

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	HYDRAULICS AND HYDRAULIC MACHINERY
Course Code	:	ACE011
Program	:	B. Tech
Semester	:	V
Branch	•••	Civil Engineering
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty	:	Dr. P. Ram Mohan Rao, Professor & Head Mr. Ch. V. S. S. Sudheer, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:						
т	Strengthen the knowledge of theoretical and technological aspects of hydrodynamic forces on						
1	jets.						
Π	Correlate the principles with applications in hydraulic turbines.						
III	Apply the practical applications on Francis and Kaplan turbine.						
IV	Analysis the similarities between prototype and model types of hydraulic similitude.						

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code			
	MODULE-I								
1	Define open channel flow	Flow of liquid with a free surface (i.e., surface exposed to atmosphere) through any passage is known as open channel flow	Remember	CO 1	CLO 1	ACE011.01			
2	Define the term uniform flow.	If the depth of flow, slope of the bed of channel and cross section remain constant with respect to distance is called uniform flow.	Remember	CO 1	CLO 1	ACE011.01			
3	What is Gradually varied flow	If the depth of flow changes gradually over a long length of the channel.	Remember	CO 1	CLO 1	ACE011.01			
4	What is Rapidly varied flow	If the depth of flow changes rapidly over a small length of the channel.	Remember	CO 1	CLO 2	ACE011.02			
5	What the formula for Froude number	Froute Number = $F = \frac{V}{\sqrt{g X D}}$	Remember	CO 1	CLO 2	ACE011.02			
6	Define hydraulic mean depth of the channel	Ratio of cross sectional area of flow to top width of the channel	Remember	CO 1	CLO 3	ACE011.03			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
7	Define specific	Depth of flow of water at which	Remember	CO 1	CLO 3	ACE011.03
	energy.	the specific energy. E is				
		minimum is called as critical				
8	Define critical	$\frac{\text{depth}(y_c)}{\text{Depth} \text{ of flow of water at which}}$	Pomomhor	CO 1	CLO 3	ACE011.03
0	flow	the specific energy is minimum	Kemember	01	CLO 5	ACLUII.03
9	Define sub	When the depth of flow in a	Remember	CO 1	CLO 3	ACE011.03
	critical flow.	channel is less than the critical				
		depth yc. It is also called as				
		called as streaming flow or				
10		tranquil flow.		GO 1	CT O I	
10	Define super	When the depth of flow in a	Remember	COT	CLO 4	ACE011.04
	critical flow.	critical depth vo It is also called				
		as called as streaming flow or	1.1			
		tranquil flow.				
11	Define Prismatic	Geometric dimensions of the	Remember	CO 1	CLO 4	ACE011.04
	channel	channel, such as cross section				
		and bottom slope are constant				
		throughout the length of the				
12	Define critical	Velocity of flow at the critical	Remember	CO 1	CLOS	ACE011.05
12	velocity	depth is called critical velocity	Kemember	COT		ACLOIT.05
	veroenty.	Vc.				
13	Define Non-	Geometric dimensions of the	Understand	CO 1	CLO 5	ACE011.05
	prismatic channel	channel, such as cross section				
		and bottom slope are constant	-			
1.4	Define and free	for length of the channel.	Densel	CO 1	CLO 5	A CE011.05
14	force and What is	specific force is the sum of the	Remember	01	CLU 5	ACE011.05
	specific energy	momentum force due to flow				
	speeme energy	(M) per unit weight of the liquid				
		at a section.				-
		Specific Energy $E = y + \frac{v^2}{2}$				
