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Module-I

PROBABILITY, RANDOM VARIABLES AND OPERATIONS
ON RANDOM VARIABLES




® Why study probability
® What is probability
® Basic concepts

e Relative frequency
e Experiment

e Sample space

* Events

e Probability definitions and axioms




Why study Probability?

® Nothing in life is certain. In everything we do, we gauge the
chances of successful outcomes, from business to medicine

@® A probability provides a quantitative description of the
chances or likelihoods associated with various outcomes

@® It provides a bridge between descriptive and inferential
statistics

Probability

- 7-

Statistics



Probabilistic vs Statistical Reasoning

® Suppose | know exactly the proportions of car makes in India.
Then | can find the probability that the first car | see in the
street is a Maruthi. This is probabilistic reasoning as | know the
population and predict the sample

® Now suppose that | do not know the proportions of car makes
in India, but would like to estimate them. | observe a random
sample of cars in the street and then | have an estimate of the
proportions of the population. This is statistical reasoning



What is Probability?

® We use graphs and numerical measures to describe data
sets which were usually called samples.

® We measured “how often” using

‘ Relative frequency = f/n I

e Asn gets larger,

Sample = Population

And “How often”
= Relative frequency

Probability




Basic Concepts

® An experiment is the process by which an observation (or
measurement) is obtained.

® An event is an outcome of an experiment, usually denoted by
a capital letter.

® The basic element to which probability is applied

e When an experiment is performed, a particular event
either happens, or it doesn’t!




Experiments and Events

@ Experiment: Record an age
e A:personis 28 years old
® B: person is older than 55

@ Experiment: Toss a die
* A: observe an even number
* B: observe a number greater than 4




Basic Concepts

the other cannot, and vice versa.

eExperiment: Toss a die

—A: observe an odd number -

—B: observe a number greater than 2
—C: observe a 6 B and C?

—D: observe a 3 - B and D?




Basic Concepts

® An event that cannot be decomposed is called a simple
event.

® Denoted by E with a subscript.

® Each simple event will be assigned a probability, measuring
“how often” it occurs.

® The set of all simple events of an experiment is called the
sample space, S.

® For a die tossing experiment the sample space consists of six
events of discrete and finite, it is called discrete sample space
(shown in next slide)
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Example

@ The die toss:
Simple events: Sample space:

—

S ={E,, E,, E,, E,, E, E.}

N

w

S

92/

@)
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Basic Concepts

@ An event is a collection of one or more simple events.

eThe die toss:

—A: an odd number
—B: a number > 2

A ={E1, E3; Es}
B ={E3, E, E, E6}
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The Probability of an Event

® The probability of an event A measures “how often” A will
occur. We write P(A).

® Suppose that an experiment is performed n times. The
relative frequency for an event A is

Number of timesAoccurs  f

N N

e If we let n get infinitely large,

P(A) = lim—

n—o [




The Probability of an Event

® P(A) must be between 0 and 1.

e |f event A can never occur, P(A) = 0. If event A always
occurs when the experiment is performed, P(A) =1.
(axiom-1)

® The sum of the probabilities for all simple events in S equals
1. (axiom-2)

e The probability of an event A is found by adding the
probabilities of all the simple events contained in A. (axiom-3)
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Finding Probabilities

® Probabilities can be found using
e Estimates from empirical studies

e Common sense estimates based on equally likely
events.

e Examples:

— Suppose that 10% of a city population has red hair. Then for
a person selected at random

15



Example 1

Toss a fair coin twice. What is the probability of observing a
least one head?

1st Coin _2nd Coin E, P(E)

HH
1/4 P(at least 1 head)

HT 1/4 | =P(E,) + P(E,) + P(E,)
1/4

g4 1/4

=1/4+1/4+1/4=3/4

T

!
EfEfafe
LB
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Example 2

A bowl contains three balls, one red, one blue and one green. A
child selects two balls at random. What is the probability that
at least one is red?

1stball 2nd ball

1/6 | = P(RB) + P(BR)+ P(RG) + P(GR)

E,
®
®
. : - 1/6 | =4/6=2/3
®
®

P(E)
RB 1/6

RG 1/6 | p(at least 1 red)

g

BG 1/6
. GB 1/6

GR
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Example 3 =2

The sample space of throwing a pair of dice is




Example 3 (contd..)

Event Simple events Probability

Dice add to 3 (1,2).(2.1) 2/36

Dice add to 6 (1.5).(2.4).(3.3). 5/36
(4.2).(5.1)

Red die show 1 (1,1).(1,2),(1,3), 6/36
(1.4).(1,5).(1.6)

Greendie show 1 |(1.1),(2,1).(3.1), 6/36
(4.1).(5.1).(6.1)




Permutations and Combinations

Event relations
Conditional probability
Total probability
Independent events

©@ ® ® ® ® ©®

Bay’s theorem




Counting Rules

® Sample space of throwing 3 dice has 216 entries,
® Sample space of throwing 4 dice has 1296 entries, ...
® At some point, we have to stop listing and start thinking ...

® We need some counting rules




The mn Rule

@ If an experiment is performed in two stages, with m ways
to accomplish the first stage and n ways to accomplish the
second stage, then there are mn ways to accomplish the
experiment.

@ This rule is easily extended to k stages, with the number of
ways equal to

nl nz n3 see nk

Example: Toss two coins. The total number of simple

events is:
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Examples

Example: Toss three coins. The total number of simple

Example: Toss two dice. The total number of simple

Fen s . 6x6=36

Example: Toss three dice. The total number of simple events
| 6x6x6=216

Example: Two balls are drawn from a dish containing two red
and two blue balls. The total number of simple events is:

. ax3z=12
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Permutations

® The number of ways you can arrange n distinct objects,
taking them ratatimeis

N _ n!
" (n-r)!
where n'=n(n-1)(n-2)...(2)(1) and O!=1.

Example: How many 3-digit lock combinations can we make
from the numbers 1, 2, 3, and 4?

_

Pt = - 43)(2) = 24

H
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Example

Example: A lock consists of five parts and can be assembled in any
order. A quality control engineer wants to test each order for
efficiency of assembly. How many orders are there?

S 51
P =5, = 54 @)1 =120
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Combinations

® The number of distinct combinations of n distinct objects
that can be formed, taking them r at a time is

cr = n!
r'(n—r)!

Example: Three members of a 5-person committee must be
chosen to form a subcommittee. How many different
subcommittees could be formed?

' :c5: 5 _54)@@1_54) _,,
> 31(5-3)! 3221 (21
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Example-1

® A box contains six balls, four red and two green. A child
selects two balls at random. What is the probability that
exactly one is red?

|
._ 6 _6(5) cz=2_>
C, = =15 11
- 2141 2(1) :
way sto choose
way sto choose 2 balls.
1green ball.
4
C 4 _ T _ | [4x2=8ways to choose 1
1 1131 red and 1 green ball. > P(exactly/one red)
. = 8/15
way sto choose
1red ball
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Example-2

A deck of cards consists of 52 cards, 13 "kinds" each of four suits
(spades, hearts, diamonds, and clubs). The 13 kinds are Ace (A),
2,3,4,5,6,7,8,9, 10, Jack (J), Queen (Q), King (K). In many
poker games, each player is dealt five cards from a well shuffled
deck.

52 _ 52(1)(50)(49)48 _, o6 g6
5(52-5)! 5@)@)@1

Thereare C.* =

possible hands




Example-2 (Contd..)

@ Four of a kind: 4 of the 5 cards are the same “kind”. What is
the probability of getting four of a kind in a five card hand?

* There are 13 possible choices for the kind of which to have
four, and 52-4=48 choices for the fifth card.

* Once the kind has been specified, the four are completely
determined: you need all four cards of that kind.

 Thus there are 13x48=624 ways to get four of a kind.
The probability=624/2598960=.000240096
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Example-3

® One pair: two of the cards are of one kind, the other three are
of three different kinds.
® What is the probability of getting one pair in a five card hand?

There are13 possiblechoices for the Kind
of which to have a pair; given the choice,

thereare C. = 6 possiblechoices of two
of the four cards of that kind




Example-3 (Contd..)

® There are 12 kinds remaining from which to select the other
three cards in the hand.

® We must insist that the kinds be different from each other
and from the kind of which we have a pair, or we could end
up with a second pair, three or four of a kind, or a full house.
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Example-3 (Contd..)

There are C;° = 220 waysto pick thekinds of
the remaining three cards. There are 4 choices
for thesuit of each of thosethree cards, a total

of 4° = 64 choices for thesuits of all three.

Therefore the number of "one pair' hands is
13x6x220x 64 =1,098,240.

The probability =1098240/2598960 =

= .422569
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AN EE D

® The beauty of using events, rather than simple events, is that we
can combine events to make other events using logical
operations: and, or and not.

® The union of two events, A and B, is the event that either A or B
or both occur when the experiment is performed. We write

AUB

AU B

33



Event Relations (Contd..)

® The intersection of two events, A and B, is the event that both
A and B occur when the experiment is performed. We write A
N B.

ANB

e |f two events A and B are mutually exclusive, then P(A N B) =
0.

34



Event Relations (Contd..)

® The complement of an event A consists of all outcomes of the
experiment that do not result in event A. We write A€,




Example

® Select a student from the classroom and record his/her hair color
and gender.

e A: student has brown hair
e B:student is female
e C:student is male

What is the relationship between events B and C?
A swemsomnteebouter

L T
BUC L sugemisettermaleandemle-alsudens=s
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Calculating Probabilities for

Unions and Complements

® There are special rules that will allow you to calculate
probabilities for composite events.

@® The Additive Rule for Unions:

® For any two events, A and B, the probability of their union, P(A
U B), is

P(AUB) = P(A)+P(B) - P(AN B)I

@ .
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Example: Additive Rule

Example: Suppose that there were 120 students in the classroom,
and that they could be classified as follows:

A: brown hair Brown | Not Brown
P(A) = 50/120

B: female Male |20 40
P(B) = 60/120

Female | 30 30

P(AUB) = P(A) + P(B) — P(ANB) I
= 50/120 + 60/120 - 30/120
= 80/120 = 2/3 Check: P(AUB)

= (20 + 30 + 30)/120
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Example: Two Dice

A: red die show 1 . * ... °
B: green die show 1 © oo | e o0 eese

P(AUB) = P(A) + P(B) — P(ANB)
=6/36 +6/36 —1/36
=11/36




A Special Case

* When two events A and B are mutually exclusive,
P(ANB)=0
and P(AUB) = P(A) + P(B).

A: male with brown hair Brown | Not Brown
P(A) =20/120

B: female with brown hair Male 20 40
P(B) =30/120 Female | 30 30

P(AUB) = P(A) + P(B)
=50/120
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Example: Two Dice %lAREg

A: dice add to 3 Ol K
B: dice add to 6 e ee e jer | eeee

P(AUB) = P(A) + P(B)
=2/36 +5/36
=7/36




Calculating Probabilities for Complements

® We know that for any event A:
e PIANA%)=0
® Since either A or A must occur,
P(A U AS) =1
® so that P(A U A€) =P(A)+ P(A¢) =1

‘ P(AS) = 1 - P(A) I




Example

e Select a student at random from the classroom. Define:

A: male Brown | Not Brown
P(A) = 60/120 Male |20 40

B: female
P(B) =7 Female |30 30

P(B) = 1- P(A)
| = 1- 60/120 = 60/120
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Calculating Probabilities for Intersections

® In the previous example, we found P(A N B) directly from the
table. Sometimes this is impractical or impossible.

® The rule for calculating P(A N B) depends on the idea of
independent and dependent events.

Two events, A and B, are said to be independent if the
occurrence or nonoccurrence of one of the events does not
change the probability of the occurrence of the other event.
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Conditional Probabilities

® The probability that A occurs, given that event B has occurred
is called the conditional probability of A given B and is
defined as

45



Example-1

@ Toss a fair coin twice. Define
e A: head on second toss
e B: head on first toss

P(A|B) = %

.il 1/4 not B) =%
1/4
=1
TH I 1/4
]

T
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Example-2

® A bowl contains five balls, two red and three blue.
Randomly select two balls, and define

e A:second ball is red.
e B: first ball is blue.

P(A|B) =P(2" red |1t blue)= 2/4 = 1/2

P(A|not B) =P(2"¥ red|1stred) = 1/4




Example-3: Two Dice

Toss a pair of fair dice.
Define

* A: red die show 1
* B: green die show 1

P(A|B) = P(A and B)/P(B)
=1/36/1/6=1/6=P(A)




Example-3: Two Dice (Contd..)

@ Toss a pair of fair dice. Define g
°* Araddto3
°*B:addto 6

P(A|B) = P(A and B)/P(B)
=0/36/5/6=0




Independence

® We can redefine independence in terms of conditional
probabilities:

Two events A and B are independent if and only if
P(A|B) = P(A) or P(B|A) = P(B)

Otherwise, they are dependent.

e Once you've decided whether or not two events are
independent, you can use the following rule to calculate their
intersection.
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The Multiplicative Rule for Intersections

@ For any two events, A and B, the probability that both A and B
occur is

P(A N B) = P(A) P(B given that A occurred)
= P(A)P(B|A) I

e |fthe events A and B are independent, then the probability that
both A and B occur is

P(A N B) =P(A) P(B) I

51



Example-1

* In a certain population, 10% of the people can be classified as
being high risk for a heart attack. Three people are randomly
selected from this population. What is the probability that exactly
one of the three are high risk?

Define H: high risk ~ N: not high risk

P(exactly one high risk) = P(HNN) + P(NHN) + P(NNH)

= P(H)P(N)P(N) + P(N)P(H)P(N) + P(N)P(N)P(H)
= (.1)(.9)(.9) + (.9)(-1)(.9) + (.9)(.9)(.1)= 3(.1)(.9)? = .243
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Example-2

* Suppose we have additional information in the previous example.
We know that only 49% of the population are female. Also, of the
female patients, 8% are high risk. A single person is selected at
random. What is the probability that it is a high risk female?

Define H: high risk  F: female

From the example, P(F) = .49 and P(H|F) = .08. Use the
Multiplicative Rule:

P(high risk female) = P(HNF)

= P(F)P(H |F) =.49(.08) = .0392
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The Law of Total Probability

® LetS,,S,,S;,..., S, be mutually exclusive and exhaustive
events (that is, one and only one must happen). Then the
probability of any event A can be written as

P(A)=P(ANS,)+P(ANS,)+..+P(ANS,)
= P(S,)P(A]|S,;) + P(S,)P(A]S,) + ... + P(S,)P(A]S,)
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The Law of Total Probability (Contd..)

P(A)=P(ANS,)+P(ANS,)+..+P(ANS,)

= P(S,)P(A]S,) + P(S,)P(A]S,) + ... + P(S,)P(A[S,)

55



Bayes’ Rule

LetS,,S,, S;,..., S, be mutually exclusive and exhaustive events
with prior probabilities P(S,), P(S,),...,P(S,). If an event A occurs,
the posterior probability of S, given that A occurred is

P(S;)P(A[S;) fori = 1. 2.k
2.P(5)P(A]S;) -

P(Si ‘ A) —

Proof
P(Alsi): PFSgS.)) >P(ASi):P(Si)p(A|Si)
p(s. [ A)= P(AS) _ P(S)P(AIS)

| P(A) XP(S,)P(A|S)




Example-1

From a previous example, we know that 49% of the population are
female. Of the female patients, 8% are high risk for heart attack,
while 12% of the male patients are high risk. A single person is
selected at random and found to be high risk. What is the

probability that it is a male?

