

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous)

Dundigal, Hyderabad - 500 043

## **AERONAUTICAL ENGINEERING**

## DEFINITIONS AND TERMINOLOGY QUESTION BANK

| Course Name    | : | FINITE ELEMENT METHOD                                                                  |
|----------------|---|----------------------------------------------------------------------------------------|
| Course Code    | : | AAE009                                                                                 |
| Program        | : | B.Tech                                                                                 |
| Semester       | : | V                                                                                      |
| Branch         | : | Aeronautical Engineering                                                               |
| Section        | : | A & B                                                                                  |
| Academic Year  | : | 2019-2020                                                                              |
| Course Faculty | : | Mr. S. Devaraj, Assistant Professor, AE<br>Ms. CH. Raga Leena, Assistant Professor, AE |

## **OBJECTIVES:**

| Ι | To help students to consider in depth the terminology and nomenclature used in the syllabus. |
|---|----------------------------------------------------------------------------------------------|
| Π | To focus on the meaning of new words / terminology/nomenclature                              |

## DEFINITIONS AND TERMINOLOGYQUESTION BANK

| S.No | QUESTION                                                                                              | ANSWER                                                                                                                                                                                                 | Blooms<br>Level | CLO  | СО   | CLO Code  |
|------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------|-----------|
|      |                                                                                                       | UNIT-I                                                                                                                                                                                                 |                 |      |      |           |
| 1    | Give the rate at<br>which heat<br>enters from the<br>face of the<br>element.                          | The rate at which heat enters from<br>the face of the element is given as:<br>$qx = -kA(\frac{\partial T}{\partial x})$                                                                                | Remember        | CLO1 | CO 1 | AAE009.01 |
| 2    | For a bar<br>element under<br>axial load write<br>the element<br>equation in<br>matrix form.          | The element equations in matrix<br>form can be expressed as:<br>$\begin{bmatrix} k11 & k12 \\ k21 & k22 \end{bmatrix} \begin{bmatrix} q1 \\ q2 \end{bmatrix} = \begin{bmatrix} F1 \\ F2 \end{bmatrix}$ | Understand      | CLO2 | CO 1 | AAE009.02 |
| 3    | How do you<br>represent 1D<br>solid bar<br>element under<br>axial load,<br>given AE as<br>axial load? | The 1D solid bar element under<br>axial load can be expressed as:<br>$\frac{\partial}{\partial x} AE\left(\frac{\partial u}{\partial x}\right) = 0$                                                    | Remember        | CLO1 | CO 1 | AAE009.01 |
| 4    | What are the<br>methods are<br>generally<br>associated with<br>the finite<br>element<br>analysis?     | The following two methods are<br>generally associated with the finite<br>element analysis. They are<br>1. Force method.<br>2. Displacement or stiffness<br>method                                      | Remember        | CLO1 | CO 1 | AAE009.01 |