15	Define the flows	If $F = 1$ Critical flow	Remember	CO 1	CLO 5	ACE011.05
15	in open channel	If $F_r < 1$, Sub – critical flow	Remember	001	CLO J	ACLOIT.05
	based on Froude	If $F_r > 1$, super critical flow			1	
	Number (F _r)					
		MODULE-	П			
1	Define secondary	Secondary or Derived quantities	Remember	CO 2	CLO 6	ACE011.06
	units	are those quantities which				
		possess more than one				
		fundamental dimension	-			
2	Define	If the dimensions of each term	Remember	CO 2	CLO 6	ACE011.06
	Dimensional	on both sides of an equation are				
	nonlogeneity	as dimensionally homogenous				
		equation.				
3	Name the	If the number of variable	Understand	CO 2	CLO 6	ACE011.06
	Methods of	involved in a physical				
	Dimensional	phenomenon are known, then				
	Analysis	the relation among the variables				
		can be determined by the				
		1 Rayleigh's method				
		2. Buckingham''s $(\pi - \text{theorem})$				
		method				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
4	Write the	Modulus of elasticity $-ML^{-1}T^{-2}$	Understand	CO 2	CLO 7	ACE011.07
	dimensions for	Surface tension - MT ⁻²				
	the following	Dynamic viscosity - ML ⁻¹ T ⁻¹				
	quantities.	Torque - ML^2T^{-2}				
	Modulus of					
	elasticity, Surface					
	viscosity and					
	Torque					
5	State	If there are $n - variables$ in a	Understand	CO 2	CLO 8	ACE011.08
5	Buckingham's π	physical phenomenon and those	ondorstand	002	0200	TICE011.00
	Method	n-variables contain "m"				
		dimensions, then the variables				
		can be arranged into (n-m)				
		dimensionless groups called π				
		terms.		00.0	CT O O	A CE011.00
6	which of the	a. Geometric property - Length ,	Remember	CO 2	CLO 8	ACE011.08
	nonorties are	height, width, Area				
	used to select	Acceleration, Discharge				
	Repeating	c. Fluid property – Mass				
	variables	Density, Viscosity, Surface				
		Tension				
7	Define simili <mark>tude</mark>	It is defined as the similarity	Remember	CO 2	CLO 9	ACE011.09
		between the prototype and its				
0	Define Constants	model.	Demonstra	CO 2		ACE011.10
8	Define Geometric	if the ratio of corresponding	Remember	02	CLO IU	ACE011.10
	similarity	model and prototype are equal				
9	Define	if quantities such as velocity and	Remember	CO 2	CLO 10	ACE011.10
	Kinematic	acceleration at corresponding				
	similarity	points on model and prototype				
	5	are same.				
10	Define Dynamic	if ratio of forces at	Remember	CO 2	CLO 11	ACE011.11
	Similarity	corresponding points of model				2
11	Define Reynolds	The ratio of inertia force of the	Remember	CO 2	CLO 11	ACE011 11
11	number	fluid to viscous force.	Remember	002	CLO II	MCL011.11
12	Define Froude	The ratio of square root of	Remember	CO 2	CLO 10	ACE011.10
	number	inertia force to gravity force			100	
13	Define	Flow in model and prototype	Remember	CO 2	CLO 10	ACE011.10
	Reynolds's	can be established if Re is same		1925		
1.4	Model Law	for both the system.	Dente	00.2	CL 0 11	ACE011.11
14	Model Law	when the force of gravity is	Remember	02	CLO II	ACE011.11
	WIOUCI Law	inertia force then similarity can	1000			
		be established by Froude's				
		number.				
15	Write	Reynolds number, Froude	Remember	CO 2	CLO 11	ACE011.11
	dimensionless	number, Euler's number,				
	number	Weber's number and Mach				
		number.				
		MODULE-	ш			
1	What is the	Jet propulsion works on the	Understand	CO 3	CLO 12	ACE011.12
	principe involved	principle of Newton's third law.				
	m jet propulsion?					

