auto Covariance Example#2  

Let X(t) = cos(ωt+θ), where θ is uniformly distributed in the interval (-π, π).
The mean of X(t) is given by

The autocorrelation and autocovariance are then

0)cos(
2

1
)][cos()(  










 ttEtmX

 

))(cos(
2

1
),(

)2)(cos())(cos(
2

1

2

1
),(

)]cos()[cos(),(),(

2121

212121

212121

ttttC

dttttttC

ttEttRttC

X

X

XX




















Example:
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Cross Covariance  

 The cross covariance Cx,y(t1,t2) of a random process X(t) and Y(t) is 
defined as

Cx,y(t1,t2)=E[{X(t1)-mx(t1)}{Y(t2)-my(t2)}]

Cx(t1,t2) = Rx,y(t1,t2)-mx(t1)my(t2)

 The process X(t) and Y(t) are said to be uncorrelated if

Cx,y(t1,t2) = 0 for all t1, t2
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Random sequence

Random Sequence (=Discrete-time R.P)

( ) [ ]sX nT X n

Mean ( [ ])E X n

( , ) ( [ ] [ ])XXR n n k E X n X n k  

( , ) {( [ ] [ ])( [ ] [ ])}

                    ( , ) [ ] [ ]

XX

XX

C n n k E X n X n X n k X n k

R n n k X n X n k

     

   

( , ) ( [ ] [ ])XYR n n k E X n Y n k  

( , ) {( [ ] [ ])( [ ] [ ])}

                    ( , ) [ ] [ ]

XY

XY

C n n k E X n X n Y n k Y n k

R n n k X n Y n k

     

   
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Gaussian Random Process

 Let X(t) be a random process and let X(t1), X(t2), ….X(tn) be the
random variables obtained from X(t) at t=t1,t2……..tn sec respectively

 Let all these random variables be expressed in the form of a matrix

 Then, X(t) is referred to as normal or Gaussian process if all the
elements of X are jointly Gaussian





















)(

)(

)(

2

1

ntX

tX

tX

X

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Gaussian Random Process

( ),X t t  - continuous r.p.

1

1 1

1 1
( , , ; , , ) exp{ [ ] [ ]}

2(2 )

t

X N N X
N

X

f x x t t x X C x X
C

    

[ ( )]i iX E X t ( , )ik XX i kC C t t

stationary    [ ( )]  (const)  &  ( , ) ( )XX i k XX k iE X t X R t t R t t   

( , ) ( )XX i k XX k iC t t C t t 

w.s.s.  Gaussian    strictly stationary
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w.s.s. gaussian r.p.  ( )X t

4X 
3

( ) 25XXR e





 0

1
, 1,2,3.

2
i

i
t t i


  

3
2 2( , ) ( , ) 25 16

k i

ik XX i k XX i kC C t t R t t X e




    

3

32

11 12 13 3 3

2 2
21 22 23

3
31 32 33 3 2

25 16 25 16 25 16

25 16 25 16 25 16

25 16 25 16 25 16

X

e e
C C C

C C C C e e

C C C
e e




 




 
   

   
       
   
      

 
 

Gaussian Random Process
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Properties of Gaussian Process

 If a gaussian process X(t) is applied to a stable linear filter, then the
random process Y(t) developed at the output of the filter is also
gaussian.

 Considering the set of random variables or samples X(t1),
X(t2),…..X(tn) obtained by observation of a random process X(t) at
instants t1,t2,…….tn, if the process X(t) is gaussian, then this set of
random variables are jointly gaussian for any n, with their n-fold joint
p.d.f. being completely determined by the set of means.

mx(ti) = E[X(ti)] for i=1,2,….n

and the set of auto covariance function

Cxx(t1,t2) = E[{X(t1)-E[X(t1)]}{X(t2)-E[X(t2)]}]

 If a gaussian process is wide sense stationary, then the process is also
stationary in the strict sense

 If the set of random variables X(t1),X(t2)…X(tn) are uncorrelated then
they are statistically independent
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Poisson Random Process

 we introduced Poisson arrivals as the limiting behavior
of Binomial random variables

where
,2 ,1 ,0      ,

!" duration of interval 

an inoccur  arrivals "












 k
k

e
k

P
k



 mm
T

Tnp
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 It follows that

since in that case

 From the above equations, Poisson arrivals over an interval form
a Poisson random variable whose parameter depends on the duration
of that interval.