| S.No | QUESTION                                                                                     | ANSWER                                                                                                                                                                                                                                                                                                                                                | Blooms<br>Level | CLO  | СО   | CLO Code  |
|------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------|-----------|
| 5    | Explain force<br>method and<br>stiffness<br>method?                                          | In force method, internal forces are<br>considered as the unknowns of the<br>problem. In displacement or<br>stiffness method, displacement of<br>the node is considered as the<br>problem. Among them two<br>approaches, the displacement<br>method is desirable.                                                                                     | Remember        | CLO1 | CO 1 | AAE009.01 |
| 6    | What is<br>polynomial<br>type of<br>interpolation<br>functions are<br>mostly used in<br>FEM? | The polynomial type of<br>interpolation functions is mostly<br>used due to the following reasons:<br>1. It is easy to formulate and<br>computerize the finite element<br>equations.<br>2. It is easy to perform<br>differentiation or integration.<br>3. The accuracy of the results can<br>be improved by increasing the<br>order of the polynomial. | Understand      | CLO3 | CO 1 | AAE009.03 |
| 7    | Name the<br>variational<br>methods.                                                          | The variational methods in FEM<br>are:<br>1.Ritz method.<br>2. Rayleigh – Ritz method                                                                                                                                                                                                                                                                 | Understand      | CLO2 | CO 1 | AAE009.02 |
| 8    | Name the<br>weighted<br>residual<br>methods.                                                 | <ol> <li>Point collocation method.</li> <li>Subdomain collocation method.</li> <li>Least square method</li> <li>Galerkin's method</li> </ol>                                                                                                                                                                                                          | Understand      | CLO2 | CO 1 | AAE009.02 |
| 9    | What is meant<br>by post<br>processing?                                                      | Analysis and evaluation of the<br>solution results is referred to as<br>post processing. Post processor<br>computer programs help the user to<br>interpret the results by displaying                                                                                                                                                                  | Remember        | CLO1 | CO 1 | AAE009.01 |
| 10   | What does<br>assemblage<br>mean?                                                             | them in graphical form.<br>The art of subdividing a structure<br>into a convenient number of<br>smaller components is known as<br>discretization. These smaller<br>components are then put together.<br>The process of uniting the various<br>elements together is called<br>assemblage.                                                              | Understand      | CLO2 | CO 1 | AAE009.02 |
| 11   | What is meant by DOF?                                                                        | When the force or reaction acts at<br>nodal point, node is subjected to<br>deformation. The deformation<br>includes displacement, rotations,<br>and/or strains. These are<br>collectively known as degrees of<br>freedom (DOF).                                                                                                                       | Remember        | CLO2 | CO 1 | AAE009.02 |
| 12   | What is meant<br>by finite<br>element<br>analysis?                                           | Finite element method is a<br>numerical method for solving<br>problems of engineering<br>mathematical physics.                                                                                                                                                                                                                                        | Understand      | CLO3 | CO 1 | AAE009.03 |
| 13   | What is meant<br>by finite<br>element?                                                       | A small unit having definite shape<br>of geometry and nodes is called<br>finite element.                                                                                                                                                                                                                                                              | Remember        | CLO3 | CO 1 | AAE009.03 |
| 14   | What is meant<br>by node or                                                                  | Each kind of finite element has a specific structural shape and is interconnected with the adjacent elements by nodal points or nodes.                                                                                                                                                                                                                | Remember        | CLO3 | CO 1 | AAE009.03 |

| S.No | QUESTION                                                     | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Blooms<br>Level | CLO  | СО   | CLO Code  |
|------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------|-----------|
|      | Joint?                                                       | At the nodes, degrees of freedom<br>are located. The forces will act<br>only at nodes and not at any other<br>place in the element.                                                                                                                                                                                                                                                                                                                    |                 |      |      |           |
| 15   | What do you<br>mean by<br>discretization?                    | Discretization is the basis of finite<br>element method. The art of<br>subdividing a structure into a<br>convenient number of smaller<br>components is known as<br>discretization.                                                                                                                                                                                                                                                                     | Remember        | CLO3 | CO 1 | AAE009.03 |
| 16   | What are the<br>types of<br>boundary<br>conditions?          | There are two types of boundary<br>conditions, they are<br>Primary boundary condition.<br>Secondary boundary condition.                                                                                                                                                                                                                                                                                                                                | Understand      | CLO4 | CO 1 | AAE009.04 |
| 17   | What are the<br>three phases of<br>finite element<br>method? | The three phases are 1.<br>Preprocessing<br>2. Analysis<br>3.Postprocessing                                                                                                                                                                                                                                                                                                                                                                            | Understand      | CLO4 | CO 1 | AAE009.04 |
| 18   | What is<br>structural and<br>non-structural<br>problem?      | Structural problem: In structural<br>problems, displacement at each<br>nodal point is obtained. By using<br>these displacement solutions, stress<br>and strain in each element can be<br>calculated.<br>Non-Structural problem: In<br>nonstructural problem,<br>temperatures or fluid pressure at<br>each nodal point is obtained. By<br>using these values, Properties such<br>as heat flow, fluid flow, etc., for<br>each element can be calculated. | Remember        | CLO4 | CO 1 | AAE009.04 |