Define H: high risk F: female M: male
P(M)P(H [M)
(M)P(H M) +P(F)P(H |F)
~ 51(.12) ~
~ 51(.12)+.49(09)

P(M [H)= -
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Example-2

@® Suppose a rare disease infects one out of every 1000 people in
a population. And suppose that there is a good, but not
perfect, test for this disease: if a person has the disease, the
test comes back positive 99% of the time. On the other hand,
the test also produces some false positives: 2% of uninfected
people are also test positive. And someone just tested positive.
What are his chances of having this disease?
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Example-2 (contd..)

Define A: has the disease B: test positive

We know:
P(A) =.001 P(A¢) =.999
P(B|A)= .99 P(B|A¢) =.02

We want to know P(A|B)="?

P(A)P(BJA)
P(A|B) = - =
P(A)P(B|A)+P(A”)P(B|A*)
001 x .99 0477
- .001x .99+ 999x .02 °




Example-3

A survey of job satisfaction of teachers was taken, giving
the following results

Job Satisfaction
Satisfied |Unsatisfied |Total

E College 74 43 117
\E/ High School 224 171 395
L |Elementary 126 140 266

Total 424 354 778
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Example-3 (contd..)

If all the cells are divided by the total number surveyed,
778, the resulting table is a table of empirically derived

probabilities.

Job Satisfaction

Satisfied |Unsatisfied |Total
E College 0.095 0.055 0.150
\E/ High School | 0.288 0.220 0.508
L |Elementary 0.162 0.180 0.342
Total 0.545 0.455 1.000
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Job Satisfaction N
Example-3 (COI‘Itd..) Satisfied [Unsatisfied | " aI i

College
High School

Elementary | 0.162 0.180 0.342
Total 0.545 0.455 1.000

rm<mr

For convenience, let C stand for the event that the
teacher teaches college, S stand for the teacher being
satisfied and so on. Let’s look at some probabilities and

what they mean.

P(C) —0.150 IS the proportion of teachers who are college teachers.

P(S) — 0.545 IS the proportion of teachers who are satisfied with
their job.

P(CNS) = 0.095 's the proportion of teachers who are college teachers
( g ) and who are satisfied with their job.
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Job Satisfaction [F5
Example 3 (contd..) Satisfied |Unsatisfied | Total

College

High School | 0. . _

Elementary | 0.162 0.180 0.342
Total 0.545 | 0.455 |1.000

rm<mr

P(C N S) IS the proportion of teachers who are college
P(C | S) — teachers given they are satisfied. Restated:
P(S) This is the proportion of satisfied that are
college teachers.
0.095
=——=0.175
0.545
P(S | C) _ P(S 1 C) Is the proportion of teachers who are satisfied
P(C) given they are college teachers. Restated:

This is the proportion of college teachers that

~P(CNS) 0.095 are satisfied.
P(C) 0.150
=0.632
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Example-3 (contd..)

Job Satisfaction

rm<mr

Satisfied |Unsatisfied |Total
College 0.095 0.055 0.150
High School | 0.288 0.220 0.508
Elementary | 0.162 0.180 0.342
Total 0.545 | 0.455 |1.000

Are C and S independent events?

P(CN'S)_0.095

P(C)=0.150 and P(C|S) =

P(S)  0.545

=0.175

P(C|S) # P(C) so Cand S are dependent events.
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Job Satisfaction

rm<mr

P(C<&S)?

Satisfied |Unsatisfied |Total

College 0.095 0.055 0.150
High School | 0.288 0.220 0.508
Elementary | 0.162 0.180 0.658
Total 0.545 | 0.455 |1.000

P(C) = 0.150, P(S) = 0.545 and

P(Cs2S) = 0.095, so

P(C<%S) = P(C)+P(S) - P(CS)

=0.150 + 0.545 - 0.095

= 0.600




Example-4

® Tom and Dick are going to take a driver's test at the nearest
DMV office. Tom estimates that his chances to pass the test
are 70% and Dick estimates his as 80%. Tom and Dick take
their tests independently.

@ Define D = {Dick passes the driving test}
® Define T = {Tom passes the driving test}
T and D are independent.
P(T)=0.7,P (D) =0.8
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Example-4 (contd..)

= |
m =
% IARE §
7 N

What is the probability that at most one of the two friends will
pass the test?

P(At most one person pass)
=P(D°NT)+P(D°NT)+P(DNT)
=(1-0.8)(1-0.7) +(0.7) (1 —0.8) + (0.8) (1 —0.7)

=.44

P(At most one person pass)

= 1-P(both pass) =1-0.8 x 0.7 = .44
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Example-4 (contd..)

What is the probability that at least one of the two friends will
pass the test?

P(At least one person pass)

=P(DUT)
=0.8+0.7-0.8x0.7
=.94

P(At least one person pass)

= 1-P(neither passes) = 1- (1-0.8) x (1-0.7) = .94
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Example-4 (contd..)

Suppose we know that only one of the two friends passed the
test. What is the probability that it was Dick?

P(D | exactly one person passed)

= P(D M exactly one person passed) / P(exactly one
person passed)

=P(DNT)/(P(DNT)+P(D°NT))
= 0.8 x (1-0.7)/(0.8 x (1-0.7)+(1-.8) x 0.7)

=.63
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Random Variables- Definition

Conditions for a Function to be a Random Variable, Discrete,
Continuous and Mixed Random Variable,
Distribution and Density functions, Properties,

Binomial, Poisson, Uniform, Gaussian, Exponential,
Rayleigh,

Methods of defining Conditioning Event,

Conditional Distribution, Conditional Density and their
Properties.
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Random Variables

® A quantitative variable x is a random variable if the value that

it assumes, corresponding to the outcome of an experiment is
a chance or random event.

® Random variables can be discrete or continuous.

e Examples:
v’ x = Exam score for a randomly selected student

v’ x = number of people in a room at a randomly selected time of
day

v’ x = number on the upper face of a randomly tossed die
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Probability Distributions for Discrete Random Variables ° - )

o

® The probability distribution for a discrete random variable x
resembles the relative frequency distributions. It is a graph,
table or formula that gives the possible values of x and the
probability p(x) associated with each value.

We must have

0< p(x)<land 2 p(x)=1
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Example-1

@ Toss a fair coin three times and define
® x = number of heads.

HHH )_; X P(X)
HHT e 5 P(x=0) = 1/8 0 1/8
1/8 P(x=1)= 3/8 1 38
HTH /8 ? P(x=2)= 3/8 /
s *  |p(x=3)= 1/8 ¢ |58
BECTH 3 |18
HTT 18 1
18 1
THT s 0
TTH
TTT
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Example-2

® Toss two dice and define
® x =sum of two dice.

X

p(X)

probability histogram

1/36
2136
3/36
4/36
5/36
6/36

5/36
4/36
3/36
2136
1/36

015
|

010
|

Density

0.05
|

Ol N|Jojor bR~ lTWIDN

[EEN
o

0.00
[

[EEN
=

[EEN
N




Probability Distributions

@ Probability distributions can be used to describe the
population.

e Shape: Symmetric, skewed, mound-shaped...
e Qutliers: unusual or unlikely measurements

e Center and spread: mean and standard deviation. A

population mean is called p and a population standard
deviation is called o.
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The Mean and Standard Deviation

Let x be a discrete random variable with probability
distribution p(x). Then the mean, variance and standard
deviation of x are given as

Mean: 1 =2 Xp(X)
Variance : o =X (x— u)* p(X)

Standard deviation : o =+ o
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Example

Toss a fair coin 3 times and record x the number
of heads.

p(x) | Xp(X) | (X-w)*p(X) 12
118 |0 (152(1/8) | |4 =2XP(X) = o= 1.5

3/8 3/8 (-0.5)%(3/8)

38 |68 |(05)%308) |2 -
18 |38 |(15)X18) LG = 2(X— ) p(x)I

—

WIN|FP|O|X

(az — 28125+.09375 +.09375+.28125 = .75
o =+/.75 = .688




Example

The probability distribution for x the number of
heads in tossing 3 fair coins.

ns PG

e Shape?
e Qutliers?
e Center?
e Spread?
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Probability Distribution

Probability Distribution Function

The probability P(X < x) is the probability of the event
X =x} e

F,(x) =P{X<x}, —oo<x<o0




Properties of Distribution

The properties of a distribution function:
® F(=o0) =0
® F(e0) =1
e 0<Ex)<1
e F.(x1) < FE,.(xy),if x; < x, (Non-decreasing function)
o P{lx, < X <x,}=E.(x,) — E.(x1)
e E.(x*) =F.(x) (Continuous from the right)




Properties of Distribution

Proof for F,(x,) — F,(x4)

e The events {X < x,} and {x; < X < x,} are mutually
exclusive, i.e. {X <x,} ={X < x }U{x; <X <x,}
o P{X <x,} =P{X <x}+P{x; <X <x,}
o P{x, <X <x,} =P{X <x,} —P{X <x}
= F.(x,) — E.(x;)




Properties of Distribution

If X is a discrete random variable taking values
x;, i =1,2,....,N, then E.(x) must have a staircase

function given by

N
F.(x) = Z P{X = x}ulx — x;)

=1

N
= Z P(x;) u(x — x;)
i=1
where u(.) is the unit-step function defined by:
1, x =0
u(x) =

0O, x<0
If N is infinite, then
P(x;) = P{X = x;}




Probability Density

Probability Density Function
The probability density function of the random variable
X is defined as the derivative of the distribution

function:
dF,(x)

fro(x) =

dx




Probability Density

1.1f the derivative of E,.(x) exists then f,.(x) exists

dFx(x) is not defined at

2.There may be places where

points of abrupt change, then we shall assume that
the number of points where E, (x) is not
differentiable is countable.

3.For discrete random variables having a stair step form

of distribution function.

N
f() = ) P()8(x —x)
=1
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Properties of Density

Properties of Density Functions.
e 0 < [f,.(x) all x

e [ fildddx =1
e FE.(x) = 7 fi(x)dx =1
e P{x, < X << x,} = f;zfr(x)dx




Gaussian Density

Gaussian Density Function

A random variable X is called Gaussian if its density

function has the form

1
fx(x) — E—[x—aszfz-ﬂ'xz
2Oz
Where o, > 0 and —eco < a,. < o° are real constants.
Syix)

Vinoe |

pd




Gaussian Density

fxlx)

Vamod [TTTTTTTCS

|
|
|
|
/ |
|
|
L H

0 dx -0y ax ay +0x x

_1

1.1ts maximum value (2mwo5°) 2 occursatx = a,, .

2.1ts “spread” about the point x = a,,. is related to g,
3.The function decreases to 0.607 times its maximum at
X =a,+o0,andx = a, — 0,.

4.The Gaussian density is the most important of all

densities. It enters into nearly all areas of engineering




Gaussian Distribution

X
Fx(x) — 1 J‘ E_(f—ExJEKEG'xEd {:
202 J—oo
F;I'.-H
1.0F

0.5f——=——=—mm




Gaussian Distribution

e This integral has no known closed-form solution and
must be evaluated by numerical methods.

e We could develop a set of tables of E.(x) for various x
and a, and g, as parameters (infinite number of
tables ).

¢ Only one table of E.(x) for the normalized (specific)

values a,, = 0 and 0,.-, given by

F(x) = ~$/2q¢

1 X
— [ e
V2 J o
which is a function of x only & tabulated for x = 0.

e For negative values of x we have
F(—x) =1—- F(x)
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Gaussian Distribution

§—ay

¢ Making the variable change u = , we get

Ox

1 (I_ﬂxjfﬂ'x X —a
E.(x) =—f /2 a = F (F=)
8 V21

Ox




Binomial Density

~ Binomial Dens_it\.'r Function
N

N
LG =D (L )pFa —p¥ s — 1O
k=0
where (f:j) is the binomial coefficient defined as
(N) N!
kKl Kk'(N — k)!
and O <p<1 N =1,2 ........
© [l '
L7 oases (N =6, p=0.25)
u_. .
U.I?B'ﬂ'l 0.1318
T n.nim 0.0044 0.0002
L 1 4 ; 6 x

1 1




Binomial Density

1.The binomial density is applied to Bernoulli trail
experiment, having only two possible outcomes on
any given trial.

2.1t applies to many games of chance, detection
problems in radar and sonar, and many

experiments




Binomial Distribution

By integration, the binomial distribution function is

found:
N
k=0
Fx(x)
0.9624 0.9954 0.9998 1.0000
1.0} .
0.8306
0.5340
0.5}
i J.1780
1 1 ¥ \
V] ; ; 3 4 s o -

Figure: Binomial distribution function (N =6, p = 0.25)



Poisson Density

Poisson Density Function

o0

bk

fx(x) =e~P F‘S(x — k)
k=0
= Lk

F.(x) =eP Eu(x — k)
k=0

where b > 0 is a real constant.
e These functions appear quite similar to binomial
e If N - ecoand p — 0 forthe binomial case in such a

way that Np = b, a constant, the Poisson case results.

e The Poisson random variable applies to a wide variety

of counting-type applications.



Poisson Density

e |t describes

»the number of defective units in a sample taken
from a production line,

»the number of telephone calls during a period of
time,

»the number of electrons emitted from a small
section of a cathode in a given time interval, etc.

» If the time interval of interest has duration T, and
the events being counted are known to occur at
an average rate X and have a Poisson
distribution, then b =X T
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Uniform Density

Uniform Density Function
1

fx(x)z{b—{lj a=x=5~
O, elsewhere

Jalx)

Wb — a)

0 a b x

for real constants —ee << a < e and b > a.




Uniform Distribution

q e e — — — — —




Uniform Distribution

» The error of quantization of signal samples prior to
encoding in digital communication systems.

» Quantization amounts to “rounding off” the actual
sample to the nearest of discrete quantum level.

» The quantization error introduced in the round-off

process are uniformly distributed.




Exponential Density

Exponential Density Function

for ()

f_r (x)

1jh

_ %e_(x_“)fb X > a
0, x < a

0

d

for real numbers —co < a << ecocand b > 0




Exponential Distribution

0, x < a




Exponential Density

» The exponential density is useful in describing
raindrop sizes when a large number of rainstorm
measurements are made.

~ Itis also known to approximately describe the
fluctuations in signal strength received by radar

from certain types of aircraft.




Rayleigh Density

Rayleigh Density Function
2

£.(x) = E(x — @)e~(x—0)2/b > a
X —
0, x < a
Selx)]
0,607 71,. ___________
|
n a ‘+/_B!'_' x

for the real constants —ece < a < ecand b > 0



Rayleigh Distribution




Rayleigh Density

» The Rayleigh density describes the envelope of

white gaussian noise when passed through a band-
pass filter.

#Itis also is important in analysis of errors in various

measurement systems.




Conditional Distribution

Conditional Distribution Function|
e Let A and B be the two events & P(B) # 0, then

P{A N B}
P(B)

e Let A be defined as the event {X < x} for the
random variable X.

e The resulting probability P{X < x|B} is defined as
the conditional distribution function of X, which is
denote d by

P(A|B) =

P{X < x N B}
P(B)
where {X < x N B} is the joint event {X < x} N B. This

joint event consists of all outcomes s such that
X(s)<xandseB

F.(x|B) = P{X < x|B} =
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Properties of Conditional Distr..