 The Bernoulli nature of the underlying basic random arrivals, events
over non overlapping intervals are independent. We shall use these two
key observations to define a Poisson process formally.

.22
2

1 mm 



T

Tnp

2
"  arrivals occur in an (2 )

,       0,  1,  2, ,
 interval of duration 2 " !

kk
P e k

k

  
  

 


Poisson Random Process
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and
(ii) If the intervals (t1, t2) and (t3, t4) are non overlapping, then the random 
variables n(t1, t2) and n(t3, t4) are independent. 
Since n(0, t) ~             we have

and

1221    ,,2 ,1 ,0     ,
!

)(
}) ,({ tttk

k

t
ekttnP

k
t   


),( tP 

ttnEtXE  )] ,0([)]([

.)] ,0([)]([ 2222 tttnEtXE  

 Definition: X(t) = n(0, t) represents a Poisson process if
(i) the number of arrivals n(t1, t2) in an interval (t1, t2) of length t = t2 – t1

is a Poisson random variable with parameter
Thus

.t

Poisson Random Process
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But

and hence the left side of above equation can be rewritten as 

Similarly 

Thus

)()(),0() ,0() ,( 121221 tXtXtntnttn 

)].([) ,()}]()(){([ 1

2

21121 tXEttRtXtXtXE
XX



.       , 

)]([) () ,(

1221

2

1

1

2

121

2

21

ttttt

tXEtttttR
XX









.       , ) ,( 1221

2

221 tttttttR
XX

 

). , min(  ) ,( 2121

2

21 ttttttR
XX

 

 To determine the autocorrelation function                     let t2 > t1 , 
then from (ii) above n(0, t1) and n(t1, t2) are independent Poisson 
random variables with parameters       and                  respectively. 
Thus 

), ,( 21 ttR
XX

1t )( 12 tt 

).()] ,([)] ,0([)] ,() ,0([ 121

2

211211 tttttnEtnEttntnE  

Poisson Random Process
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 Notice that the Poisson 
process X(t) does not 
represent a wide 
sense stationary process.

 Define a binary level process

that represents a telegraph signal Notice that the transition
instants {ti} are random Although X(t) does not represent a
wide sense stationary process,

)()1()( tXtY 

Poisson Random Process
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its derivative           does represent a wide sense stationary process.

From there

and 

and 

)(tX 

)(tX )(tX 
dt

d )(

(Derivative as a LTI system)

2

1 1 21 2
1 2 2

2 1 1 2
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Poisson Random Process
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Define the processes 

we claim that both Y(t) and Z(t) are independent Poisson processes
with parameters          and         respectively.

Proof:

But given X(t) = n, we have   so that

and

pt qt



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More generally,

( ) ( )!
( )! ! ! ( )!

(1 )

{ ( ) }  ( )
!

( )
                   ( )   ,      0, 1, 2, 

! !

                   ~     ( ).

n n k

q t

k t
t q tt k n k kn

n k k n n k
n k n k

e
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k pt

p e
P Y t k e p q t
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k k
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


 

 

 
 

 
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  

  
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
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            { ( ) , ( ) }
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

     
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     
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 
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            { ( ) } { ( ) },

t m
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
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

which completes the proof. 

Poisson Random Process
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Poisson Random Process

( ),X t t  -- integer-valued discrete r.p.

(0) 0X  ( ) ( )b a b at t X t X t  

( )[ ( )]
[ ( ) ( ) ] , 0,1,2,

!
a b

k
t ta b

a b
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( ) Poisson r.p.X t 
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Tutorial#1

 Problem-1:
A discrete random process is defined as d(n)=x(n)-x(n-1), where x(n) is a 
stationary process with zero mean. If var[d(n)]=1/10 var[x(n)], find 
Rxx(1)/var[x(n)].