| S.No | QUESTION                                           | ANSWER                                                                                                                                                                                                                                                                     | Blooms<br>Level | CLO  | СО   | CLO Code  |
|------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------|-----------|
|      |                                                    | UNIT-II                                                                                                                                                                                                                                                                    |                 |      |      |           |
| 1    | Name the four<br>FEA<br>software's.                | The FEA software's are:<br>1. ANSYS<br>2. NASTRAN<br>3. COSMOS<br>4. NISA                                                                                                                                                                                                  | Remember        | CLO6 | CO 2 | AAE009.06 |
| 2    | Define normal<br>strain in axial<br>direction.     | The normal strain in axial direction<br>is given as:<br>$\epsilon xx = \frac{\partial u}{\partial x}$                                                                                                                                                                      | Remember        | CLO6 | CO 2 | AAE009.06 |
| 3    | Write the shear strain equation.                   | Shear strain is given by:<br>$\epsilon xy = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$                                                                                                                                                                 | Remember        | CLO6 | CO 2 | AAE009.06 |
| 4    | Differentiate<br>between global<br>and local axes. | Local axes are established in an<br>element. Since it is in the element<br>level, they change with the change<br>in orientation of the element. The<br>direction differs from element to<br>element.<br>Global axes are defined for the<br>entire system. They are same in | Understand      | CLO8 | CO 2 | AAE009.08 |

| S.No | QUESTION                                                                  | ANSWER                                                                                                                                                                                                                                                                                                                   | Blooms<br>Level | CLO  | СО   | CLO Code  |
|------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------|-----------|
|      |                                                                           | direction for all the elements even<br>though the elements are differently<br>oriented.                                                                                                                                                                                                                                  |                 |      |      |           |
| 5    | Write the stress strain relation.                                         | The stress strain relation is given<br>by:<br>$\sigma xx = E (\epsilon xx - \epsilon xx0)$                                                                                                                                                                                                                               | Remember        | CLO6 | CO 2 | AAE009.06 |
| 6    | What are the<br>types of loading<br>acting on the<br>structure?           | There are three types of loading<br>acting on the body. They are:<br>1. Body force<br>2. Traction force<br>3. Point load                                                                                                                                                                                                 | Understand      | CLO8 | CO 2 | AAE009.08 |
| 7    | What is truss?                                                            | A truss is defined as a structure,<br>made up of several bars, riveted or<br>welded together.                                                                                                                                                                                                                            | Remember        | CLO6 | CO 2 | AAE009.06 |
| 8    | Write the<br>transformation<br>matrix for a<br>space truss<br>element.    | For a space truss element, the transformation matrix is given by:<br>$ \begin{bmatrix} \lambda \end{bmatrix} = \begin{bmatrix} lij & mij & nij & 0 & 0 \\ 0 & 0 & 0 & lij & mij & nij \end{bmatrix} $                                                                                                                    | Remember        | CLO6 | CO 2 | AAE009.06 |
| 9    | How do you<br>calculate the<br>size of the<br>global stiffness<br>matrix? | Global stiffness matrix size =<br>Number of nodes X Degrees of<br>freedom per node                                                                                                                                                                                                                                       | Remember        | CLO6 | CO 2 | AAE009.06 |
| 10   | What is non-<br>homogeneous<br>form?                                      | When the specified values of<br>dependent variables are non-zero,<br>the boundary<br>conditions said to be non-<br>homogeneous.                                                                                                                                                                                          | Remember        | CLO6 | CO 2 | AAE009.06 |
| 11   | What is<br>homogeneous<br>form?                                           | When the specified values of dependent variables is zero, the boundary condition are said to be homogeneous.                                                                                                                                                                                                             | Remember        | CLO6 | CO 2 | AAE009.06 |
| 12   | What is mean by beam?                                                     | Beams are slender members used<br>for<br>supporting transverse loading.                                                                                                                                                                                                                                                  | Understand      | CLO8 | CO 2 | AAE009.08 |
| 13   | How the hermit<br>shape functions<br>are used in<br>FEA?                  | In Finite Element Method (FEM),<br>Hermite interpolation functions are<br>used for interpolation of dependent<br>variable and its derivative.                                                                                                                                                                            | Understand      | CLO8 | CO 2 | AAE009.08 |
| 14   | What is aspect ratio?                                                     | Aspect ratio is defined as the ratio<br>of the largest dimension of the<br>element to the smallest dimension.<br>In many cases, as the aspect ratio<br>increases, the inaccuracy of the<br>solution increases. The conclusion<br>of many researches is that the<br>aspect ratio should be close to<br>unity as possible. | Remember        | CLO6 | CO 2 | AAE009.06 |
| 15   | What is truss element?                                                    | The truss elements are the part of a truss structure linked together by point joints, which transmit only axial force to the element.                                                                                                                                                                                    | Understand      | CLO8 | CO 2 | AAE009.08 |
| 16   | List the two<br>advantages of<br>post<br>processing?                      | <ol> <li>Required result can be obtained<br/>in graphical form.</li> <li>Contour diagrams can be used to<br/>understand the solution easily and<br/>quickly.</li> </ol>                                                                                                                                                  | Understand      | CLO8 | CO 2 | AAE009.08 |