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
2	What is the	The jet of water after striking	Remember	CO 3	CLO 12	ACE011.12
	direction of plate	the plate will move along the				
	for a stationery	direction of the plate.				
	vertical plate					
	after striking?					
3	What does Cv	In a jet propulsion, Cv stands for	Remember	CO 3	CLO 12	ACE011.12
	stand for in jet	velocity coefficient. It is defined				
	propulsion	as ratio of actual velocity to				
	equation and	theoretical velocity.				
4	define the same/	The fermula fer Dance - tage it	Development	CO 2	$CI \cap 12$	ACE011 12
4	what is the	The formula for Force when it	Remember	03	CLO 13	ACE011.13
	when jet of water	surves the flat fixed plate is aax^2				
	strikes the flat	μαν				
	fixed plate?		1.1			
5	What is the	The formula for force when it	Remember	CO 3	CLO 14	ACE011 14
5	formula for force	strikes the flat inclined plate is	Remember	005	CLO II	Inchornin I
	when iet of water	$oav^2 Sin\theta X Cos\theta.$				
	strikes the flat	F I I I I I I I I I I				
	inclined plate?					
6	What is the	The formula for force when it	Remember	CO 3	CLO 13	ACE011.13
	formula for force	strikes the fixed curved plate is	-			
	when jet of water	- ρav ² Sinθ				
	strikes the fixed					
	curved plate					
	when the jet					
	strikes at its					
-	center?			00.0	CI 0 14	A CE011.1.4
1	What is the	The formula for force when jet	Remember	CO 3	CLO 14	ACE011.14
	Iormula for force	of water strikes the fixed curved				
	strikes the fixed	strikes at one tip is 0				
	curved	strikes at one up is 0				-
	symmetrical plate					
	when the jet					
	strikes at one tip?					1.
8	What is the	The formula for force when jet	Remember	CO 3	CLO 14	ACE011.14
	formula for force	of water strikes the fixed curved			-	-
	when jet of water	un - symmetrical plate when the			Sec. 1	
	strikes the fixed	jet strikes at one tip is $\rho a v^2$				
	curved un -	(Sinθ – sinφ)			· · · · ·	
	symmetrical plate					
	when the jet	0.		~		
	strikes at one tip?			00.1		A GE011.12
9	What is the angle	The angle of swing of the plate	Remember	CO 3	CLO 12	ACE011.12
	of swing of the	about ninge for the plate to				
	for the plate to	is remain in equilibrium condition				
	remain in	15 ρav2				
	equilibrium	$\sin\theta = \frac{1}{W}$				
	condition?					
10	What is the	The formula for the force when	Remember	CO 3	CLO 13	ACE011.13
	formula for the	jet of water strikes the moving				
	force when jet of	flat plate is $\rho a (V - u)^2$				
	water strikes the	- · · /				
	moving flat					
	plate?					