Properties of Conditional Distribution Function
¢ Fi(==2|B) =0
o Fi(°|B) =1
e 0 < E/(|B) <1
o Fy(x1|B) < Fe(x2|B)  if x1 <3
o Plx; <X < x3|B} = F(x3|B) — F(x4|B)
 F,.(x7|B) = F(x|B)




Conditional Density

Conditional Density Function

The conditional density function of the random variable
X is defined as the derivative of the conditional
distribution function, and is given by
dF,(x|B)
x|B) =
fe(x|B) = ==

If F,.(x|B) contains step discontinuities (when X is a
discrete or mixed random variable), we assume that
impulse functions are present in f,.(x|B) to account for
the derivatives at the discontinuities.




Properties of Conditional Dens..

Properties of Conditional Density Function

o f(x|B) =0

o [ fr(x|B)dx =1

o F(x|B) = [7_f(£IB) d§

o Plx; <X <x|B} = [ f(x|B)dx




Methods of Conditioning

Methods of Defining Conditioning Event

If event B is defined in terms of the random variable X
as B = {X < b}, where b is some real number
—oo < h < oo & P{X < b} # 0, then we have

F.(x|B) = P{X < x|B}
= P{X < x|X < b}
CP{X<xnX<b}

P{X < b}




Methods of Conditioning

Case (i):

If b < x, then the event {X < b} is an subset of the
event{X < x},so{X <x}N{X < b} ={X < b}. Then

we have
P{IX <xnNX< b}
F.(x|X <b) = PIX < b
P{X < b}

_P{Xc;:b}_l




Methods of Conditioning

Case (ii):

P{IX <xnX< b}
P{X < b}
CPX<x} F(x)

E(x|X <b)=

x <b

- P{X < b} FE.b)




Methods of Conditioning

By combining the last two expressions, we have

F,.(x

x (%) x << b
Fo(x|X < b) =< F.(b)

1, x = b

From our assumption that the conditioning event has
nonzero probability, O<F,(b) < 1, so the conditional
distribution function is never smaller than the ordinary
distribution function F,.(x|X < b) = F,.(x)




Methods of Conditioning

Similarly the conditional density function is

foulX) _ fo () v < b
frx|X = b) = { F(x) f_bmfx(x)dx
0, x = b

From our assumption O<f,.(x) =< 1, so the conditional

density function is never smaller than the ordinary

density function

f(x|X < b) = fir(x) x < b
The result can be extended to more general event
B = {a<X< b}




Expected value

Expected Value of a Random variable

In general, the expected value of any random variable
X is defined by

E[X] = X = fmxfx(x)dx




Expected value

If X is discrete with N possible values x; having
probabilities P(x;) of occurrence, then

N
fel) = > PGS = x)
Then we have =

N

Elxl = ) xiP(x)

i=1




Conditional Expected value

Conditional Expected Value

If f,.(x|B) is the conditional density where B is any
event defined on the sample space of X, then the
conditional expected value of X, is given by

()

E[X|B] = f «f. (x|B)dx

—_— 0




Conditional Expected value

If the event B ={X < b}, co < b < oo
[ fr(x)
fr(x|X < b) =< f_bmfx(x)dx

. 0 x=b
Then, the conditional expected value is given by

ffmxfx(x)dx
f_bmfx(x)dx

which is the mean value of X when X is constrained
to the set {X < b}.

x <b

Elx|X < b] =




Moments about origin

Moments About the Origin

The expected value of X™, n =0,1,2, ...... ... IS given

by

O

E[X"] = f ¥F () dx

—_— D

gives the moments about the origin of the random
variable X. These are also called standard moments

and are denoted as m,,

_4




Moments about origin

Forn = 0,

mg = E[X°] = J.m x° fre(x)dx = J.mfx(x)dx

is the area of under the function f,. (x).

Forn =1,

m, = E[X] = fmxfx(x)dx = X

Is the expected value of X.

o



Moments about mean

Moments About the Mean

The expected value of (X — X)™, n=10,1,2,....... ... is
given by

E[(X - X)"] = f (x — X)f, (x)dx

gives the moments about the mean of the random

variable X. These are also called central moments and
are denoted as

N




Moments about mean

Forn = 0,

ty = E[(X — X)"] = f (x — X" fo (x)dx

1o = E[(X — X)°] = f £ () dx

is the area of under the function f,.(x).

Forn = 1,
1 = E[(X — X)] = E[X] — X=0

e




Variance

Variance

The second central moment p, is given by

1 = E[(X — X)?] = f (X — B)2f(x)dx

1.1t is popularly known as the variance o2 of the
random variable X.

2.The positive square root g, of variance is called the
standard deviation of X.

3.1t is a measure of the spread in the function f,.(x)
about the mean.
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Variance

The second central moment is given by
Uy = E[(X — X)?]

By expanding we get
U, = E[X?—-2XX + X?]
= E[X?] - 2XE[X]+ X?
= E[X?] = X% =my —m?




Skew

The third central moment is given by
uz = E[(X - X)°]
iz = E[X3? —3X%X +3XX? - X?]
= E[X3] - 3E[X?%]X + 3X°E[X]-X3
= My — 3m2ml +3ml3 —m13

=m3—3mym + 2m° I



* 5 is @ measure of asymmetry of f,.(x) about the

mean.

e [t will be called the skew of the density function.

e If a density is symmetric about x = X, it has zero
skew. For this case, u,, = 0 for all odd values of n.

e The normalized third central moment u3/0,> is
known as the coefficient of skewness.
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SINGLE RANDOM VARIABLE TRANSFORMATIONS-
MULTIPLE RANDOM VARIABLES




Functions give moments

Functions That Give Moments

Two functions can be defined that allow moments to
be calculated for a random variable

¢ The characteristic function
e The moment generating function




Characteristic function

Characteristic Function

The characteristic function of a random variable Xis
defined by

00

O (w) = E[ej‘”x] = f eJOXF (x)dx

—_— 0

where = +v—1. It is a function of the real number
—oo < () < o9,

D, (w) is seen as the Fourier transform (with the sign
of w reversed) of f,.(x)

o




Characteristic function

e f.(x) can be found from the Inverse Fourier transform
(with sign of x reversed) i.e.

£ulx) = % f_:mx ()% dx

e By differentiating ®,.(w) n times with respect to w and

setting w = 0, we can show that the nth moment of X is
given by
d"D,. (w)
— o B TR X

e A major advantage is that ®,.(w) always exist, so the
moments can always be found if @, (w) is known,
provided the derivatives of @, (w)exist.

e |t can be shown that the maximum magnitude of a
characteristic function is unity and occurs at w = 0 i.e,,

1D, ()| =D, (0) =1
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Moment generating function

Moment Generating Function

The moment generating function of a random variable
Xis defined by

My(v) = E[e™] = f_mfx(:’cf)ewdx

Where v is a real number —eo < 1 < oo,




Moment generating function

e Moments are related to M,.(v) by the expression
d"M,(v)

dvm

m, =

v=0

e The main disadvantage of the moment generating
function is that it may not exist for all random
variables.

e Infact, M, (v) exists only if all the moments exist




Transformations of a Random Variable

Transformations of A Random Variable

e Quite often one may wish to transform one random
variable X into a new random variable Y by means
of a transformation

X Jy=—rwxx) |LX
fo GO) £ O

e Typically, the density function f,.(x) or distribution
function F,.(x) of X is known , and the problem is
to determine either the density function f,(y) or

distribution function F,(y) of Y.

e The transformation 7 can be linear, nonlinear,
segmented ,staircase, etc
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Monotonic Transformations of a Random Variable

Monotonic Transformation of a Continuous

Random variable

e A transformation T is called monotonically

increasing if T(x{) < T (x5) forany x; < x,.
y = Tlx)

Yo

/




Monotonic Transformations of a Random Variable

e Consider first the increasing transformation as shown in
figure. we assume that T is continuous and differentiable
at all values of x for which f,.(x) # 0.

e Let Y have a particular value y, corresponding to the
particular value of x5 of X. The two numbers are related

by
-1
Yo = T(x0) or xo = T7" (o)
where T~ ! represents the inverse transformation.
= Tixl

i . s e S

Ya

e




Monotonic Transformations of a Random Variable

e Now the probability of the event {Y < y,} must
equal the probability of the event {X < x,} because

of the one-to-one correspondence between X and
Yie.

Fy(yn) =P = }’U) = P(X = xn) = Fx(xn)
or

Yo xXo=T""(¥o)
£,y = f fo () dx

e Differentiating both sides of the above equation
with respect to yy & using Leibniz’s rule, we get

dr—1
£ (v0) = FolT=1(ve)] o)

—_—

dyo




Monotonic Transformations of a Random Variable

m =
S IARE §
s \3

» 2

e Since this result applies for any y, then we write

AT~ (y)
dy

iy = fT710N]

or, more compactly,

dx
fy(y) = fx(x)g




Monotonic Transformations of a Random Variable

e Itis monotonically decreasing if T (x) > T(x,) for

any x; < X».
J*'T{.\‘l




Monotonic Transformations of a Random Variable

Similarly for a decreasing transformation, we get

F,(yo) =plVY Sy} =p{iX < xoj =1 —F.(x)

r = Tixd

~]

Repeating the above steps, we get

dT
—f, (7o) = £lT (o)l T

Since the slope of T~ 1(y)is also negative, we again obtain

f,0) = LIT O[T 2o, 0) = (0 |

dy
(same for both increasing and decreasing transformations)




2 000

Non-Monotonic Transformations of a Random Variable

m =
S IARE §
s \3

» Q@

Nonmonotonic transformations of a
continuous random variable

¥ =Tix)

¢ In this case, there may be more than one interval of
values of X that correspond to the event {Y < y,}
corresponds to the event {X < x;and x, < X < x5}




Non-Monotonic Transformations of a Random Variable %

m =
3 IARE §
), <

e Thus, the probability of the event{Y < y,} now
equals the probability of the event
{x valuesyielding Y < y,}, which we shall write as

x|Y < yotie,
F,(yo) =Y = yo} =pix|Y < yp} = f fr(x)dx

{x|Y=yo}
e Differentiating we get the density function of Y as
d
fy(y[}) = 5. fx(x) dx

AYo Jixlysyo)
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Non-Monotonic Transformations of a Random Variable

m =
S IARE §
s \3

» Q@

e The density function is also given by

£.() = z f (xn)

dT (x)
dx x=xq
where the sum is taken so as to include all the roots
x,,n=1,2,....,which are the real solutions of the

equation

y =T(x)




Transformations of a Discrete Random Variable

Transformation of a Discrete Random Variable
e |f X is adiscrete random variable

fx(x) = z p(xn)ﬁ(x - xn)
F@) = ) plrulx = x,)

where the sum is taken to include all the possible
valuesx,,, n=1,2,...... ,of X.

e If the transformation Y =T(X) is continuous and
monotonic, there is a one-to-one correspondence
between X and Yso that a set {x,}, through the

equationy, = T{x,,} sothat P{y,} = P{x,}.

142



Transformations of a Discrete Random Variable

e |f the transformationY = T(X) is continuous and
monotonic, there is a one-to-one correspondence
between X and Y so that a set {x,,}, through the
equation y,, = T'{x,,} so that P{y, } = P{x,,}.

e Thus,we have

fy(y) = Z P(}’n)5(}/ - yn)
Fy(y) = Zn p(yn)u?y - yn) where y,, = T(xn)

e |[f T is not monotonic, the above procedure remains
same, but P(y,,) will equal the sum of the

probabilities of the various x,, for which y, = T(x,,)
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Vector random variables

® There are many cases where the outcome is a vector of
numbers. We have already seen one such experiment, in,
where a dart is thrown at random on a dartboard of radius r.
The outcome is a pair (X, Y) of random variables that are such
that X2 + Y2 <r2

® we measure voltage and current in an electric circuit with
known resistance. Owing to random fluctuations and
measurement error, we can view this as an outcome (V, /)of a
pair of random variables.



Vector random variables
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Vector random variables

Comparison of sample space s with s;j
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Joint distribution function

® Let Xand Y be random variables. The pair (X, Y) is then called a
(two-dimensional) random vector.t

® The joint distribution function (joint cdf) of (X, Y) is defined as
F(x,y)=P(X<x,Y<y)

forx, y €R.




Joint distribution function

® Assume the joint sample space S, has only three possible

elements (1,1),(2,1),(3,3).The probabilities of the elements are

to be P(1,1)=0.2,P(2,1)=0.3 ,P(3,3)=0.5.We find F,(X,Y)




Joint distribution function

@ In constructing joint distribution function we observe that has
no elements for x<1,y<l.only at the point (1,1)does the
function assume a step value. So long as x21,y21 this
probability is maintained.For larger x and y the point(2,1)
produces a second stair step of 0.3 which holds the region
x22,y21.The second step is added to the first.Finally third step

of 0.5 is added to the two for x23,y23



Joint distribution function

Fy vix. y)




Joint density function

fx ¥ix. )

=




Properties of Joint Distribution

@® properties:

1)
F:::,P('m:}’:' - F:::,P':Is ~a) =)

(4 8- FiypCidé o)

By ) S Fyy (it m 20 andy, =¥,

I x < x and vy < g,
(X 2ix,FiytoiX £x,F £ 3]
CCEA Sx Y Rt R PA Sx,, Y 20

o (3.0 Sy (2L )




Properties of joint distribution

3)
Fy plomo, oy =1

Py (5,2)
I »x < xp and w7, < o5y

Plin<dix, vl in) =Fx,y(xzdf’z:"Fx,y':xp}"z:"FX,F(I3=J’1:'+F.'::,F(I1=J’1:'
Feylzy), -oixdim-al{y{e

Fy(x) = Fay (x,+00)




Properties of joint distribution

(X L xt ={X £ a2y {F £ 4+
S EE = P{X L - P{X L ¥ L) = Fy L (x +o)

Fy () = Hn (00, ¥)

Fyylry), -odxde-niyle

Hy (x]) and £ 07)

Called marginal cumulative distribution function




Marginal distribution functions

@ The distribution of one random variable can be obtained by
setting the other value to infinity in F, (x,y).The functions
obtained in this manner F,(x),F,(y) are called marginal
distribution functions.




