

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	PRECIS	PRECISION ENGINEERING						
Course Code	AME51	AME512						
Programme	B.Tech	B.Tech						
Semester	V	V ME						
Course Type	Professional Elective							
Regulation	IARE - R16							
	Theory				Practical			
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits		
	3		1	3	-	-		
Chief Coordinator	Mr. G. Sarat Raju, Assistant Professor							
Course Faculty	Mr. G. S	larat	Raju, Assistant	Professor				

I. COURSE OVERVIEW:

Precision engineering concerns the manufacture of items that have a wide range of sizes, from those that are as large as the satellite rocket launcher to ones that are as small as the microchip. The absolute dimensions of the size of precision-engineered products vary widely, but the reality is that the relative accuracies involved can be comparable. Precision engineering is therefore thought of as being heavily dependent on metrology parameters such as length and angle. Its objective in the widest sense is the manufacture of materials and components, the development of manufacturing processes, the design and the manufacture of high-precision machine tools measuring devices and their control systems.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS008	Π	Modern Physics	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Precision Engineering	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component	ent Theory			
Type of Assessment	CIE Exam	Quiz / AAT	1 otar Warks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO 1	Engineering knowledge: Apply the knowledge of	3	Presentation on
	mathematics, science, engineering fundamentals, and		real-world problems
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminar
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Term Paper

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 1	Professional Skills: To produce engineering	1	Seminar
	professional capable of synthesizing and analyzing		
	mechanical systems including allied engineering		
	streams.		
PSO 2	Software Engineering Practices: An ability to adopt	-	-
	and integrate current technologies in the design and		
	manufacturing domain to enhance the employability.		
PSO 3	Successful Career and Entrepreneurship: To build	-	-
	the nation, by imparting technological inputs and		
	managerial skills to become technocrats.		

3 = **High**; **2** = **Medium**; **1** = Low

VIII. COURSE OBJECTIVES :

The course should enable the students to: I Understand the BIS code fits and tolerances for geometrical dimensioning and tolerance (GD & T). II Understand the principal application of different measuring instruments. III Summarize the application of latest manufacturing techniques (Nano).

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describes the General	CLO 1	Describes the General concept of accuracy.
	concept of accuracy, dimensional wear of	CLO 2	Describe dimensional wear of cutting tools, clamping errors & setting errors.
	cutting tools, location of rectangular prism	CLO 3	Describes how to location of rectangular prism & cylinder.
	alignment tests.	CLO 4	Describes basic type of tests and measuring instruments used for testing machine tools.
CO 2	Understand the Influence	CLO 5	Describes the Influence of static stiffness.
	of static stiffness, thermal effects, compliance of	CLO 6	Describes thermal effects and methods of decreasing thermal effects,
	work piece, Influence of	CLO 7	Describes the compliance of work piece
	vibration on accuracy.	CLO 8	Describes the Influence of vibration on accuracy.
CO 3	CO 3 Explains Top down and		Describes the importance of Top down and bottom up approach.
	development of Nanotechnology,	CLO 10	Explains the development of Nanotechnology, precision and micro-machining, Stereo microlithography.
	precision and micro- machining, Stereo		Explains the development of precision and micro- machining.
	microlithography.	CLO 12	Explains the development Stereo microlithography.
CO 4	Describes Nano	CLO 13	Classify the various Nano Measuring systems.
	Measuring Systems such	CLO 14	Discuss the various Mechanical measuring systems
	as mechanical measuring systems, optical	CLO 15	Discuss the optical measuring systems, electron beam measuring system.
	measuring systems.	CLO 16	Discuss the pattern recognition and inspection systems.
CO 5	Explores various types of	CLO 17	Classify the various Lithographies.
	Lithography ,ion Beam lithography, optical lithography, LIGA	CLO 18	Describe the importance of Nano lithography & electron beam lithography
		CLO 19	Describe the importance of ion Beam lithography & optical lithography
	lithography, deep UV.	CLO 20	Explain LIGA Process, Dip Pen Lithography & deep UV.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AME512.01	CLO 1	Describes the General concept of accuracy.	PO 1	3
AME512.02	CLO 2	Describe dimensional wear of cutting tools, clamping errors & setting errors.	PO 2	1
AME512.03	CLO 3	Describes how to location of rectangular prism & cylinder.	PO 1	3
AME512.04	CLO 4	Describes basic type of tests and measuring instruments used for testing machine tools.	PO 1	3
AME512.05	CLO 5	Describes the Influence of static stiffness.	PO 2	1
AME512.06	CLO 6	Describes thermal effects and methods of decreasing thermal effects,	PO 2	1
AME512.07	CLO 7	Describes the compliance of work piece	PO 2	1
AME512.08	CLO 8	Describes the Influence of vibration on accuracy.	PO 2	1
AME512.09	CLO 9	Describes the importance of Top down and bottom up approach,	PO 4	1
AME512.10	CLO 10	Explains the development of Nanotechnology,	PO 4	1