| S.No | QUESTION                                                                                       | ANSWER                                                                                                                                                                                                                                                                                              | Blooms<br>Level | CLO  | СО   | CLO Code  |
|------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------|-----------|
| 17   | What are 'h'<br>versions of<br>finite element<br>method?                                       | H version and p versions are used<br>to improve the accuracy of the<br>finite element method.<br>In h versions, the order of<br>polynomial approximation for all<br>elements is kept constant and the<br>number of elements is increased.                                                           | Understand      | CLO8 | CO 2 | AAE009.08 |
| 18   | What is p<br>versions of<br>finite element<br>method?                                          | In p version, the number of<br>elements is maintained constant<br>and the order of polynomial<br>approximation of element is<br>increased.                                                                                                                                                          | Understand      | CLO8 | CO 2 | AAE009.08 |
| 19   | During<br>discretization,<br>mention the<br>places where it<br>is necessary to<br>place a node | <ul> <li>The following places are necessary<br/>to place a node during<br/>discretization process.</li> <li>1. Concentrated load-acting point.</li> <li>2. Cross section changing point</li> <li>3. Different material inter-junction<br/>point</li> <li>4. Sudden change in load point.</li> </ul> | Remember        | CLO6 | CO 2 | AAE009.06 |

| S.No | QUESTION                                                                                    | ANSWER                                                                                                                                                                                                                                                                                  | Blooms<br>Level | CLO   | СО   | CLO Code  |
|------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|
|      |                                                                                             | UNIT-III                                                                                                                                                                                                                                                                                |                 |       |      |           |
| 1    | Write the<br>internal<br>equilibrium<br>equation in the<br>x-direction for a<br>3D element. | The internal equilibrium equation<br>in the x-direction for a 3D element<br>is given by:<br>$\frac{\partial \sigma xx}{\partial x} + \frac{\partial \sigma xy}{\partial y} + \frac{\partial \sigma zx}{\partial z} + \emptyset x = 0$                                                   | Understand      | CLO10 | CO 3 | AAE009.10 |
| 2    | Write the<br>internal<br>equilibrium<br>equation in the<br>y-direction for a<br>3D element. | The internal equilibrium equation<br>in the y-direction for a 3D element<br>is given by:<br>$\frac{\partial \sigma xy}{\partial x} + \frac{\partial \sigma yy}{\partial y} + \frac{\partial \sigma yz}{\partial z} + \phi y = 0$                                                        | Understand      | CLO10 | CO 3 | AAE009.10 |
| 3    | Write the<br>internal<br>equilibrium<br>equation in the<br>z-direction for a<br>3D element. | The internal equilibrium equation<br>in the z-direction for a 3D element<br>is given by:<br>$\frac{\partial \sigma zx}{\partial x} + \frac{\partial \sigma yz}{\partial y} + \frac{\partial \sigma zz}{\partial z} + \phi z = 0$                                                        | Understand      | CLO10 | CO 3 | AAE009.10 |
| 4    | What are the<br>ways by which<br>a 3D problem<br>can be reduced<br>to a 2D<br>problem?      | By using axisymmetric concept,<br>the 3D problems like stress<br>analysis of piston, storage tanks,<br>pressure vessels etc., can be<br>reduced to 2D problems.<br>Sometimes, a plane stress and<br>plane strain concepts also help us<br>to analyse the 3D problems as 2D<br>problems. | Understand      | CLO10 | CO 3 | AAE009.10 |
| 5    | What is a<br>vector variable<br>problem?                                                    | In vector variable problem the field<br>variable is described by its<br>magnitude and direction of action<br>in order to complete information<br>and for further process.                                                                                                               | Understand      | CLO10 | CO 3 | AAE009.10 |