Marginal distribution functions

® Example:

Fyv(%,¥)=P(1,1)u(x-1)u(y-1)+P(2,1)u(x-2)u(y-1)+ P(3,3)u(x-3)u(y-3)
P(1,1)=0.2, P(2,1)=0.3, P(3,3)=0.5 if we set y=co then

F,(x)= 0.2u(x-1)+0.3u(x-2)+ 0.5u(x-3)

similarly

F,(y)= 0.2u(y-1)+0.3u(y-1)+ 0.5u(y-3)

® =0.5u(y-1)+0.5u(y-3)



Marginal distribution functions

f"-,\— L)

§.0>»
1.4» J—
oO. S I
O_.5 |-
o .2
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O 1 =2 = 2 a
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Marginal distribution functions

® Consider two jointly distributed random variables and with the joint
CDF

1-e*)1-e?Y) x=0,y=>0

|:x Y (X, y) = { ]
. . 0 otherwise
1)Find the marginal CDFs

2) Find the probability P(1<x<2, 1<y<2)




Marginal distribution functions

1-e% x>0

Fo (X)=limF, , (X,y) =
i« (X) oo o (6Y) {o elsewhere

. 1-¢7 y>0
F (y)=lim FX,Y (X, y) =+
X—% 0 elsewhere

\

P<X <2, 1<Y <B=F,,(22)+F,, (L)-F,, L2)-F,,(2])
=(1-e“)(1-e?)+(1-e?)(l-e7)-(1-eP)(l-e?)-(L-e)1-e™)
=0.0272




Joint Probability Density Function

If and are two continuous random variables and their joint
distribution function is continuous in both and then we can
define joint probability density function by

82
fu v (X, y) = XDy F v (X Y),
provided it exists.
X Y

Clearly Fy v (X, V)= | fy v (u,v)dvdu

—00 —00



Properties of Joint Probability Density Function

is always a non-negative quantity. That is,
1 ey (YT Sative qfiantty

fuy (X, y)=0 V(x,y)el?

The probability of any Borel can be obtained by
2)

O ORENNG O)

. I ] foy (X, y)dxdy =1
3) —00 —00

P(B) — .” fX,Y (X’ y)dXdy

(x,y)eB




Marginal density functions

® The marginal density functions and of two joint RVs are given by the

derivatives of the corresponding marginal distribution functions.
Thus

fx (X) =5 Fx (X)

:% Fy (X, o0)

:& | fx v (u, y)dy)du

—O0 —O0

o @)

= | fx v (X, y)dy

—Q0

o0

and similarly f, (y)= | fy ., (X, y)dx



Marginal density functions

® The marginal CDF and pdf are same as the CDF and pdf of the
concerned single random variable. The marginal term simply
refers that it is derived from the corresponding joint
distribution or density function of two or more jointly random
variables.

® With the help of the two-dimensional Dirac Delta function, we
can define the joint pdf of two discrete jointly random
variables. Thus for discrete jointly random variables and

fX,Y(X1 y) = 3 ZpX,Y(X’y)5(X_Xi’y_yj )

(%.Yj)eRx xRy



Marginal density functions

@ The joint density function

1-e?)1—-e?) x>0,y>0
0 otherwise

FX,Y (X: Y) :{




Marginal density functions

® The joint pdf of two random variables X and Y are given by

fue(Xy)=cxy 0<x<2 0<y<2
=0 otherwise

1)Find c

2)Find f,. (X Y)

3)Find f,(x) and f(y)

4)What is the probability P(0<x<1, 0<y<1)




Marginal density functions

@ Solution:

_f_fo _f_i v (X, yY)dydx = cj'oz _foz xydydx

1
Cc = —
pal
1 v x
. v (X y)=Z . J, uvdudyv
_ xXZy*©
16

N | X

Similarly

fY(y):% Oy =2



Marginal density functions

P(0< X <1,0<Y <1)
=Fyy (L) +F,, (0,0)-F, (0,)-Fy, (LO)

-1 0-0-0
16

1

16




CONDITIONAL DISTRIBUTIONS

We discussed the conditional CDF and conditional PDF of a random
variable conditioned on some events defined in terms of the same
random variable. We observed that




Conditional Probability Density Functions

Suppose and are two discrete jointly random variable with the joint
PMF fxy(x,y) . The conditional PMF of y given x=x is denoted by and
defined as

fy/x(y/X)

Byl x)= P = 7/{X = x})
_ FUE = xr o {F = 270

25 = x}
= Py L2 2) provided gL {x) =0
P;{'ix:'
Thiss,
Py lwix) = LR ASIP provided z o (x) =0

2 LX)




Conditional Probability Distribution Function

® Consider two continuous jointly random variables and with the joint
probability distribution function We are interested to find the
conditional distribution function of one of the random variables on
the condition of a particular value of the other random variable.

® We cannot define the conditional distribution function of the
random variable on the condition of the event by the relation

Fox (YIX)=P({Y <y/ X =X)
P(Y Y, X =X)
P(X = X)




Conditional Probability Distribution Function

o (il X)) = fim

e i n X S x4 Ax)
rIE

AY <y x <X = x4 Ax)
Plx o X = x4+ Ax)

:]-I-m nx—0

T Fow (26 Ao

—_ = Lo ]
=i ax—s0

Fx (A
T f;{,}f [, 24 )edii
IS
»
J f;{,}r (2 2i )i

LR (pixi==
o

Iy

Fa(x)
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CONDITIONAL PROBABILITY DENSITY FUNCTION

m =
3 IARE §
), <

® is called the conditional probability density function
JuxW! £ =21 =120/ 3); define the conditional distribution function .

— o- —

it g gy Py Ot fpd 2 X S ) = By (T 1 0 A By
=l g oo (PLy <Y S y+ Ayl x < X S x4 Ax)) Ay
=limy, g g (P Y sy by x < sx+ AN Pz < X s x4 Am)ly
=ttty 0 4rs0 Sy (X VMY fy () Aty
= Frr(x 7} fx (%)



Point conditioning

First consider the case when X and Y are both discrete. Then the
marginal pdf's

fy(y)=P(Y=y) fx(x)=P(X=x)

The joint pdf is, similarly

fyy(%,y)=P(X=x,Y<y)

Conditional density function is given by
fx(x/B)=

dFX(x|B)

dx




Point conditioning

Foyin=PFeylX=x
riX

PFeyX=x
FX=x)

Distribution function of one random variable X conditioned by that second
variable Y has some specific values of y. This is called point conditioning
B={y-Ay<Y<y+Ay}

Where Ay is a small quantity that we eventually let approach 0.




Point conditioning

Fx(x/y-By<Ysy+By)= (7 f ¢ (s s)dsde,
R GLE

y—Ay

FX,Y (X’ y) :ZZP(Xi,yJ')5(X_Xi)5(y_ yj)

i=1 j=1
FX(XY = yk)= i Plgx(i;/y)k)u(x — X )
- P(Xi, Yy)

(XY :yk):Z P (y.)

S(x—x,)




Point conditioning

® As Ay->0 denominator becomes zero. For smaller Ay values
conditional density may exist.

Fx(x/ y-Ay<Y<y+Ay)=

J._Xoo fX,Y (51' y)dgl 2AY
fy (y)2Ay

[ty (& y)de
B AT




Interval Conditioning

@ Distribution function of one random variable X conditioned by
that second variable Y has some specific values of y. This is
called point conditioning

B={y.<Y<y,}




Example

P(x,,y,)=2/15,P(x,,y,)=3/15.etc.since P(y;)=4/15+5/15=9/15 find
f(x/y=y;)

L rix. )




Statistical independence

P = PR )

fx,y(xay) - a%ﬁﬂ (%))




Statistical independence

o w(x, v = P{X < x,F £y}
=5 £ x3SEF O£ a0
= B (XN )

a= F_:-:,}f i
e

_ G (XD ()

e e (XL F) =

o ey b B

— i £ X Fy (7
G Far (X = Fy (X0 Fy ()




Statistical independence

@ Statistical independence

Frx )= 1)

P(X<x, Y=<y} Friduy
Fl[xiyﬂ.ﬂ- P[Yﬁl‘} = FY{J"}

Felx| Y < y) = Falx)

In other words the conditional distribution ceases to be
conditional and simply equals the marginal distribution for
independent random variables. It can also be shown that

Txlx| Y = y) = Sx(x)
Syl X = x) =Srly)




EXAMPLE

@ For discrete variables independence means the probability in a cell
must be the product of the marginal probabilities of its row and
column. In the first table below this is true: every marginal
probability is 1/6 and every cell contains 1/36, i.e. the product of the
marginal's. Therefore X and Y are independent. In the second table
below most of the cell probabilities are not the product of the
marginal probabilities. For example, none of marginal probabilities
are 0, so none of the cells with 0 probability can be the product of
the marginal's.



EXAMPLE

1 [1/36 1/36 1/36 1/36 1/36 1/36 | 1/6
2 |1/36 [1/36 |1/36 1/36 |1/36 |1/36 | 1/6
3 |1/36 |1/36 |1/36 [1/36 |1/36 |1/36 | 1/6
4 |1/36 |1/36 |1/36 [1/36 1/36 1/36 | 1/6
5
6

1/36 |1/36 |1/36 |1/36 1/36 |1/36 | 1/6
1/36 (1/36 |1/36 |1/36 1/36 |1/36 | 1/6
p(y;) 1/6 1/6 1/6 1/6 1/6 1/6 1

X\T |2 |3 |4 5 6 |7 |8 |9 10 |11 |12 |p=:)
1 |1/36 1/36 [1/36 [1/36 (1/36 [1/36 . 0 | 0 | 0 | 0 | 0 |1/6
2 0 |1/36 |1/36 |1/36 [1/36 (1/36 1/36 | 0 | 0 | 0 | 0 | 1/6
3 0 | 0 |1/36 (1/36 1/36 (1/36 1/36 |1/36 | 0 | 0 | 0 | 1/6
4 L0 |0 0 |1/36 1/36 [1/36 |1/36 (1/36 1/36 | 0 | 0 |1/6
5 0O |0 | 0 | 0 |1/36 1/36 1/36 |1/36 |1/36 1/36 = 0 | 1/6
6 0O |0 | 0 |0 | 0 |1/36 1/36 1/36 |1/36 1/36 1/36 | 1/6

ply;) 1/36 2/36 3/36 2/36 1/36




EXAMPLE

@ For continuous variables independence means you can factor
the joint pdf or cdf as the product of a function of x and a
function of y. (i) Suppose X has range [0, 1/2], Y has range [0, 1]
and f(x, y) = 96x 2y 3 then X and Y are independent. The
marginal densities are f,(x) = 24x 2 and f, (y) = 4y 3. (ii) If f(x, y)
= 1.5(x 2+y 2 ) over the unit square then X and Y are not
independent because there is no way to factor f(x, y) into a
product f,(x)f, (y). (iii) If F(x, y) = 1/2 (x 3y + xy3? ) over the unit
square then X and Y are not independent .because the cdf does
not factor into a product F,(x)F, (y).



Sum of two random variables

We are often interested in finding out the probability density function
of a function of two or more RVs

The received signal by a communication receiver is given by

L=4+F




Sum of two random variables

L E (z =P Z <=1
= P{{x») | (x0) = D)
L T G



Probability density function Sum of two random

variables

Probability density functionof Z=X+Y.

2Lz

=X+F=z

F @)= [ [T £, (x, y)dy'dx.




Probability density function Sum of two random

= ‘1. ‘1. f.ﬁ:.l' (I,y}fy]dx

= | [ Foy (xu—x)du |dx  substituting y =z - x
=1l Ty I:Lu — xj x| fis  interchanging the order of integration
A
leig =£‘I‘ ‘I‘f}:‘}rli}'f,u—x:lcfx cfis
= I Ii:-': 2L — x:] e

L Az lE)= Tf;;_y fr.0e — x)




Probability density function Sum of two random

fx,F[IE_ﬂ=fx|: jfy{z_xj
Ifz f}r z - xjcfx

=f:s:|: )*fy( j

Thus the pdf for the sum of two random variables is given by a
superposition integral. If X and Y are independent random variables,
then the pdf is given by the convolution integral of the margial pdf’s of

XandY:




Example

® Suppose X and Y are independent random variables and each
uniformly distributed over (a, b). And are as shown in the
figure below.

Jx (%) Fr )




Example

Pl )
10-a

Py}
1/ b-a

F=(Z)




Central Limit Theorem

Consider n independent random variables x,,x,,x;.....xn ,The
mean and variance of each of the random variables are assumed to be
known. Suppose E[x]=p, var(x)=0,% and . Form a random variable

+ Ky




Central Limit Theorem

var (F,) = o —E{Z(ﬁ' TN
=]

SR -+ Y B ) (i)

jm] il Jeml,

=y tay ot

| En

v A and }fj are independent for i = |




Central Limit Theorem

The CLT states that under very general conditions {}; ZX}
converges in distribution tor ~x(x. t) as

n—oo

1. The random variables are independent and identically
distributed.

2. The random variables are independent with same mean and
variance, but not identically distributed.

3. The random variables are independent with different means and
same variance and not identically distributed.

4. The random variables are independent with different means and
each variance being neither too small nor too large.

Ly



Proof of Central Limit Theorem

E(¥Y = B(X) fn and so on.

o El::é"?-"’lr":l = E[e[immgﬁ]]
aln
. q . 3
- i i
G = 1 oy o+ MOy WO ps

2l 3l




Proof of Central Limit Theorem

U'fﬂ:'z 2 Ufﬂ)z 3
Ay E(FS) + . B+ .

i, =0 md BYH=0) =a, wegs

¥ H

I-(@ 2%+ Rie,n)

==

— -

=
|

limm R(a) = 0




Proof of Central Limit Theorem

im gy (@21 g?, =g

e T 2|

which is the characteristic function of a Gaussian random variable
with 0 mean and variance 2

ro—2— N0, a3)




Module-lil
OPERATIONS ON MULTIPLE RANDOM VARIABLES -
EXPECTATIONS




Expected Values of Random Variables

If g(x,y) is a function of a continuous random variables X and Y
then then the expected value of is given by

J_OO J._OO g(x,Yf (X,y)dxdy Continuous
ZZQ(Xi Yi )Py v (X1 Y ) Discrete
N

g= E[g(X,Y)] = 3




Example

The joint pdf of two random variables is given by

)=ty 0<x<2 0sy<2

Find the joint expectation of g(X,Y)=x%y

E(g(x,y)= E (x%y)




Example

ag(x, y) f,, (X, y)dxdy

é"—'oS

X
N
<
|
<
ol
X
ol
<

2dy

X
w
X
O'—,Nhl-\
4

O b O ey NV

N
IS

N
W

X
X

I
W

J
-
J

O

1
2
1
2
38
3




Example

Consider the discrete random variables x and y. The joint probability mass function
of the random variables are tabulated in Table . Find the joint expectation of g(x,y)=xy.

\K 0 1 2 p},(y)
L 4
0 0.25 0.1 0.15 0.5
1 0.14 0.35 0.01 0.5
px(x) 0.39 0.45 0.16




Example

E[XY]= ZZ g(x,y) Pxy (X, y)

=1%x1x0.35+1%x2x0.01
=0.37




Properties

® Expectation is a linear operator. We can generally write
E[a,8,(x,y)+a,8,(x,y)=a,E(g,(x,y)+a,E(8,(x,y))

E[xy+5log xy]=E[xy]+5E[log xy]




Properties

If xandy are independent random variables and g(x,y)=g1(x,y)xg2(x,y) then
E[g(x,y)I=E[g1(x,y)IxE[g82(x,y]

FEolX V)= 8g (X g, (F)

= T T g (Xg, (F) Frp(x yidx

—oa —&a

= | | & (X)g, (V) Fy(x) A O)dxdy

Ll = =y = = |

= j = {I}fI[I}de Ea {ﬂﬁ’{.}?:ﬂﬁ?
= g (X1 8g,(¥)




Joint moments about the origin

For two continuous random variables X and Y, the joint moment
of order m+n is defined as

E(X™Y™) = [ [X"y"f, (x y)dxdy

And the joint central moment of order m+n is defined as

E(X — )" E(Y —,)" = [ [(x= )" (¥ = 12,)" Ty (%, y)dxdly

4, = E[X]
wu, = ELy]




Joint moments about the origin

For two discrete random variables X and Y, the joint moment of
order m+n is defined as

E(X™Y™) =D > x"y"f,, (x, y)dxdy
Xy

E(X =) "EY —2,)" =2 > (x= )" (Y= £2,)" Toy (X, )

4y = E[X]
w, = E[Yy]




Covariance of two random variables

The covariance of two random variables X and Y is defined

as
Cov(X,Y)=E(X-p)E(Y- 1)

Cov(X, Y) is also denoted as oy,.