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
		precision and micro-machining, Stereo		
		microlithography.		
AME512.11	CLO 11	Explains the development of precision and micro- machining.	PO 2	1
AME512.12	CLO 12	Explains the development Stereo microlithography.	PO 2	1
AME512.13	CLO 13	Classify the various Nano Measuring systems.	PO 4	1
AME512.14	CLO 14	Discuss the various Mechanical measuring systems	PO 2	1
AME512.15	CLO 15	Discuss the optical measuring systems, electron	PO 2	1
		beam measuring system.		
AME512.16	CLO 16	Discuss the pattern recognition and inspection	PO 1,	3
		systems.	PO 4	
AME512.17	CLO 17	Classify the various Lithographies.	PO 1,	1
			PO 2	
AME512.18	CLO 18	Describe the importance of Nano lithography &	PO 1,	3
		electron beam lithography	PO 4	
AME512.19	CLO 19	Describe the importance of ion Beam lithography	PO 1,	1
		& optical lithography	PO 2	
AME512.20	CLO 20	Explain LIGA Process, Dip Pen Lithography &	PO 1,	3
		deep UV.	PO 4	

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)							
Outcomes (COs)	PO 1	PO 2	PO 4	PSO1				
CO 1	3	1		1				
CO 2		1						
CO 3		1	1					
CO 4	3	1	1	1				
CO 5	3	1		1				

3= High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								Prog Outo	ram Sj comes (1	pecific PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2		1													
CLO 3	3												1		

Course	Program Outcomes (POs)									Program Specific					
Learning					TTUGT		utcom	cs (1 U	(3)				Outcomes (PSOs)		PSOs)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CLOs)															
CLO 4	3												1		
CLO 5		1													
CLO 6		1													
CLO 7		1													
CLO 8		1													
CLO 9				1											
CLO 10				1											
CLO 11		1											1		
CLO 12		1											1		
CLO 13				1											
CLO 14		1													
CLO 15		1													
CLO 16	3			1									1		
CLO 17	3	1											1		
CLO 18	3			1									1		
CLO 19	3	1											1		
CLO 20	3			1									1		

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4,PSO1	SEE Exams	PO1, PO2, PO4,PSO1	Assignments	PO1,PO2, PO4,PSO1	Seminars	PO1, PO2, PO4,PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4,PSO1						

XIV. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I	ACCURACY AND ALIGNMNET TEST							
Accuracy and	alignment tests: General concept of accuracy, Spindle rotation accuracy, test methods,							
displacement a	displacement accuracy, dimensional wear of cutting tools, accuracy of NC systems, clamping errors,							
setting errors, location of rectangular prism, cylinder, basic type of tests, measuring instruments used for								
testing machine tools, alignment tests, straightness, flatness, parallelism, squareness, Circularity,								
cylindricity.								
Unit-II	INFLUENCE OF STATIC STIFFNESS, THERMAL EFFECTS							
Influence of st	tatic stiffness, thermal effects: Static stiffness, nature of deformation in a machine tool,							
overall stiffnes	ass of a lathe, compliance of work piece, errors due to the variation of the cutting force and							
total complian	ce, accuracies due to thermal effects, methods of decreasing thermal effects-Influence of							
vibration on ac	ccuracy.							
Unit-III	INFLUENCE OF STATIC STIFFNESS, THERMAL EFFECTS							
Top down and	bottom up approach, development of Nanotechnology, precision and micro-machining,							
diamond turnii	ng of parts to nanometer accuracy.							
Starao microli	ithography machining of micro sized components mirror grinding of coramics ultra							
precision block	components, machining of mero-sized components, mirror grinding of certaines, dida							
Unit -IV	PRECISION MACHINING							
In-process me	assurement of position of processing point, post process and online measurement of							
dimensional i	eatures, mechanical measuring systems, optical measuring systems, electron beam							
measuring syst	terns, pattern recognition and inspection systems.							
Unit -V	LITHOGRAPHY							
Nano Lithogra	aphy: Photolithography, nano lithography, photolithography, electron beam lithography,							
ion Beam lithe	graphy, optical lithography, LIGA process, dip pen lithography, deep UV.							
Tort Doolva								
1 Musther D	L Descision Engineering in Manufasturing New Asselutemeticus New Delhi 2005							
1. Murthy.R 2 Norio Tat	L, —Precision Engineering in Manufacturing, New Age International, New Deini, 2005.							
2.1(0110-141	ngaeni, Tanoteennoregy, enrora anterony press, cantorage, 1990.							
Reference Books:								
1. Lee Tong	Hong, —Precision Motion control, Design and Implementationl, Springer Verlag, U.K.,							
2001. 2 Liangehi	Thang Precision Machining of Advanced Materials Trans Tech Publications I td							
Switzerland	1^{st} Edition, 2001.							
3. Hiromu N	Jakazawa, —Principles of Precision Engineeringl, Oxford university press, 1st Edition,							
1994.								