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	What is the	The formula for the force when	Remember	CO 3	CLO 15	ACE011.15
	formula for the	jet of water strikes the moving				
	force when jet of	flat plate is				
	water strikes the	$F_{x} = \rho a X (V - u)^{2} X Sin^{2} \theta$				
	moving inclined	$F_y = \rho a X (V - u)^2 X Sin \theta X Cos \theta$		~ ~ ~	<u> </u>	
12	What is the	The formula for the force when	Remember	CO 3	CLO 14	ACE011.14
	formula for the	jet of water strikes the moving				
	force in both	curved symmetrical plate is $\sum_{i=1}^{2} N_i (1 + C_{i-1})^2$				
	directions when	$F_x = \rho a \mathbf{X} (\mathbf{V} - \mathbf{u})^{-} \mathbf{X} (\mathbf{I} + \mathbf{Cos} \theta)$				
	jet of water	$F_y = 0$				
	surves the					
	symmetrical					
	nlate?	-				
13	What is the	The formula for the force in	Remember	CO3	CLO 15	ACE01115
15	formula for the	both directions when jet of	Remember	005	CLO IS	MCL011.15
	force in both	water strikes the moving curved				
	directions when	un - symmetrical plate at one				
	jet of water	end of tip is				
	strikes the	$F_x = \rho a \mathbf{\dot{X}} \mathbf{V}_{r1} \mathbf{X} (\mathbf{V}_{w1} \pm \mathbf{V}_{w2})$				
	moving curved	$F_v = 0$				
	un - symmetrical					
	plate at one e <mark>nd</mark>					
	of tip?					
14	What is the	The formula for the force when	Remember	CO 3	CLO 12	ACE011.12
	formula for the	jet of water strikes series of flat				
	force when jet of	plates mounted on the runner is				
	water strikes	$F_{x} = \rho a X V X (V - u)$				
	series of flat	$F_y = 0$				
	on the runner?					
15	What is the value	The value of maximum	Remember	CO 3	CLO 15	ACE01115
10	of maximum	efficiency of the wheel when jet	Remember	005	CLO IS	MeLor1.15
	efficiency of the	of water strikes series of flat				
	wheel when jet	plates mounted on the runner is			- C	
	of water strikes	50 %				e
	series of flat				-	
	plates mounted				· · · ·	
	on the runner?				-	
		MODULE-	LV			
1	Define hydraulic	Turbines are defined as the	Remember	CO4	CLO 16	ACE011.16
1	turbines	hydraulic machines which	remember	007		
		convert hydraulic energy into				
		Mechanical energy.				
2	What are the	The following are the	Remember	CO 4	CLO 16	ACE011.16
	components of	components of hydroelectric				
	hydroelectric	power plant are A dam, pipes /				
	power plant?	penstocks, turbines and tail race.				
3	Define gross	It is defined as the difference	Remember	CO 4	CLO 17	ACE011.17
	head	between head race level and tail				
		race level when no water is				
		flowing. Denoted by Hg				
4	Define net head	It is defined as the head	Remember	CO 4	CLO 17	ACE011.17
		available at the inlet of the				
		turbine. It is also called as				
		it is defined as: $Un = U_n$ h				
		It is defined as: $\Pi I = \Pi g - \Pi_f$				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
5	Define hydraulic	Ratio of the power delivered to	Remember	CO 4	CLO 17	ACE011.17
	efficiency.	runner and power supplied at				
		inlet.				
6	Define	Ratio of the power at the shaft	Remember	CO 4	CLO 17	ACE011.17
	mechanical	of the turbine to power delivered				
	efficiency	by water to the runner.				
7	Define	Ratio of volume of water	Remember	CO 4	CLO 18	ACE011.18
	volumetric	actually striking the runner to				
	efficiency.	volume of water supplied to the				
0		turbine.		00.4	CL O 10	A CE011 10
8	Define Overall	Ratio of power available at the	Remember	CO 4	CLO 18	ACE011.18
	efficiency	shall of the turbine to the power				
		supplied by the water at the linet				
0	Classify the types	Based on the energy available	Remember	CO 4	CLO 10	ACE011 10
,	of turbines based	at the inlet turbines are	Keinenibei	CO 4	CLO 19	ACL011.19
	on the energy	classified as:				
	available at the	i Impulse turbine				
	inlet.	ii. Reaction turbine				
10	Classify the types	Based on the types of turbines	Remember	CO 4	CLO 20	ACE011.20
	of turbines based	based on the direction of flow				
	on the direction	through runner, turbines are				
	of flow through	classified as:				
	runner.	i. Tangential flow turbine				
		ii. Radial flow turbine				
		iii. Axial flow turbine				
		iv. Mixed flow turbine.				
11	Classify the types	Based on the head available at	Remember	CO 4	CLO 20	ACE011.20
	of turbines based	the inlet of the turbine, turbines				
	on the head	are classified as:				
	available at the	i. High head turbine				
	inlet of the	ii. Low head turbine				
10	turbine.	iii. Medium head turbine		GO (GT 0.00	1 00011 00