 Solution:

 var[d(n)]= 2*var[x(n)]-2*Rxx(-1) 
 But Rxx(-1)=Rxx(1)
 Since var[d(n)]=1/10 var[x(n)]
 Then Rxx(1)/var[x(n)]=1.9/2=0.95

 

0)]1()([)]([

)]([)]([)](var[
22





nxnxEndE

ndEndEnd
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Tutorial#1

 Problem-2:
For two random variables X and Y 

find
a) Correlation
b) Covariance
c) Correlation coefficient of X and Y

 Solution:
 Correlation: 

 Covariance: Cxy=Rxy-E[X]E[Y]=0.9-(0.6)(1.1)=0.24

 Correlation coefficient of X and Y:  

)3()1(5.0)1()1(2.0)2()1(4.0)2()(1.0)()(1.0)()1(5.0),(  yxyxyxyxyxyxyxfXY 

9.0),(   








dxdyyxxyfR XYXY

092.0
)49.5)(24.1(

24.0
ρ

22
XY 

YX

XYC


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Tutorial#1

 Problem-3:
Mean of X=6 and Rxx(t,t+τ)=36+25         For a random process X(t). 
Indicate with of the following statements are true based on what is known 
with certainty X(t) 
a) is first order stationary
b) has total average power of 61W
c) is ergodic
d) is wide sense stationary

 Solution:
 a) A random process X(t) is said to be first order stationary if

fx(x1,t) = fx(xi,t+Δ) (i.e., no change in time shift)
here mean is constant, hence X(t) is first order stationary (true)

 b) The average power of random process with autocorrelation function 
Rxx(τ) is Pavg=Rxx(τ)at τ=0, hence Pavg=61W (true)


e
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Tutorial#1

 c) if E[X(t)]= mean(X(t)) is not equal to zero, with no periodic 
components then X(t) is ergodic.  

 d) a random variable X(t) is said to be wide sense stationary if it 
satisfies two conditions

i) mean is constant
ii) autocorrelation function is a function of τ
here both the conditions are true, hence X(t) is wide sense stationary 
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Tutorial#2

 Problem-1:
Given the autocorrelation function for a stationary ergodic process with 
no periodic components is Rxx(τ)=               . Find the mean and variance of 
X(t). 

 Solution:
 if X(t) is ergodic with no periodic components then

 where       is the 1st mean or expectation of X(t)
 autocorrelation at origin is the mean square value Rxx(0)=      (2nd

moment or     )
 variance 

261

4
25




1

2

5

)(lim
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







X

XRXX

1m
2

X

2m

42529
2

12

2
 mm X
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Tutorial#2

 Problem-2:
Consider a random process X(t)=Acoswt, where w is a constant and A is a 
random variable uniformly distributed over (0,1). Find the auto correlation 
and covariance of X(t).

 Solution:
 f(A)=1 in (0,1)
 Rxx(t1,t2)=E[X(t1).X(t2)]= 1/3[coswt1.coswt2]
 covariance Cxx(t1,t2)=Rxx(t1,t2)-E[X(t1)].E[X(t2)]=1/12 coswt1.coswt2
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Tutorial#2

 Problem-3:
X(t) is a gaussian process with mean 2 and autocorrelation function  of 
Rxx(τ)=5
Find P*X(4)≤1+  

 Solution:
 for a gaussian random variable X

 finally 

2.0
e








 






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





m
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mk
QkXP

1
1)1)4((

1)(

)1()1)4(( QXP 
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Tutorial#3

 Problem-1:
The relationship between the input X(t) and Y(t) of a system is Y(t)=
X(t) is a zero mean stationary gaussian random process with auto 
correlation function Rxx(τ)=                       
Find E[Y(t)]and Ryy(τ)

 Solution:






2

2

2

1

2

21

2

21)(

)]()([)]()([)(

1)0()]([)]([








eR

tXtXEtYtYER

RtXEtYE

YY

YY

XX

)(2 tX

0





fore

294



Tutorial#3

 Problem-2:
Aircraft arrive at an airport according to a poisson process at a rate of 12 
per hour. All aircrafts are handled by one air traffic controller. If the 
controller takes a 2minute coffee break, what is the probability that he 
will miss one or more arriving aircrafts.

 Solution:
 λ=12; t=2
 probability that he miss one or more arriving aircrafts

=1-(probability that does not miss any aircraft)
=1-(k=0)

 According to poisson process, 

 at k=0 P[X(t)=0]=
 probability that he miss one or more arriving aircrafts is 1-

...2,1,0
!

)(
])([ 



wherek
k

et
ktXP

tk 

24e

24e
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Power density spectrum
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Introduction

 Fourier integral

1
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j tx t X e d 
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 Fourier transform

 Inverse Fourier 

transform
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Introduction (Contd..)
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 Energy contained in x(t) in the interval (-T,T)
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Introduction (Contd..)