Cov(X,Y)=E(X —£,)"E(Y — )"
=E(XY —u, X —p,Y + p,14)
= E(XY) — 1y E(X) — px EQY) + pex 24y
= E(XY) -y, 1,




Covariance

Cov(X,Y) = E[(X — 1 )(Y — 4)]-
By expanding and simplifying the right side of (10-10), we
also get
Cov(X,Y)=E(XY)—u, e, =E(XY)—-E(X)E(Y)

= XY - XY.
It is easy to see that

Cov(X,Y)|< Var(XVar(Y).

To see (10-12), let U =aX +Y,so that

Var(U) = E[fa(X - ) + (Y — z,)¥]
= a®Var(X)+2aCov(X,Y)+Var(Y) >0.
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Covariance of two random variables

. Cov(X,Y) . .
The ratio»*" === is called the correlation

coefficient.

If pyy>0  then are called positively correlated.
If pyy<O then are called negatively correlated

If pyy =0 then are uncorrelated.

We will also show that ‘p(X ,Y)\ <1




Uncorrelated random variables

Two random variables are called uncorrelated if
Cov(X,Y)=0
Which also means E(XY)=p, 1,
If are independent random variables, then

fxv (X1 Y) = fx (X) fY (Y)

Thus two independent random variables are always uncorrelated.




Uncorrelated random variables

E(XY) = jjwfxy(x y)dxdy

_w_

— jjxyf () f, (y)dxdy

_w_

— jjxyfxy(x y)dxdy

— OO— OO0

— [ xfy GOdx [ yf, (y)dy

= E[X]ELY]




joint characteristic function

The joint characteristic function of two random variables X and Y is defined by

¢XY (wl’wz) _ E[ejwlx+jwzy]

If and are jointly continuous random variables, then

¢xv oy, 0,) = jjfxv (X, Y) emxﬂwzdedy




Joint moments about the origin

For two discrete random variables X and Y, the joint moment of
order m+n is defined as

E(X™")=> D x"y"f,, (x, y)dxdy
X Y

And the joint central moment of order m+n is defined as
E(X =) "EQ =) =D > (x—2)"(y —1£,)" fyy (X, Y)
X y

4y = E[X]
w, = E[Yy]




Covariance of two random variables

The covariance of two random variables X and Y is defined

as
Cov(X,Y)=E(X-p)E(Y- 1)

Cov(X, Y) is also denoted as oy,.

Cov(X,Y)=E(X —£,)"E(Y — )"
=E(XY —u, X —p,Y + p,14)
= E(XY) — 1y E(X) — px EQY) + pex 24y
= E(XY) -y, 1,




Transformations of multiple random variables

The joint density function of new random variable Y.=T(XX,,.....Xy) i=1,2,3....n

The random variable Xj can be obtained from inverse transformation
X=THY LYo Yy

>**

Xn = On (Y1, Y2, Yken)



Transformations of multiple random variables

® Assuming that the partial derivatives 0g; 1 Oyxist at every
point (Y, Yo.-«Yi=n). Under these assumptions, we have the
following determinant J




Transformations of multiple random variables B ArEl

G
Oy1 oY
J =det|] : :
o9y"  dgn
_6)’1 8Yn_

called as the Jacobian of the transformation specified by (**).
Then, the joint pdf of Y, Y,,...,Y, can be obtained by using
the change of variable technique of multiple variables.




Transformations of multiple random variables

® As a result, the new p.d.f. is defined as follows:

-

fun, 052021 0| I For (g oo, ) €
0, otherwise

0(Yo Yoo+, Y )=+
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Linearly transformation of Gaussian random variablesia=:

® Linearly transforming set of Gaussian random variables




Linearly transformation of Gaussian random variables

® where the coefficients aij | and j=1,2,..N are real numbers. Now we
define the following matrices

all al2Z... allN
ITI=1a21 a22.. a2N
aN1 aN2.. aNN

[¥1]

¥1
: } X=TiH(Y,.... Yy )=a'lY +al2y,+....+aNY

¥N

X-=Til(Y,....Y)=allY +a2y +... +aiNY




N random variable case

Clj = E[(X X )(X — X )] GXI For i=j
CXin Fori7 |

For the special case N=2 The covariance matrix becomes

0) O.,.0
[Cx] = X1 POy, sz
| POx10x, Oy




N random variable case

_ . _
—poloy.o

e I

d=p )__P/O'x1o'x2 1/0-x22 i

‘[Cx_1 | :1/O'x120'x22(1_,02)

Example :Suppose X and Y are two jointly-Gaussian 0-mean
random variables with variances of 1 and 4 respectively and a
covariance of 1. Find the joint PDF




Module-IV
RANDOM PROCESSES — TEMPORAL CHARACTERISTICS




Random Process

 The concept of random variable was defined previously as mapping
from the Sample Space S to the real line as shown below

Sample Space

J A random process is a process (i.e., S
variation in time or one dimensional

space) whose behavior is not

completely predictable and can be

characterized by statistical laws.

J Examples of random processes
Daily stream flow X1
Hourly rainfall of storm events
Stock index
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Random Process (Contd..)

d The concept of random Samole Spuce
process can be extended to
include time and the outcome
will be random functions of
time as shown beside x(t, s)

1 Where s is the outcome of
an experiment

 The functions

o Kpg2 (t)’ Xn+1 (t)’ X (t)’ Xha (t)’ o
are one realizations of many of
the random process X(t)

1 A random process also represents a random variable when time is fixed
X(t,) is arandom variable
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Classification of Random Process

Classification of random process
dContinuous random process
Discrete random process
dContinuous random sequence

Discrete random sequence

Continuous time t => x(t) = Random process
Discrete time n => x[n] = Random sequence




Continuous Random Process

Continuous time t

X(t) = Continuous
Random process g 7 2 N _—




Discrete Random Process

 Discrete random process .o .

Continuous time t

X+ 10D

X(t) = Discrete Random
process ——

x5, ()

X5 —1(2)




Continuous Random Sequence

[ Continuous random sequence  =.x» .

Ca i \T&\‘-\\ *’,__J/T\?*'?\\ T -
discrete time n e 0

Xp+ 1(t)

x(n) = Continuous s
Random sequence ~ LT *(T\‘\\¢

X (D)

- T\\

-

Xy — l(t)
S
’Ts

~ T,\T\\ - )4 /’%T\
—& "l :

A T~ i

o ﬁk\,;\ 111 ~ 1 :




Discrete Random Sequence

 Discrete random sequence

Xp+2(0) :
discrete time n 1771 I 1 T
I B | f
x(n) = discrete Random e
seguence -1 -
1] il

TTTT]

==
B
-

1]
e —




Random Process Concept

[ Deterministic random process
dFuture values of any sample function can be predicted exactly from
the past values

X (t) = Acos(w,t +6), A w,, 0. rV.'s

d Non deterministic random process
 Future values of any sample function can not be predicted exactly
from the past values




What is a distribution and density?

o A distribution characterises the probability (mass) associated with each
possible outcome of a stochastic process

0 Distributions of discrete data characterised by probability mass
functions

P(xi = X)

D> P(X =x)=1
1"
0

1 2 3 X

0 Distributions of continuous data are characterised by probability density
functions (pdf)

f(x) o
A [ foodx =1
X -

2 For RVs that map to the integers or the real numbers, the cumulative
density function (cdf) is a useful alternative representation
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Stationary and Independence

] Stationary Random Process
[ all its statistical properties do not change with time

 Non Stationary Random Process
 not stationary

One particular realization of the random process {X{(7)}




Stationary and Independence (Contd..)

O First-order densities of a random process

1 A stochastic process is defined to be completely or totally
characterized if the joint densities for the random variables

X (1), X (t,),---X(t )are known for all timestl,tz,- . -,tn and all
n.

 For a specific t, X(t) is a random variable with distribution
F(x,t) = p[X(t) < x]

[ The function F(x,t) is defined as the first-order distribution of the
random variable X(t). Its derivative with respect to x
F(x.1) = oF (x,1)
OX

is the first-order density of X(t).
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Stationary and Independence (Contd..)

2 If the first-order densities defined for all time t, i.e. f(x,t), are all the
same, then f(x,t) does not depend on t and we call the resulting
density the first-order density of the random process {x(t)} ;
otherwise, we have a family of first-order densities.

O The first-order densities (or distributions) are only a partial
characterization of the random process as they do not contain
information that specifies the joint densities of the random variables
defined at two or more different times.
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Stationary and Independence (Contd..)

d Fort=t,and t=t,, X(t) represents two different random variables
X1 = X(t1) and X, = X(t;,) respectively. Their joint distribution is given by

F, (X, X,,t,t0)=P{X(t) <x, X)X}
and
O°F, (X, %o, 1,)

OX, OX,
represents the second-order density function of the process X(t).

f (X, X, 1, 1) =

Q Similarly (X, X5, X5 4,1, -+, 1, ) represents the nth order density
function of the process X(t).
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Mean and variance of a random process

) The first-order density of a random process, f(x,t), gives the
probability density of the random variables X(t) defined for all time t.
The mean of a random process, m,(t), is thus a function of time

specified by
my (t) = EQX (0] = E[X] = [ % (x,t)elx,
Q For the case where the mean of X(t) does not depend on t, we have
m, (t) = E[X(t)] =m, (a constant)

 The variance of a random process, also a function of time, is defined

Y 52 = EfX ) -m OF | = E[XZ]-[my (OF

238



Stationary and Independence

1 The random process X(t) can be classified as follows:
1 First-order stationary

d A random process is classified as first-order stationary if its first-order
probability density function remains equal regardless of any shift in time
to its time origin.

4 If we X,;let represent a given value at time tlthen we define a first-
order stationary as one that satisfies the following equation:

fy (Xy) =T (X + 1)
[ The physical significance of this equation is that our density function,

1tx (th) is completely independent of t1
and thus any time shift t

For first-order stationary the mean is a constant, independent of
any time shift
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Stationary and Independence (Contd..)

(JSecond-order stationary

A random process is classified as second-order stationary if its second-
order probability density function does not vary over any time shift

applied to both values.

d In other words, for values X,; and X, then we will have the following
be equal for an arbitrary time shift t

fy X X2) = T Kigae X 012)

dFrom this equation we see that the absolute time does not affect our
functions, rather it only really depends on the time difference between

the two variables.
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Stationary and Independence (Contd..)

1 For a second-order stationary process, we need to look at the
autocorrelation function ( will be presented later) to see its most
important property.

d Since we have already stated that a second-order stationary
process depends only on the time difference, then all of these types
of processes have the following property:

R v (L1+1) = E[X(OX(t1)]
=Ry« (1)
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Wide-Sense Stationary (WSS)

J A process that satisfies the following:

d The mean is a constant and the autocorrelation function depends only
on the difference between the time indices

E[X(t)] = X = constant

E[X®X(t+1)] =Ry (1)
is @ Wide-Sense Stationary (WSS)

Second-order stationary ‘ Wide-Sense Stationary

The converse is not true in general
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Wide-Sense Stationary (Example)

This gives

#, (1) = BEXX (1)} = aE{cos(wt + )}
= acosw,t E{cosp}—asin ot E{singp}=0, Constant

. 2r ]
since  E{cosg}=4- | cospde =0=E{sing}.
Similarly

R (t,t,) = ch E{cos(a,t, + @)cos(a,t, + @)}

2

= a? E{cosw,(t, —t,) +cos(a,(t, +1,) +2¢)}

2
d
— ?cos w,(t, —t,). So given X(t) is WSS
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Nth order and Strict-Sense Stationary

 In strict terms, the statistical properties are governed by the joint
probability density function. Hence a process is nt"-order Strict-Sense

Stationary (S.S.S) if
fo(X, XX, Uttt )= (X, X, %, t,+Ct, +C--t +C) > (1)

 For any c, where the left side represents the joint density function of

the random variables X, =X(t), X,=X(t,), - = X(t.)
and the right side corresponds to the Jomt den5|ty functlon of the random
variables X/ = X(t, +c), X, =X(t, +c), ---, X, = X(t, +C).

J A process X(t) is said to be strict-sense stationary if equation (1)
trueforall t, 1=12,---,n, n=12,--- andany c.
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Ergodic Process

A stationary random process for which time averages equal ensemble
averages is called an ergodic process:

(x[n]} =m,

(I -+ T ) = o]




Ergodic Process (Contd..)

It is common to assume that a given sequence is a sample sequence of
an ergodic random process, so that averages can be computed from a

single sequence.

L-1
In practice, we cannot . 1
. . mxz—ZX[H]
compute with the limits, but L —~
instead the quantities. =
a )2
e - 03:_ (X[n]_mx)
Similar quantities are often L=
computed as estimates of =
the mean, variance, and <X[n+m]x*[n]> :IZX[ner]X*[n]
L

autocorrelation. n=0
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Time Average and Ergodicity

1 The time average of a quantity is defined as
N
A= tim e

Here A is used to denote time average in a manner analogous to E
for the statistical average.

1 The time average is taken over all time because, as applied to random
processes, sample functions of processes are presumed to exist for all
time.




Time Average and Ergodicity (Contd..)

 Let x(t) be a sample of the random process X(t) were the lower case
letter imply a sample function.

 We define the mean value X = A[X(t)]

( a lowercase letter is used to imply a sample function)
and the time autocorrelation function fox (’C) as follows:

=A[x(@®)] = "Lnooﬁ x(t) dt

R (0 = A[XOX(t+D)] = lim [ xx(t+ 0 d

 For any one sample function (i.e., x(t) ) of the random process X(t),
the last two integrals simply produce two numbers.

d A number for the average X and a number for mxx (’C)
for a specific value of 1
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Time Average and Ergodicity (Contd..)

[ Since the sample function x(t) is one out of other samples functions
of the random process X(t),

(1 The average X and the autocorrelation SRXX (1;) are random variables

O By taking the expected value for X and R, (‘C) we obtain

_ 1
E[X] = E[A[X(D)]] = [nmwﬁ x(t)dt} = lim —j E[x(t)] dt

= |lim 1 TT)_( dt = T|I_r)noo X(1) =X
E[R, (D] =E [A[x()x(t+1)] ] = E[Thilgo %J‘_TT x(t)X(t + 1) dt}

IImOO% E[x(t)x(t + 1)] dt = hm % R, . (1)dt=R,, (1)
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Time Average and Ergodicity (Contd..)

1 Time cross correlation

Ry, (7) = AX(R)y(t+7)] = lim % [ x®y(t+o)t

X=X
ERxx (T) = RXX (T)

1 Jointly Ergodic => Ergodic X(t) and Y(t)

R,y (7) =Ry (7)

d Ergodic =>




Autocorrelation




Introduction

) Autocorrelation occurs in time-series studies when the errors
associated with a given time period carry over into future time periods.