| S.No | QUESTION                                                                               | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                      | Blooms<br>Level | CLO   | СО   | CLO Code  |
|------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|
| 6    | Why is 3-<br>noded<br>triangular<br>element called<br>as CST?                          | In a 3-noded triangular element,<br>for a specific loading, the stress<br>developed is assumed constant<br>throughout the element. As per<br>Hooke's law,<br>$\sigma = E \times \epsilon$ .<br>Since stress is constant and<br>modulus of elasticity is also<br>constant due to material property,<br>the strain is constant throughout<br>the element and hence called as<br>constant strain triangular (CST)<br>element.                  | Remember        | CLO11 | CO 3 | AAE009.11 |
| 7    | Define plane<br>stress.                                                                | A state of plane stress is said to<br>exist when the elastic body is very<br>thin and there is no load applied in<br>the coordinate direction parallel to<br>the thickness.                                                                                                                                                                                                                                                                 | Remember        | CLO11 | CO 3 | AAE009.11 |
| 8    | What is a 2D<br>scalar variable<br>problem?                                            | If the geometry and material<br>properties of any element are<br>described by two spatial<br>coordinates, then that element is<br>referred as two-dimensional finite<br>element and, in a problem,<br>containing that element if the<br>measured parameter is having only<br>one quantity (i.e., magnitude only)<br>and not having direction of<br>application, then it is referred as<br>2D scalar variable problem.                       | Remember        | CLO11 | CO 3 | AAE009.11 |
| 9    | What are the<br>ways by which<br>a 3D problem<br>can be reduced<br>to a 2D<br>problem? | By using axisymmetric concept,<br>the 3D problems like stress<br>analysis of piston, storage tanks,<br>pressure vessels etc., can be<br>reduced to 2D problems.<br>Sometimes, a plane stress and<br>plane strain concepts also help us<br>to analyse the 3D problems as 2D<br>problems.                                                                                                                                                     | Remember        | CLO11 | CO 3 | AAE009.11 |
| 10   | What is a<br>vector variable<br>problem?                                               | In vector variable problem the<br>field variable is described by its<br>magnitude and direction of action<br>in order to complete information<br>and for further process. Example:<br>structural problem.                                                                                                                                                                                                                                   | Remember        | CLO11 | CO 3 | AAE009.11 |
| 11   | Why is 3-<br>noded<br>triangular<br>element called<br>as CST?                          | In a 3-noded triangular element,<br>for a specific loading, the stress<br>developed is assumed constant<br>throughout the element. As per<br>Hooke's law, stress = modulus of<br>elasticity $\times$ strain.<br>Since stress is constant and<br>modulus of elasticity is also<br>constant due to material property,<br>the strain is constant throughout<br>the element and hence called as<br>constant strain triangular (CST)<br>element. | Remember        | CLO11 | CO 3 | AAE009.11 |