12	Classify the types	Based on the Specific speed of	Remember	CO 4	CLO 20	ACE011.20
	of turbines based	the turbine, turbines are				2
	on the Specific	classified as:				
	speed of the	1. Low specific speed			A	
	turbine.	iii High specific speed				
13	What are the	Following are the major	Remember	CO 4	CLO 20	ACE011 20
15	main components	components of Pelton wheel	Remember	0.04	CEO 20	1011.20
	of Pelton wheel	turbine.				
	turbine?	i. Nozzle		1		
		ii. Runner and buckets				
		iii. Casing				
		iv. Breaking jets				
14	What are the	Following are the major	Remember	CO 4	CLO 20	ACE011.20
	main components	components of Francis turbine.				
	of Francis	i. Casing				
	turbine?	ii. Guide mecahnisam				
		iii. Runner and				
		iv. Draft tube				
15	What is the	In case of Peton wheel turbine,	Remember	CO 4	CLO 20	ACE011.20
	difference	the plane of the runner is				
	between Pelton	parallel to horizontal axis and				
	Wheel turbine	while in the Kaplan turbine, the				
	and Kaplan	plain of the runner is parallel to				
	turbine.	perpendicular axis.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE-	V			
1	What are the main parts of centrifugal pump.	Following are the main parts of the centrifugal pump. i. Impeller ii. Casing iii. Suction and Delivery pipe	Remember	CO 5	CLO 21	ACE011.21
2	Define suction head	It is the vertical height of the center line of the centrifugal pump above the water surface in the tank or pump from which water has to be lifted.	Remember	CO 5	CLO 21	ACE011.21
3	Define delivery head	The vertical distance between the center line of the pump and the water surface in the tank to which the water is delivered.	Remember	CO 5	CLO 21	ACE011.21
4	Define static head	The sum of suction head and delivery head is known as suction head.	Remember	CO 5	CLO 23	ACE011.23
5	Define manometric head	It is defined as the head against which a centrifugal pump has to work.	Remember	CO 5	CLO 21	ACE011.21
6	Define manometric efficiency	The ratio of manometric head to the head imparted by the impeller to the water is known as manometric efficiency.	Remember	CO 5	CLO 21	ACE011.21
7	Define mechanical efficiency	The ratio of the power available at the impeller to the power at the shaft of the centrifugal pump.	Remember	CO 5	CLO 22	ACE011.22
8	Define Overall efficiency	It is defined as the ratio of power output to the power input to the pump.	Remember	CO 5	CLO 23	ACE011.23
9	What is condition for minimum speed for starting centrifugal pump	If the pressure rise in the impeller is more than or equal to manometric head, then the centrifugal pump will start delivering water.	Remember	CO 5	CLO 23	ACE011.23
10	What are the functions of multi stage centrifugal pump	Following are the function of the multistage centrifugal pump.i. To produce high headii. To discharge large quantity of liquid.	Remember	CO 5	CLO 23	ACE011.23
11	Define specific speed of a centrifugal pump.	The specific speed of a centrifugal pump is defined as the speed of a geometrically similar pump which would deliver one cubic meter of liquid per second per second against a head of one meter.	Remember	CO 5	CLO 21	ACE011.21
12	Define priming of a centrifugal pump	Priming of a centrifugal pump is defined as the operation in which the suction pipe, casing of the pump and a portion of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid to be raised by the pump before starting of the pump.	Remember	CO 5	CLO 22	ACE011.22

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
13	What are the	Following are the important	Remember	CO 5	CLO 23	ACE011.23
	important	characteristic curves for				
	characteristic	centrifugal pump are:				
	curves for	i. Main characteristic curve.				
	centrifugal	ii. Operating characteristics				
	pump?	curves				
		iii. Constant efficiency or				
		Muschel curves				
14	Define cavitation	It is defined as the phenomenon	Remember	CO 5	CLO 24	ACE011.24
		of formation of vapour bubbles				
		of a flowing liquid in a region				
		where the pressure of the liquid				
		falls below its vapour pressure				
		and the sudden collapsing of			4	
		these vapour bubbles in a region				
		of higher pressure.		_		
15	What are the	The following are the effects of	Remember	CO 5	CLO 24	ACE011.24
	effects of	cavitation:				
	cavitation?	i. Metalic surfaces are				
		damanged and cavities are				
		formed.				
		ii. Considerable noise and	-			
		vibrations are produced.				
		iii. Efficiency of the turbine,				
		pumps decreases.				

Signature of the Faculty

CATION F

HOD, CE

LIBER