! For example, if we are predicting the growth of stock dividends, an
overestimate in one year is likely to lead to overestimates in
succeeding years.

! Times series data follow a natural ordering over time.

! It is likely that such data exhibit intercorrelation, especially if the time
interval between successive observations is short, such as weeks or
days.
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Introduction (contd..)

] We expect stock market prices to move or move down for several days
in succession.

] We experience autocorrelation when
E(uu;) =0
! Tintner defines autocorrelation as ‘lag correlation of a given series

within itself, lagged by a number of times units’ whereas serial
correlation is the ‘lag correlation between two different series’.




Autocorrelation and its Properties

1 The autocorrelation function of a random process X(t) is the correlation
E[Xlxz] of two random variables X,= X(t,) and %X,= X(t;)

by the process at times t1 and t2

Rxx (tl’tZ) = E[X(tl)x(tz)]

1 Assuming a second-order stationary process

R, (t, t+7) =E[XO)X(t +1)] Ry (1) = E[X(®X(t + 7)]




Autocorrelation and its Properties (Contd..)

2 Autocorrelation :

LA AN AN
7 RV N4

T

time, t T

J The autocorrelation, or auto covariance, describes the general
dependency of x(t) with its value at a short time later, x(t+1)

p, (z) = Lim % [ bty -t + o) - ot

 The value of p,(t) at T equal to O is the variance, ¢,2

O Normalized auto-correlation : R(t)=py(t)/0,*> R(0)=1



Autocorrelation and its Properties (Contd..)

R(7)

O \_//_\

Time lag, t

1 The autocorrelation for a random process eventually decays to
zero at large 1

 The autocorrelation for a sinusoidal process (deterministic) is a
cosine function which does not decay to zero




Autocorrelation and its Properties (Contd..)

T, = [ R(x)dr
R(7)

0 =
Time lag, t
 The area under the normalized autocorrelation function for the
fluctuating wind velocity measured at a point is a measure of the
average time scale of the eddies being carried passed the
measurement point, say T,
4 If we assume that the eddies are being swept passed at the mean

velocity, U.T, is a measure of the average length scale of the eddies.
This is known as the ‘integral length scale’, denoted by |,
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Autocorrelation and its Properties (Contd..)

J Properties of Autocorrelation function
Ry, (t,t+7)=E[X({t)X(t+7)]=R (7)

(D) R (7)< R (0)

(2) Ry (=7) =Ry ()

(3) Ry (0)=E[X(t)’]

(4) stationary &ergodic X (t) with no periodic components

= IlimR,, (r)=X

7| >

(5) stationary X (t) has a periodic component
= R, (7) has a periodic component with the same period.
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Cross-correlation

2 Cross-correlation

x(t) //\VA/\'\R/ \/\//_

time, t T
" WL\
y
time, t T

 The cross-correlation function describes the general dependency
of x(t) with another random process y(t+t), delayed by a time
delay, ©

C,y(7) = Lim % [ bty -x]ly -+ -y o



Correlation coefficient

(] Correlation coefficient

( The correlation coefficient, p, is the covariance normalized by the
standard deviations of x and y

XMy

0,0,

P

When x and y are identical to each other, the value of p is +1 (full
correlation)

When y(t)=—x(t), the value of pis — 1

In general, - 1< p<+1




Application of correlation

o Correlation - application :

 The fluctuating wind loading of a tower depends on the correlation
coefficient between wind velocities and hence wind loads, at
various heights

\\4

Vv

/

> Zl

u'(z,).u'(z,)
Gu (Zl)'cu (22)

For heights, z,, and z, p(z,,2,) =



Properties of Cross Correlation

Properties of cross-correlation function of jointly w.s.s. r.p.’s:
Ryy (7) = E[X ()Y (t+7)]

D Ry (=7)=Ry(7)
(2) |RXY (T)| < \/ Ryx (0) Ry (0)

@ [Ra@|<7[Ru(©)+R, O]

E{Y(t+7)+aX({)}]120, Va

VRO 0) < {Ry 0+ Ry, (O]




Example of Cross Correlation

AB:rv.'s @, =const
E[A]=E[B]=0, E[AB]=0, E[A’]=E[B?]=0"
X (t) = Acos(myt) + Bsin(myt), Y (t) = Bcos(a,t) — Asin(a,t)
E[X(t)] = E[Acos(w,t) + Bsin(a,t)] = E[A]cos(w,t) + E[B]sin(w,t) =0
Ry (t,t+7)=E[X({)X(t+7)]
= E[A? cos(w,t) cos(m,t + w,7) + AB cos(w,t) sin(w,t + o,7)
+ ABsin(m,t) cos(w,t + @,r) + B sin(a,t) sin(a,t + w,7)]
= o*{cos(w,t) cos(w,t + m,7) +sin(w,t) sin(w,t + w,r)} = o° cos(w,T)

=  X(t):w.s.s.
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Example of Cross Correlation

Y(t):w.s.s.

Ry, (r) =E[X ()Y (t+7)]
= E{[ Acos(a,t) + Bsin(w,t)][ B cos(w, (t + 7)) — Asin(a, (t + 7))]}
= E[AB cos(w,t) cos(m,t + w,7) + B* sin(w,t) cos(w,t + ,r)
— A? cos(aw,t) sin(w,t + w,7) — ABsin(aw,t)sin(w,t + w,r)]
= o2 [sin(w,t) cos(@,t + w,7) — cos(wyt) sin(wyt + w,7)]

=— o sin(w,r)

=  X(t) &Y (t):jointly w.s.s.




Covariance

- Covariance

(] The covariance is the cross correlation function with the time
delay, 1, set to zero

C.y(0) =X Y0 = Lim = [ [ty x][y - ]t

J Note that here x'(t) and y'(t) are used to denote the fluctuating
parts of x(t) and y(t) (mean parts subtracted)




Auto Covariance

J The auto covariance Cx(t1,t2) of a random process X(t) is defined as the
covariance of X(t1) and X(t2)

Cx(t1,t2)=E[{X(t1)-mx(t1) {X(t2)-mx(t2)}]
Cx(t1,t2) = Rx(t1,t2)-mx(t1)mx(t2)

(d The variance of X(t) can be obtained from Cx(t1,t2)
VAR[X(t)] = E[(X(t)-mx(t))2] = Cx(t,t)

 The correlation coefficient of X(t) is given by

CX (t1’t2)
VCy (t,t)y/Cx (1)
‘Px (t,, tz)‘ <1

px(tlvtz) -
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Auto Covariance Example#l

xample:

Let X(t) = Acos2mt, where A is some random variable
The mean of X(t) is given by

m, (t) = E[ Acos 24t] = E[ A] cos 2t
The autocorrelation is
R, (t,,t,) = E[ Acos(2xt,) Acos(2xt,)]
R, (t,,t,) = E[A*]cos(2xt,) cos(2at,)
And the autocovariance
Cx (tl’tZ) = Rx (tl’tz) — My (tl)mx (tz)
C, (t,,t,) = {E[A?] - E[A]? fcos(2t,) cos(2t,)
C, (t,t,) =VAR[A]cos(2xt,) cos(2t,)
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Auto Covariance Example#2

xample:

Let X(t) = cos(wt+0), where 0 is uniformly distributed in the interval (-m, m).
The mean of X(t) is given by

m, (t) = E[cos(at + 8)] = — j cos(wt +0) =0
The autocorrelation and autocovarlance are then

C, (t,t,) =R, (t,,t,) = E[cos(wt, + &) cos(at, + O)]

C. (t,t,) = i T%{cos(a)(tl _t,)) + cos(w(t, +1,)+ 20)ld6

C, (t,t,)= 1cos(a)(t t,))
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Cross Covariance

 The cross covariance Cx,y(t1,t2) of a random process X(t) and Y(t) is
defined as

Cx,y(t1,t2)=E[{X(t1)-mx(t1){Y(t2)-my(t2)}]
Cx(t1,t2) = Rx,y(t1,t2)-mx(t1)my(t2)

 The process X(t) and Y(t) are said to be uncorrelated if
Cx,y(t1,t2) =0 forall t1, t2




Random sequence

Random Sequence (=Discrete-time R.P)
X(nT;) = X[n]

Mean = E(X[n])
Ry, (n,n+k)=E(X[n]X[n+K])

C,, (n,n+k)=E{(X[n]- X[n])(X[n+k]-X[n+k])}
=R, (n,n+k)— X[n]X[n+k]

Ry, (n,n+k)=E(X[n]Y[n+Kk])

Cyy (n,n+Kk) = E{(X[n]= X[n)(Y[n+k]-Y[n+k])}
=R, (n,n+Kk)—X[n]Y [n+k] -




Gaussian Random Process

o Let X(t) be a random process and let X(tl), X(t2), ....X(tn) be the
random variables obtained from X(t) at t=t1,t2........ tn sec respectively

0 Let all these random variables be expressed in the form of a matrix

X () |
X(t,)

X ()
o Then, X(t) is referred to as normal or Gaussian process if all the
elements of X are jointly Gaussian
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Gaussian Random Process

-continuous r.p. X(t), —oo<t<ow

1
f Xyo b ty) =
el ) J@r)' ey

>zi = E[X(ti)] Ci =Cxx (ti’tk)

exp{-2 [x- X C1x- KT}

stationary = E[X(t)]= X (const) & R, (t,t.) =R, (t —t)
Cxx (ti ’tk) = Cxx (tk _ti)

w.s.s. Gaussian = strictly stationary




Gaussian Random Process

W.S.S. gaussian r.p. X(t)

X =4 R, () =25¢¥ L=t+—=, =123

k=i

Ci = Coux (t,t) = Ry (t,1,) — X* =25¢ 2 16

3

] _ | 25-16 25e2-16 25¢°-16

C11 C12 C13 3 3
C,=|C, C, C,l|=|25¢2-16 25-16 25e 2-16
C, C, C 3

- TR TS 1 95e8 16 256 2-16  25-16




Properties of Gaussian Process

O If a gaussian process X(t) is applied to a stable linear filter, then the
random process Y(t) developed at the output of the filter is also
gaussian.

0 Considering the set of random variables or samples X(t1),
X(t2),.....X(tn) obtained by observation of a random process X(t) at
instants t1,t2,....... tn, if the process X(t) is gaussian, then this set of
random variables are jointly gaussian for any n, with their n-fold joint
p.d.f. being completely determined by the set of means.

mx(ti) = E[X(ti)] for i=1,2,....n
and the set of auto covariance function
Cxx(t1,t2) = E[{X(t1)-E[X(t1)]H{X(t2)-E[X(t2)]}]

0 If a gaussian process is wide sense stationary, then the process is also
stationary in the strict sense

0 If the set of random variables X(t1),X(t2)...X(tn) are uncorrelated then
they are statistically independent
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Poisson Random Process

J we introduced Poisson arrivals as the limiting behavior
of Binomial random variables

where (v arrivals occur in an k
p{ }:e—M (—0.12...

interval of duration A" k!

/1=np:,uT-_|é_:,uA




Poisson Random Process

. It follows that

"k arrivals occur in an K
P{ }:eu B ko012

Interval of duration 2A" k!
since in that case

2A
npl :lLlT ?ZZ,UA:Z/I
d From the above equations, Poisson arrivals over an interval form

a Poisson random variable whose parameter depends on the duration
of that interval.

1 The Bernoulli nature of the underlying basic random arrivals, events

over non overlapping intervals are independent. We shall use these two
key observations to define a Poisson process formally.
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Poisson Random Process

[ Definition: X(t) = n(0, t) represents a Poisson process if
(i) the number of arrivals n(ty, t;) in an interval (ty, t;) of length t =t,— t;
is a Poisson random variable with parameter jt.
Thus

k
P{n(tl,tz):k}:e—ﬂt%, k=012, t=t,t,

and

(i) If the intervals (t1, t;) and (ts, t4) are non overlapping, then the random
variables n(ty, t;) and n(ts, ts) are independent.

Since n(0, t) ~ P(At),we have

E[X ()] = E[n(0, )] = At

and

E[X?(t)] = E[n*(0, )] = At + A°t°.
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Poisson Random Process

] To determine the autocorrelation function RXX (tl, tz), lett, > tq,
then from (ii) above n(0, t1) and n(ty, t;) are independent Poisson
random variables with parameters ,uland A(t, —t,)respectively.

Thus E[n (O, tl)n(tl, tz)] = E[n(0, tl)]E[n(tl’ tz)] = /’thl(tz —tl).

But
n(t,,t,) =n(0,t,) —n(0,t,) = X(t,) — X(t,)

and hence the left side of above equation can be rewritten as
E[X (X (L) - X (1) =R, (t,t,) - E[X*(t)].
R, (t,,t,) =2t (t, —t,) + E[X?(t,)]
=At, + At t,, t,>t,.
Similarly R, (t,,t,)=4t, + 2t t,, t,<t,.

Thus R (t,t,)=21t, + A min(t,t)-
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Poisson Random Process

Poisson
_—\1 q-\l ‘\i{"{?‘/_f- arriuaLsI

[
| e

 Notice that the Poisson X (1)
process X(t) does not
represent a wide

sense stationary process.

| T

1 Define a binary level process
Y () =(-D*®

that represents a telegraph signal Notice that the transition
instants {t;} are random Although X(t) does not represent a
wide sense stationary process,
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Poisson Random Process

ITs aerivative {) does represent a wide sense stationary process.

d()
X(t — X'(t
(t . (t
(Derivative as a LTI system)
From there
u. ()= A, (1) = At = A, aconstant
dt dt
and
A° <t
Rxxv(t11t2):8 Rxx(tl’ tZ) — t1 t1 2
dt, At+A4 0t >t
g =t +AU(t -t,)
R, (4, ) = TRl ey

ot,



Poisson Random Process

DeTine the processes
X (t) X (1)

YO=2XN 1 ZO=20-N)=X[O-Y ()

we claim that both Y(t) and Z(t) are independent Poisson processes
with parameters APt and AQt respectively.

Proof:

Y ()= ZP{Y (t) =k | X(t) =n}P{X(t) =n)}.

But given X(t) = n, we have Y(t)= Z N, ~ B(n,p) sothat

PEY (1) =k | X(1) =n}=(;) p*a"*, O<k<n,
and (At)"

P{X(t)=n}=e"* .
n!
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Poisson Random Process

B % n— 0 ) — n—k
PLY (1) =K} = e 3 el PO (0 =, 1 (40" 28
—(1-q) At k
= (Apt)* _gn (AP k=0,1,2, -

k! kt
~  P(Apt).
More generally,
P{Y(t)=k,Z(t) =m}=P{Y (1) =k, X(t)-Y (t) =m}
=P{Y (t) =k, X(t) =k +m}
=P{Y(t) =k | X(t) =k +m}P{X(t) =k + m}

_ (kT(m) okgm e (At)<m e (Apt)" o= (Aqt)"
(k+m)! k! m!