( ) ( ), take expectation,   let .x t X t T 
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power density spectrum
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 Average power in x(t) in the interval (-T,T)

 Average power in random process x(t) 
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Example-1
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Example-2

power density spectrum
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Example-2 (Contd..)
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Example-2 (Contd..)
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Properties Power density spectrum

Properties of the power density spectrum:
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Properties Power density spectrum

Properties of the power density spectrum
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Properties Power density spectrum

Bandwidth of the power density spectrum
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Example
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Relationship between PSD and autocorrelation
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Relationship between PSD and autocorrelation
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Relationship between PSD and autocorrelation
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Cross-power density spectrum
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Cross-power density spectrum

( ),
( )

0, /
T

x t T t T
x t

o w

  
 


Cross Power contained in ( ), ( ) in the interval ( , )x t y t T T

( ),
( )

0, /
T

y t T t T
y t

o w

  
 


FT( )    ( )T Tx t X  FT( )    ( )T Ty t Y 

Parseval's theorem

Assume     ( )   &  ( ) ,  for all finite .
T T

T T
T T

x t dt y t dt T
 

    

*( ) ( )1 1 1
( ) ( ) ( ) ( ) ( )

2 2 2 2

T
T T

XY T T
T

X Y
P T x t y t dt x t y t dt d

T T T

 




 

  
    

323



Cross-power density spectrum
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cross-power density spectrum

total average Cross Power contained in ( ), ( )X t Y t

*[ ( ) ( )]1 1
lim ( , ) lim

2 2 2

T
T T

XY XY
TT T

E X Y
P R t t dt d

T T

 






  
  

*[ ( ) ( )]
( ) lim

2

T T
XY

T

E X Y
S

T

 





*[ ( ) ( )]1 1
( ) ( , )

2 2 2

T
T T

XY XY
T

E X Y
P T R t t dt d

T T

 






 
  

324



Cross-power density spectrum
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Properties of cross-power density spectrum

Properties of the cross-power density spectrum:
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Properties of cross-power density spectrum
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Properties of cross-power density spectrum
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Example#2

( ), ( )  -- jointly w.s.s.X t Y t
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Relationship between C-PSD and cross-correlation
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Relationship between C-PSD and cross-correlation
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Linear system fundamentals
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Linear system fundamentals

Example-1: ( )
R

H s
sL R




( )
R

H
j L R







LTI            causal     ( ) 0 for 0h t t  

LTI            stable     ( )h t dt



 
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Linear system fundamentals

Ideal lowpass filter
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Not causal    Not physically realizable
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Random signal response of linear systems

( ) ( ) ( )Y t h X t d  



 ( ) -- w.s.s. random inputX t
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Random signal response of linear systems

Example-1:   white noise ( )X t 0( ) ( / 2) ( )XXR N  

2
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Random signal response of linear systems

( , ) [ ( ) ( )] [ ( ) ( ) ( ) ]
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( ) ( ) ( )

XY

XX

XX XY

R t t E X t Y t E X t h X t d

E X t X t h d

R h d

R h R

     
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Random signal response of linear systems

Example-2:   white noise ( )X t 0( ) ( / 2) ( )XXR N  

0 0
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Spectral characteristics of system response

( ) ( ) ( )XY XXR R h    ( ) ( ) ( )XY XXS S H  

*( ) ( ) ( ) ( ) ( )YX XX XXS S H S H      

2* *( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )YY XY XX XXS S H S H H S H         

( ) ( )FTh H 

*( ) ( ) ( )FTh H H     ( )  real  h  

( ) ( ) ( )YX XXR R h    
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Spectral characteristics of system response
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Spectral characteristics of system response
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By Example-1,
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where h(t) is the impulse response of the system 

If E[X(t)] is finite
and system is stable                                                                                                 

If X(t) is stationary,
H(0) :System DC response.                                                         

111  )()()( dττtXτhtY
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 
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
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 
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Y X X
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μ μ h τ dτ μ H
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
 

Random process through a LTI System
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Consider autocorrelation function of Y(t): 

If                   is finite and the system is stable,

If                                                                                      (stationary)

Stationary input, Stationary output

 
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Random process through a LTI System
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Consider the Fourier transform of g(t),

Let H(f ) denote the frequency response, 
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
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( )  (complex conjugate response of the filter)
*

           H f

12 -    

Power Spectral Density (PSD)
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