| S.No | QUESTION                                                                                   | ANSWER                                                                                                                                                                                                                                                                                 | Blooms<br>Level | CLO   | СО   | CLO Code  |
|------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|
| 12   | Define plane<br>stress.                                                                    | A state of plane stress is said to<br>exist when the elastic body is very<br>thin and there is no load applied in<br>the coordinate direction parallel to<br>the thickness.                                                                                                            | Understand      | CLO12 | CO 3 | AAE009.12 |
| 13   | Give an<br>example for<br>plane stress.                                                    | A ring press – fitted on a shaft is a plane stress problem. In plane stress problem, $\sigma_z$ , $\tau_{yz}$ and $\tau_{zx}$ are zero.                                                                                                                                                | Understand      | CLO12 | CO 3 | AAE009.12 |
| 14   | Define plane<br>strain.                                                                    | A state of plane strain occurs in<br>members that are not free to<br>expand in the direction<br>perpendicular to the plane of<br>applied loads.                                                                                                                                        | Understand      | CLO12 | CO 3 | AAE009.12 |
| 15   | Give an<br>example for<br>plane strain.                                                    | In a long body of uniform cross-<br>section, subjected to transverse<br>loading along its length, a small<br>thickness in the loaded area can be<br>treated as plane strain problem. In<br>plane strain problem, $\epsilon_z$ , $\gamma_{yz}$ and $\gamma_{zx}$<br>are zero.           | Understand      | CLO12 | CO 3 | AAE009.12 |
| 16   | What is meant<br>by<br>axisymmetric<br>solid?                                              | In some 3D solids like cylinder,<br>fly-wheel, turbine discs etc., the<br>material content is symmetric with<br>respect to their axes. Hence, the<br>stress developed, displacement<br>produced etc., are considered as<br>symmetric. Such solids are known<br>as axisymmetric solids. | Remember        | CLO11 | CO 3 | AAE009.11 |
| 17   | State the<br>conditions to be<br>satisfied in<br>order to use<br>axisymmetric<br>elements. | The required conditions to be<br>satisfied are such that the material<br>content, loading conditions,<br>boundary conditions and material<br>properties like strength, nature etc.,<br>should be symmetric with respect<br>to axis of revolution.                                      | Remember        | CLO11 | CO 3 | AAE009.11 |
| 18   | What is QST element?                                                                       | Ten nodded triangular elements are<br>known as Quadratic strain triangle.<br>It is also called as cubic<br>displacement triangle.                                                                                                                                                      | Remember        | CLO11 | CO 3 | AAE009.11 |
|      |                                                                                            |                                                                                                                                                                                                                                                                                        |                 | 19    |      |           |
|      |                                                                                            |                                                                                                                                                                                                                                                                                        | Blooms          |       |      |           |

| S.No | QUESTION                                                                                                 | ANSWER                                                                                                                                                                              | Blooms<br>Level | CLO   | СО   | CLO Code  |
|------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|
|      |                                                                                                          | UNIT-IV                                                                                                                                                                             |                 |       |      |           |
| 1    | For an inviscid<br>fluid with<br>potential<br>function $\mathcal{O}(x)$ ,<br>write the 1D<br>fluid flow. | For a inviscid fluid with potential function $\emptyset(x)$ , the 1D fluid flow is expressed as:<br>$\frac{\partial}{\partial x} \left( \rho A \frac{d \emptyset}{d x} \right) = 0$ | Remember        | CLO13 | CO 4 | AAE009.13 |
| 2    | Write the<br>energy balance<br>equation for the<br>element for dt                                        | The energy balance equation can<br>be written as:<br>$qxdt + \dot{q}Adxdt = qx + dxdt + c\rho$                                                                                      | Remember        | CLO13 | CO 4 | AAE009.13 |