/ o -/

P(Y (t)=K) P(Z (t)=m)
= P{Y (t) = k}P{Z(t) = m}, which completes the proof.
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Poisson Random Process

-- Integer-valued discrete r.p. X(t), —oo<t<o
X(0)=0 t <t = X(t)<X(t,)

P[X (ta) — X (tb) — k] _ [i(tak_ltb)]k e—ﬂ(ta—tb)’ k = 011’ 2’. y

t, <t <t <t = X(t)-X(t)&X(t)-X(t,)areindep.
X (t) = E[X (t)] = At R, (t,t) = E[X (t)°] = At + (4t)°

C,, (t,t) = At




Poisson Random Process

O<t <t, =

PIX (L) =k, X (t,) =k, ] = P[X(t) =k, X(t,) = X(t,) =k, k]
()" o =t ey

, >k >0
= k! (k, —k,)!
. 0, otherwise
/(Z ky l t —t (ky—ky)
tl) [ ( 2 1)] e—/ltz, k2 > kl > O
= k; '(k, —k;)!
. 0, otherwise




Poisson Random Process

o<t <t, =
P[X (tz) = kz |X (tl) = kl] =P[X (tz) - X (tl) = kz - k1|x (tl) = kl]
=P[X (tz) - X (tl) = kz - kl]
/[/1('[2 —tl)](kz_kl) g Ht) K>k

= (k, —k)!
L 0, otherwise




Example

X (t) = Poisson r.p.
0<t <t, <t
0<k <k, <k, =
PIX () =k, X(t,) =k,, X (t;) =k,]
= P[X (tl) = kl’ X (tz) - X (tl) = kz B kl’ X (t3) - X (tz) = k3 - kz]
= P[X(t) =k JP[X(t,) - X(t) =k, =k JP[X (ts) -X(t,) = k3 —k,]
()" o [ =01 ey A =™
kl! (kz _k1)! (k3 _kz)!

_ O)RIAGG - PG -LI™
k1 !(kz N kl)!(kB N kz)!




Tutorial#l

 Problem-1:
A discrete random process is defined as d(n)=x(n)-x(n-1), where x(n) is a

stationary process with zero mean. If var[d(n)]=1/10 var[x(n)], find
Rxx(1)/var[x(n)].

 Solution:
var[d (n)] = E[d*(n)] - {E[d ()]}’
E[d(n)]=E[x(n)—x(n-1)]=0
 var[d(n)]= 2*var[x(n)]-2*Rxx(-1)
J But Rxx(-1)=Rxx(1)

1 Since var[d(n)]=1/10 var[x(n)]
1 Then Rxx(1)/var[x(n)]=1.9/2=0.95
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Tutorial#l

d Problem-2:
For two random variables X and Y
foy (X, ¥) =0.55(x+21)(y) +0.16(x)o(y) +0.16(x)o(y —2) +0.46(x —1)S(y +2) + 0.26(x —1)S(y —1) + 0.56(x —1) o (y —3)
find
a) Correlation
b) Covariance
c) Correlation coefficient of Xand Y

1 Solution: o
A Correlation: Ry, = _f_[xnyY (X, y)dxdy = 0.9

—00—00

 Covariance: Cxy=Rxy-E[X]E[Y]=0.9-(0.6)(1.1)=0.24

024
- J1.24)(5.49

=0.0

: . ] _ Cyv
[ Correlation coefficient of X and Y: Pxy = \/ 2\/ >
Oy 4Oy




Tutorial#l

 Problem-3:

Mean of X=6 and RXX(t,t+T)=36+25€_|T| For a random process X(t).
Indicate with of the following statements are true based on what is known
with certainty X(t)

a) is first order stationary

b) has total average power of 61W

c) isergodic

d) is wide sense stationary

1 Solution:
1 a) A random process X(t) is said to be first order stationary if
fx(x1,t) = fx(xi,t+A) (i.e., no change in time shift)
here mean is constant, hence X(t) is first order stationary (true)

 b) The average power of random process with autocorrelation function
Rxx(T) is Pavg=Rxx(t)at t=0, hence Pavg=61W (true)
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Tutorial#l

d c) if E[X(t)]= mean(X(t)) is not equal to zero, with no periodic
components then X(t) is ergodic.

1 d) a random variable X(t) is said to be wide sense stationary if it
satisfies two conditions

i) mean is constant

ii) autocorrelation function is a function of t

here both the conditions are true, hence X(t) is wide sense stationary




Tutorial#2

J Problem-1:

Given the autocorrelation function for a stationary ergodic process with

no periodic components is Rxx(t)= 25+1+‘;Tz. Find the mean and variance of

X(t).

 Solution:
 if X(t) is ergodic with no periodic components then
limR, (r)=X

X =1b=yp

d where 4 is the 15t mean or expectation of X(t) ,

[ autocorrelation at origin is the mean square value Rxx(0)= X (2"d
moment or 4,)

Qvariance o, =, —p,° =29-25=4
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Tutorial#2

J Problem-2:

Consider a random process X(t)=Acoswt, where w is a constantand A is a
random variable uniformly distributed over (0,1). Find the auto correlation
and covariance of X(t).

 Solution:

4 f(A)=1in (0,1)

O Rxx(t1,t2)=E[X(t1).X(t2)]= 1/3[coswtl.coswt2]

1 covariance Cxx(t1,t2)=Rxx(t1,t2)-E[X(t1)].E[X(t2)]=1/12 coswtl.coswt2




Tutorial#2

] Problem-3:

X(t) is a gaussian process with mean 2 and autocorrelation function of
Rxx(t)=5 & 2"
Find P[X(4)<1]

1 Solution:
] for a gaussian random variable X

P(X <k) :1—Q(k_—mj

o)

P(X (4) <1) =1—Q(1_—mj
O

d finally P(X(4)<1)=0Q(@)




Tutorial#3

 Problem-1:

The relationship between the input X(t) and Y(t) of a system is Y(t)=X*(t)
X(t) is a zero mean stationary gaussian random process with auto
correlation function Rxx(t)=e_O‘|T| fora>0

Find E[Y(t)]and Ryy(t)

[ Solution:
E[Y ()] = E[X*(t)] = Ry (0) =1
Ry (7) = E[Y (t)Y (t,)] = E[X i (t,)X i (t,)]
Ry (7) =1+ 27"




Tutorial#3

 Problem-2:

Aircraft arrive at an airport according to a poisson process at a rate of 12
per hour. All aircrafts are handled by one air traffic controller. If the
controller takes a 2minute coffee break, what is the probability that he
will miss one or more arriving aircrafts.

 Solution:

A A=12; t=2

 probability that he miss one or more arriving aircrafts
=1-(probability that does not miss any aircraft)
=1-(k=0)

J According to poisson process,

(/It) k e—ﬂt

PIX (1) =k] ="

3 at k=0 P[X(t)=0]= ™
 probability that he miss one or more arriving aircrafts is 1- e *

wherek =0,1,2...
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Linear Systems with Random Inputs




Random Signal Response of Linear Systems

Random Signal Response of Linear
Systems

* Linear system fundamentals

* Consider: linear, stable, time-invariant system.
» y(© = [77 h(Dx(t — DdA =
[77 x(D)h(t — A)dA

v () = [T hDX(t — A)dA




Mean and Mean Squared Value of System Response

m =
S IARE §
s \3

7, <

* Assume X(t) is w.s.s.
* Assume integration and expectations are exchangeable
* Mean:
- E[lY()] = E|[* h()X(t = Dd2| =
[TORMEX(t = D]dA =X [ h(1)dA =¥ constant
* Mean squared
» E[YV2(t)] =
E\J77 h(A)X(t = 2)dAy [77 h(Ao)X(t = A5)d A, |

Fo= 00 00 EIX(E = 20X (= 2,)|h(ADh(A)dA,d2,

> V2 =E[V2(0)] = [0 77 Rex (1 — 2:)h(A)h(A)d A d 2,
» Not always easy to integrate!




Example

Find Y2 if input is white noise

Ny
Ryx(A1 —A2) = (?) 6(Ay — A2)
N, is a positive real constant.
Y2 = E[Y?(0]

f f =) 5G = A)h(A)h(A)dAy 2

+00
=2 f R2(A)d A,

Qutput power is proportional to the area under the square of
h(t) in this case.




Autocorrelation Function of Response

Assume W.s.s.
Ryy(r) = E[Y ()Y (t + 7)]

= j“‘" j+mRXX(T + 21 = A2)h(A)h(A3)d A1 d A,
Ryy(t) = Rxx(7) * h(=7) * h(7)

Two fold convolution




Cross Correlation Function of input and output

* Ryy(7) = Ryx(7) * h(7)
* Ryx(7) = Ryx(7) = h(—7)

* Ryy(7) = Ryy(7) * h(—7) = Ryx(7) * h(7)
« X(t) &Y(t) are jointly w.s.s. if X(t) is w.s.s. because Y (1)
will be w.s.s.

* Example: For the same white noise example, find
Rxy(7) & Ryx(7)

¢ Ryy(D) = ["7 (%) 5(z — Dh(A)dA = 2 h(7)

* Ryx(7) =
ﬂj (%) 6(t = Dh(=A)dA = %h(—ﬂ = Ryy(=T7)




Module-V
Random Process-Spectral Characteristics




Power density spectrum




Introduction

O Fourier integral

X(t) = % (1] X0 drkdo

1 Fourier transform
X () = j“’ x(t)e ! dt

O Inverse Fourier
transform

1 g joot
x(t)—ZLOX(a))e do




Introduction (Contd..)

(t)= {;((t), ;/TW<t <T

Assume [ (0]t <oo, for all finite T.
_ [ —jot ¢ _ T — jot
X, ()= j_w X (t)e dt = j_T x(t)e 1 dt

1 Energy contained in x(t) in the interval (-T,T)

o ) T 5 1 ¢ 2
E(T) = LOXT (t)2dt = j_T X(t)?dt - LJXT (@) dow




Introduction (Contd..)

d Average power in x(t) in the interval (-T,T)

« | X (@)
P =[x dt=— L TZ(T”)| d

X(t) > X(t), take expectation, let T — .

J Average power in random process x(t)

El]X; ()]
Pex = |T|_|:£] j E[X(t) ]dt—_J‘ IT_I:OrO] o
SAMEXWT Py =] Sy (@)do
27 I
Sv =lim ElX; ()] power density spectrum

T—o 2T
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Example-1

= ME[X ()T}
wss. = Py, =R, (0)
3 Example- X (t) = A cos(w,t+©) O --uniformly distributed on (O,%)
1
E[X (t)*]= E[ A cos’(am,t +B)] = E[AO +%c03(2a)0t+2®)]

A LA j ~cos(20,t + 20)46 = %3+2A‘—?8m(2w0t+29)|

2
= ﬁ—ﬁsin(Zcoot)
2

A
P, = ALE[X (t)*]}= |T| mor j ——7sm(2a)0t)]dt =




Example-2

O Example- X (t) = A, cos(aw,t +B)

2 T — jot T 1 jO A Joot — O A= jopt A jort
XT(a)):j_TAbcos(a)(,H@)e . dt:.[_TAOE[eJ el +e Pem ™ e dt

— iej(@IT ej(wo_w)tdt-l-ie_j@j-r e—j(a)0+a))tdt
2 T 2 T

B io SIN[(@ —a,)T] o SIN[(@+@,)T]
A T T T




Example-2 (Contd..)

io SIN[(@—a,)T] io SIN[(@ +w,)T]

X; (@) = ATe 0—a)T +ATe P
X. (@) = ATe ® M@ =0T s 7o SiNf(@+0,)T]
T (@ )T (0+0)T

, SIN’[(@-))T] L, sin’[(@+a,)T]
(0—w,)°T? (0+a,)°T?

sinf(w —a,)T]sin[(®+w,)T]

(- Wy )T (o + W, )T

|XT (0))|2 = X; (@) X; (@) = AT

+ 2T2(ej2® _I_e—jZG))

E[e'*® +e71*°]=E[2c0s20] = j 20032<9d«9—§sm26’§’2=0
T

E[|XT(a))| Aoyz[T sin’[(w — a)O)T] T sin’[(@ + w,)T]
2T 2 7 (0—w,)°T? 7z (0+w,)"T°
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Example-2 (Contd..)

jsm XdX .
<X

T sin (aT)da I Tsm xid _1 (@)
- (aT)? =gz X T
jim SN (@T) ={OO’ Ta=0 )
Too 7 (aTl) 0, if a#0
(@) & (b) = |imTSi”2(“2T)=5(a)

T—w© g1 (aT)

S () = lim EL ()
1

P == Sy (a))da):% ji%[§(a)—wo)+5(a)+a)o) d

27T 4

— Ai” [6(0—@,) + (@ +@,)]




Properties Power density spectrum

Properties of the power density spectrum:
(D) Sy (@)=0
(2) X(t) real = Sy (@) =S, (0)

(3) S, () is real E[|X; (@) ]

S () = lim

1 o 2 oT
() |, S (@)do= MEDX ()}
T
PROF(2): X, (w) = [ X (et
X (@) =[_X@e"dt=[_X(®edt=X,(-w)
Sxx (—0)) —lim E[XT (_a))XT (—C())*] —lim E[XT ((())* XT (d))] _ Sxx ((())

T—o0 2T T—o0 2T
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Properties Power density spectrum

Properties of the power density spectrum

(5) S, (0)=0Sy (@) %x(t):"m X (t+¢)-X(t)
e—0 &
PF of (5): )
| ”mX(t+5)—X(t), TeteT
XT (t)=< e—0 g
0, o/w

\

f(t-a) «——> F(w)e
X; (@)e'™ = X; ()

X, (1) > lim =jw X (o)
£ &
. 2
E[|X; (@ E[l joX. (o) E[IX. (o)
S () =1im [X: )‘]:Iim lioX @)1 _ o i EX @ o
XX T o0 T T 00 i T i




Properties Power density spectrum

Bandwidth of the power density spectrum
X(t)real = S, (w) even

© 2
S, (@) lowpass form = we - Low Syx (w)dw
root mean square Bandwidth LOSXX (w)da
J'Ooa)sxx (0)do
S (w) bandpass form = @, =% mean frequency
[, Sux (@)de

4] (0-2,)' S (@)do
(s (@do

rms BW




Example

Sy () = 10 S,y (w) lowpass form

[1+(a)/10)2]2
10 7l?2 10
S do do =
j XX () j_w [1+ (a)llO) ] j—ﬁ/2[1+tan2 01
:J-ﬂ/Z 100

: 100c0s70 40 = [** 1002°°%2 49~ 507
-rl2sec” @ 2

wl2

10sec’ 6 dé

dej

wl2

w=10tand = dw =10sec’d do

10sec’ 6 dé

j 100" Aoy — sz 10°tan” @
< [1+ (w0 /10)°] -12[1+ tan® @]
_ rzlz 10" tan® @

-712 sec’ @

[” @S (@)de

jm 10* 1-cos 26

—7l2

do =" 10*sin*6 dg = o
- sin?6 dg = d0.=50007

-2
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f ®°S,, (w)dw

=100

| 8y (@)do

rms BW  W_. =10 rad/sec

10

Syx (@) =

[1+(w/10)°]




Relationship between PSD and autocorrelation

%K@Sxx (@) do = ARy (t,t+7)]

Sex (@)= [~ ARy (tt+7)]e " dz

SXX (a)) — lim E[XT (0))* XT (CO)] — lim i E[IjT X (tl)eja)tldtl J‘;I-T X (tz)e—jwtzdtz]

T > 2T T o0 2T

Clim—= " [T E[X ()X (t,)]e P dtdit
_T—>002T J-T J-T 1 2 2

1 T T .
=lim o ] ) Roc (bt )e ™t
1 1

-~ [ Sy (@)e do = - | tim = j_T j Ry (t,1,)e it dt, e dew
1

T . 3
‘leEj j Rxx(tit)—j eloot)d gt dlt,
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Relationship between PSD and autocorrelation

[”styedt=1
o) «——— 1 1
5t)=—| e"do

27 ¥~
1 jor 1 g7
ZJ S, (w)e d”‘!'ﬁ"ﬁj j Ry (t,1,)5(r +1,—t,)dt,dt,
= lim ZTI Ry (Lt +7)dt, = lim ZTj R, (t,t+7)dt

= AR, (t,t+7)]

AR (t,t+7)] — Syx (@)

Syx (@) = _Co AR, (t,1+ T)]e_jmdf



Relationship between PSD and autocorrelation

o X(t) wss. = AR, (t,t+7)]=R. ()

Ryx (7) > Syx (@)

Syx (@) = J._z Ryx (r)e ' dr

L (= joT
Ryx () = ZJ_@SXX (0)e"”"do




Example#l

0 X(t) = Acos(a,t +O)

Ry (7) = cos(w, )

N‘?
N N

R () = = (€ +&7) M

x(te o X(w-a)

1« 275(w) .