XVI. COURSE PLAN:

Lecture	Topics to be covered	Course	Reference
No	•	Learning	
		Outcomes	
		(CLOs)	
1	Describe the General concept of accuracy,	CLO 1	T2:2.3
2	Describe dimensional wear of cutting tools, clamping errors & setting errors	CLO 2	R1:2.6
3	Describes how to location of rectangular prism & cylinder.	CLO 3	T1:2.6
4	Describes basic type of tests used for testing machine tools.	CLO 4	T2:2.7
	Describes basic type of measuring instruments used for testing		R1:2.18
5	machine tools.	CLO 4	12.2.22
6	Describes the Influence of static stiffness.	CLO 5	T2:2.25
7	Describe the thermal effects and methods of decreasing thermal	CLO 6	T2:2.26
	effects,		R1:2.55
8	Describe the methods of decreasing thermal effects,	CLO 6	T2:2.16
			R1:2.61
9	Describes the compliance of work piece	CLO 7	T2:2.30
			R1:2.58
10	Describe the Influence of vibration on accuracy.	CLO 8	T2:3.6
10			R1:4.29
11	Describe the importance of Top down and bottom up approach.	CLO 9	T2:3.14
			R1:4.31
12	Explain the development of Nanotechnology.	CLO 10	T2:3.14
		<u> </u>	R1:4.33
13	Explain precision machining.	CLO 11	R1:4.36
14	Explain micro-machining, Stereo microlithography	CLO 11	T2:3.18
15	Explain Storeo microlithography	CLO 12	K1:4.04 T2:2.22
15		CL0 12	12:3.22
16	Explain In-process measurement of position of processing point.	CL0 13	R1:4.67
17	Explain post process measurement of position of processing	CLO 13	T2:4.2
	point. Explain online measurement of dimensional features.	CLO 13	T2:4.3
18		02010	R1:4.71
10	Describe mechanical measuring systems,	CLO 14	T1:4.8
19			R2:4.68
20.21	Explain optical measuring systems,	CLO 15	T2:4.15
20-21			R1:5.74
22	Describe electron beam measuring systems,	CLO 15	T1:4.12
		01.0.16	R2:5.75
23-24	Understand the pattern recognition and inspection systems	CLO 16	T1:4.8
	Classify the verieus Lithermonties	CL O 17	R1:5.72
25	Classify the various Lithographies.	CLU 1/	R1:5.73
	Describe the importance of Nano lithography.	CLO 18	T1:5.14
26-27	r		R1:6.78
20	Describe electron beam measuring systems,	CLO 15	T2:5.19
28			R1:6.81
20.20	Understand the pattern recognition and inspection systems	CLO 16	T1:6.4
29-30			R2:6.8

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes	
		(CLOs)	
21	Describe the importance of Nano lithography.	CLO 18	T2:7.7
51			R1:7.74
37 33	Describe the importance of electron beam lithography	CLO 18	T1:7.12
32-33			R2:8.75
34	Describe the importance of ion Beam lithography	CLO 19	T1:7.8
54			R1:8.72
35	Describe the importance of optical lithography	CLO 19	T1:8.8
35			R1:8.73
26	Explain LIGA Process.	CLO 20	T1:9.14
50			R1:10.78
27.29	Explain Dip Pen Lithography	CLO 20	T2:9.19
37-38			R1:10.814
20.40	Explain deep UV process	CLO 20	T1:10.4
39-40			R2:11.68
41.42	Describe the importance of Nano lithography.	CLO 18	T2:10.7
41-43			R1:12.74
11 15	Describe the importance of electron beam lithography	CLO 18	T1:11.12
44-45			R2:12.75

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed	Relevance With	Relevance With
		Actions	POs	PSOs
1	To improve standards and	Seminars	PO 1	PSO 1
	analyze the concepts.			
2	To understand the technology of	Seminars /	PO 4	PSO 1
	thermo-electric refrigeration, solar	NPTEL		
	powered refrigeration, etc.			
3	Encourage students to solve real	NPTEL	PO 2	PSO 1
	time applications and prepare			
	towards competitive examinations.			

Prepared by: Mr. G Sarat Raju, Assistant Professor

HOD, ME