Syx (a))z%[ﬁ(a)—a)o)+§(a)+a)o)] ‘ O



Example#2

X(t) --w.s.s.
R (r)_<A°[1_U’ ~T<7r<T
XX

0 elsewhere

\

* - jor 0 U\ —jor T U\ —jor
Sex (@)= | Ry (z)e” drzAO'[_T(H?)e‘ dr+A | (1-2)e " dr
0 U\ —jor 0 A\ joa T U\ .jor
_[_T(1+?)e’ dr =] (1- 26" (~de) = } (1-—)e""dr

S (@)= A, (L-2)(E" e *)dr =27 [ (1-2)cos(wr)dz

T , -1 , 1 .
v=l-— = V=—  U=cos(wr) = U=—
T T




Example#2

T sin(a)r)

T
S (0) = 2A,(1- - i3

T 0

2A, ¢7sIN(wt
N Aoj' ( )dT
T

_2A —cos(za)r) _ ZTAb[1_cos(a)T)]
T o |, ol

L sin*(@T/2)

=4A ==

= AT Sa*(wT /2)

sin®(wT /2)
(0T 12)°

AT




Cross-power density spectrum

W (t) = X (1) +Y (t)

Ry (Lt+7)=EWOW (t+7)]=E{[X{M)+Y®)I[X{t+7)+Y(t+7)]}
=R, (t,t+7)+ R, (t,t+7)+R,, (t,t+7)+ R, (t,t +7)

Sww (@) = Sy (@) + S,y (@) + F{AIR,, (t,t+ 7)1} + F{AIR, (t,t +7)]}

—



Cross-power density spectrum

(0)= {x(t) ;/TW<t<T yT(t):{())/(t), ;/TW<t<T

Assume j_TT|xT(t)|dt<oo & j_TT|yT(t)|dt<oo, for all finite T.
X () «—— X; (o) Y; (1) «—— Y; (o)

Cross Power contained in x(t), y(t) in the interval (-T,T)

j X (60) Yi(@)

P M=o [ % 0y Odt=1 [ xOy©d=

Parseval's theore




Cross-power density spectrum

average Cross Power contained in X (t),Y (t) in the interval (-T,T)

P (M) = j R (& t)dt_ﬂ - 24 (az)iY(w)]dw

total average Cross Power contained in X (t),Y (t)

E[X; (@) Y; ()]
XY _'Il'l—r>n 2T j RXY (t t)dt T o —oo'II'I—>oo 2T da)
__E[X;(@)Y.
Cross-power density spectrum S,y () :!Lrg X (az)i r(0)]

324



Cross-power density spectrum

1 e
Poy = 2_j OOSXY (w)dw

SYX (a)) — I|m E[YT (0))* XT (CO)]
T 27

1 ¢ «
Rx = EL}O Sy (w)dw = PR,

Total cross power = P,, + P,

X (t),Y(t) orthogonal = P, =R, =0



Properties of cross-power density spectrum

X(1),Y(t) real
Properties of the cross-power density spectrum:

D) Sy (@) =S (-®) =Sy (a))*

PROF(L): X (@)=[_ X (e dt

X (@) = x@ye"dt=[_X(t)e"dt =X, (-0)

SY)(( C())—Ilm E[YT( 0)) X ( a))]—l E[YT(CO)X (a))] S

T—0 2T T—>oo 2T

SY)(( C())—Ilm E[YT( (0) X ( a))]_“ E[YT(a))X (a))] S

T —w T T —w

v (@)

YX (a))*
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Properties of cross-power density spectrum

(2) Re[S,,(®)] & Re[S,, (w)] --even
(3) IM[S,, ()] & IM[S,; ()] - odd
AR, (t,t +7)][«——>S.., (w)
AR (t,t+7) [« S, (@)
(4) X(t) &Y(t) orthogonal = S, (@)= S, (®)=0
X(t) &Y(t) orthogonal = R,,(t,t+7)=0 = A[R,,(t,t+7)]=0

(5) X(t) &Y (t) uncorrelated & have constant mean X,Y
= S, () =S, () =27XY ()
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Properties of cross-power density spectrum

PFof (5): R, (tt+7)=XY = AR, (t,t+7)]=XY

= S, (@) =27XY(w) =S, (®)

X(t),Y (t) - jointlywss. = Ry (1) <« S (»)

Rx (7) — Syx (@)




Example#l

X(1),Y(t) --jointly w.s.s.

S () a+ jbo/W, —-W<ao<W
)=
. 0, o/w
W
1 b 1 bw, e 1w b
R = a+j—e"do=—/(a+ elrd
o (7) = 272'““W( JW) v 272( JW) IT |, 272'““WWZ' v
1 @+ (a-joe™ 1 be ||
27 T T 2 jWr*|
Wz - Wz . _ jor Aot
1 [ge .e +9(ejwf+e_JW,,)]_ 1 bze .e
27z T J T 2t Wt J

= isin(\Nr) +£cos(\Nr) D ~sin(Wr)
T T oWt




Example#2

X(1),Y(t) --jointly w.s.s.

@Ry (@)
8
Syy (@) = : a>0 L~
T (v jo)
0 2 (a)-’lt 6
u(r)r’e™ «—— 2 Sisyio
(o + jo)’

R, (7) =4u(r)r’e™ / \




Relationship between C-PSD and cross-correlation

%-‘isxv (@) do = ARy, (t,t+7)]

Sy (@)= " AR, (t,t+7)]e " dr

Sy (@) =1im ELX, (“;Y (‘”)]_lm—E[j X (t,)e'dt, j Y (t,)e "t ]
Cim— [T [T ELX (L)Y (6, )t d
T—)ooZTo—To—T 1 ’ 271
timt [T [T jo(4-t,)
=lim [ [ Re (6, )™ 2dtydt,
1 ® jot . 1 T jo(t-t,) jot
Ej_wsw(m)e dw_gj_wmﬁj j R, (t,t,)e Y dt dt, e’ dew
_ 1 1 jo(r+41)
_prgoﬁj_Tj_TRXY(tl,tZ)Zj e dwdt,dt,
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Relationship between C-PSD and cross-correlation

i} [ sedt=1
ot) «—— 1 ”

50 =— [ edw

27 7~
1 ¢ - o1 T ot
— | Sy (@)e do = lim— | [ Ry (t1)3(z +t —t,)dlt,dit
= lim 2Tj Ry (bt +7)dt, = lim ZTj R, (t,t+7)dt
= AR, (t,t+7)]

AR, (t,t+7)] > Syy (@)

Sy (@)= ARy (tt+7)]e " dz



Example

Example:

Ry, (t,t+7)= %{sin(a)or) +cos[w, (2t +7)]}

N
ARy (t,t+ )] =lim j_T R, (t,t+7)dt

AB AB . 1 (T
= —=sin(o,r) +—=lim — || cosla, (2t +)]dt

AB . AB _ . -
=—sin(w,r) =—I[e'™" —e '™

— 7 AB

Syy (@) = 2—?[272’5((0 —w,) - 270 (0 +w,)] = [0(w—-w,)-d(0+w,)




Linear system fundamentals

Linear System y(t) = ﬁo X(Eh(t,E)dE mu—s o oo
ot-¢) — Nh(t,é) Impulse response hf;f)
Linear Time-Invariant System (LTI system) )= > Oy
v = XONE-Ode = hEx(t-£)de o

()

y(t) = x(t) *h(t) = h(t) = x(t) convolution integral
Y(w)=X(w)H(w)

y(t) ] n©e"Vdg

xt)=e' =
O X(t) gl

= [ h(&)e " d¢ = H(@)
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Linear system fundamentals

R
Example-1: H(s) = L
P ) sL+R o——Tu0 0
H ( (()) _ R Input x(f) R Outputy(f)
joL+R
0 0
LTI causal < h(t)=0 fort<O

LTI stable < J'jo|h(t)|dt<oo




Linear system fundamentals

|deal lowpass filter ) ox 0@
H ( ) e_jt"“’, |CO| <W \\\\\\ |H @)
)= -w O\‘\\\\I/I:\ )
0, o/w @ 0w
h(t) = LM eegivgg, = —_[ el d g
2 d-W ~W | H (@) or 0@)
W s H@) 1 L
_ 1 1 pllt-t)e \\\\
272- J(t - to) W 0 \‘\\\\\\\\\\ w
1 eltW _ o=i(t-to)W ®) 0(w)
27 J (t o to) |H(@)] or 0 @)
W sin[(t —t,)W] %W* y S
- iy |H (@)
7T (t_to)W 76100 \\\o

Not causal = Not physically realizable



Random signal response of linear systems

X(t) --w.s.s. random input Y(t)= f:o h(E)X(t-<&)dE

ElY ()] =E[| h(&)X(t-£)dél=] h(&E[X (t-&)dé

=X[ h@de=Y
R, (t,t+7)=E[Y ()Y (t+7)]

=E[[ hE)X-&)d&[ hE)X (t+r-£)dE]
= [ [ EIX(t-&)X(t+7-&)hE)N(E,)dE4dE,
= _O:O R (7 +& =&,)(&,)N(E,)d&,dS,

o —0 ¢

X() wss. = Y(t) ws.s.




Random signal response of linear systems

Ry (1) = [ [ Ry (z+& - E)N(E)AEIN(E, ),
= [ 1] R (=& -&)N(=E)dEIn(E,)dE,

— '_ Ryx (&) * (= 51)|§ ., N(&,)ds,
=Ry, () *h(-7) *h(r)

EY(1)1=] [ Ry (& -&EIN(E)dES,

Example-1: white noise X (t) Ryx (7) =(N,/2)6(7)
ELY(0°1=] | (No/2)8(4 - )N(EN(E,)dEdE,

=(N,/2)[ h(&,)dg,




Random signal response of linear systems

Rey (Lt+7) = EIX Y (t+2)] =E[X(®)[ h(&)X (t+7-&)dé]
= [ EIX@OX(t+7-&)h(£)dé

=" Ry (z=&)N(£)dé
=Ry () *h(r) =Ry, (7)

R (7) = Ryy (=7) = Ry (=7) *h(=7) = Ry (7) ¥ h(~7)
=" Ry (r-O)h(=¢)de

X(t) wss. = X(t) &Y(t) jointly w.s.s.

Ry (7) =Ry (7) *h(=7) = Ry, () *h(z) -




Random signal response of linear systems

Example-2: white noise X (t) Ry (7) = (N, /2)0(z)

Ry (1) =R (1) %h(2) = | Ry (r=£N(§)ds
=" (N, 12)8(z - &)h(£)dE = (N, /2)h(z)

R (7) = Ryy (=7) = (Ny /2)h(-7)




Spectral characteristics of system response

Ryy (7) = Ry () *h(7) Sy (@) =Sy (@)H (@)
Rix (7) =Ry (7) #h(-7) Syx (@) = Sy (@)H (-w) = S (w)H (a))*
Ry (7) = Ryy (7) ¥h(=7) = Ry () *h(z) *h(-7)

Syy (@) =Sy (w)H (CO)* =S,y (@)H (w)H (a))* = Syx (a))|H (0))|2

hr) <> H(w)

h(r) real = h(-r) <" H(-®)=H(w) l



Spectral characteristics of system response

average power p_ = % r:o S, (w)dw = % f;sxx (@)|H ()| do

Example-1: N 1
Sy (@) = — H(w) = :
2 1+ (JjwL/R)
N, /2
S, (@) =S, (@)|H (@) = ’
YY( ) XX( )| ( )| 1-|-(C()L/R)2
1 ¢ N, ¢ 1
P.=—| S, (0)do=—L do
" Zﬂj—w w (@) 4ﬂj-wl+(wL/R)2
:& 7l?2 1 : Bsecz Hd@: NORJ‘ﬂIZ d0: NOR
Ar-=21+tan“ 6 L AL 2-=l2 4L




Spectral characteristics of system response

1
1+(joL/R)

hit)=(R/Lut)e™" <~ H(w)

By Example-1,

_ No * 2 1 No * 2 \2Rt/L ¢ NoR 2Rt/L|® NoR
PW_TLOh(t) dt—7jo (RIL)e™™Hdt=—2 |

e

0 4L




Random process through a LTI System

Impulse 0
X(r) == response —= Y(r) Y (D)= J‘_OO h(z))X(t—7,)dy
h(t)

where h(t) is the impulse response of the system
Ly (1) = E[Y(t)]
— E[ Th(z)X(@—1) d ]
If E[X(t)] is finite | h@)X(—) dr,
. I o
and system is stable  __ .Lo h(z,)E [x(t B 751)] dz,

If X(t) is stationary, N h(z,) ey (¢ —7,) dr,
H(0) :System DC response’ "

Hy = Hy J-:h(fl) dr, = 1y H(0),
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Random process through a LTI System

Consider autocorrelation function of Y(t):

R, (t.20) = E[Y ®)Y (11)]

—E| [ @)X (@) dn [ h(@)X (u-,) dr, |
IfE[ X *(t)] is finite and the system is stable,

R/(tu)=[ " drh(z)|  dr, h(t,)Ry (¢t —1,, 11 —7,)
F Ry (t—7,t—7,) =Ry (t—p—17, +17,) (stationary)
R, (7) = J:: J:: h(z )h(z,)Rx(t —t,+1,) dr, dt,

Stationary input, Stationary output

R, () =E[Y*)|=[ [ h(z)h(z,)Ry (z, —7,) dr, dr,
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Power Spectral Density (PSD)

Consi

G(f) =] g(®)exp(~j2mf)dt
9(t) = | G(f)exp(j2mf) df

Let H(f ) denote the frequency response,
h(r,) = | H(f)exp(j2xfr,) df
e[V o= j:[ [“H(yexp(j2r fr) df} h(z,)R, (z, - 1,) ds, ds,
= : df H(f) j_:drzh(rz) ji R, (z, — 7, Jexp(j2r fr,) dt,

= [ df H()[ dehr, Jexp(j2x fr,)[ R, (z)exp(-j2z fr) dz

er the Fourier transtorm of g(t),

T =72-T1

H | (f) (complex conjugate response of the filter)
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