| S.No | QUESTION                                                                                               | ANSWER                                                                                                                                                                                                                                                                                | Blooms<br>Level | CLO   | СО   | CLO Code  |
|------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|
| 3    | Write the<br>Fourier's law.                                                                            | If $\dot{q}$ is zero in energy equation, we get the Fourier equation, represented as:<br>$\frac{\partial}{\partial x} \left( kA \frac{\partial T}{\partial x} \right) = c\rho \frac{\partial T}{\partial t}$                                                                          | Remember        | CLO13 | CO 4 | AAE009.13 |
| 4    | Write the<br>Poisson's<br>equation.                                                                    | If the system is in steady state,<br>then the energy equation can be<br>reduced to:<br>$\frac{\partial}{\partial x} \left( kA \frac{\partial T}{\partial x} \right) + \dot{q}A = 0$ This is the Poisson's equation.                                                                   | Remember        | CLO13 | CO 4 | AAE009.13 |
| 5    | Write the<br>Laplace<br>equation.                                                                      | If the heat source is zero, then the energy equation is reduced to:<br>$\frac{\partial}{\partial x} \left( kA \frac{\partial T}{\partial x} \right) = 0$                                                                                                                              | Remember        | CLO13 | CO 4 | AAE009.13 |
| 6    | Define fins or<br>extended<br>surfaces.                                                                | It is possible to increase the heat<br>transfer rate by increasing the<br>surface of heat transfer. The<br>surfaces used for increasing heat<br>transfer are called extended<br>surfaces sometimes known as fins.                                                                     | Understand      | CLO13 | CO 4 | AAE009.13 |
| 7    | What is<br>dimensional<br>analysis?                                                                    | Dimensional analysis is a<br>mathematical method which makes<br>use of the study of the dimensions<br>for solving several engineering<br>problems. This method can be<br>applied to all types of fluid<br>resistance, heat flow problems in<br>fluid mechanics and<br>thermodynamics. | Remember        | CLO13 | CO 4 | AAE009.13 |
| 8    | What are the<br>various<br>boundary<br>conditions to be<br>considered in<br>heat transfer<br>analysis? | The boundary conditions are<br>mainly of three kinds: specified<br>temperature, specified heat flux<br>and convection.                                                                                                                                                                | Understand      | CLO14 | CO 4 | AAE009.14 |
| 9    | What is energy<br>balance for an<br>element in dt<br>time?                                             | The energy balance for the<br>element for a small time dt is<br>given by the sum of heat inflow<br>and heat generated by internal<br>sources in time dt is equal to the<br>sum of heat outflow in time dt and<br>change in internal energy in time<br>dt.                             | Understand      | CLO14 | CO 4 | AAE009.14 |
| 10   | What is Fourier law?                                                                                   | If the heat source is zero, we<br>obtain Fourier law from the<br>energy balance equation.                                                                                                                                                                                             | Remember        | CLO13 | CO 4 | AAE009.13 |
| 11   | What is<br>Poissons<br>equation?                                                                       | If the system attains steady state<br>condition the energy balance<br>equation becomes Poissons<br>equation.                                                                                                                                                                          | Remember        | CLO13 | CO 4 | AAE009.13 |
| 12   | What is<br>Laplace<br>equation?                                                                        | If the system attains steady state<br>and the heat source is zero, the<br>resulting equation from the energy<br>balance is said to be Laplace<br>equation.                                                                                                                            | Understand      | CLO14 | CO 4 | AAE009.14 |

| S.No | QUESTION                                                                                                        | ANSWER                                                                                                                                                                                                                    | Blooms<br>Level | CLO   | СО   | CLO Code  |
|------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|
| 13   | What is the<br>analogy of<br>conductance<br>matrix with<br>respect to<br>structural<br>matrix equation<br>KQ=F? | The conducting matrix from the heat transfer is given by $K_e = KA_e/l$<br>1 -1<br>-1 1                                                                                                                                   | Remember        | CLO13 | CO 4 | AAE009.13 |
| 14   | What is<br>Newtons law of<br>convection?                                                                        | The Newtonian law of convection<br>is given as<br>$q = h(T_s - T_{\infty})$                                                                                                                                               | Remember        | CLO13 | CO 4 | AAE009.13 |
| 15   | What is the<br>relation between<br>Stefan boltzman<br>constant and<br>radiation heat<br>flux?                   | The relation between Stefan<br>boltzman constant and radiation<br>heat flux is given as<br>$q = \sigma T^4$                                                                                                               | Understand      | CLO14 | CO 4 | AAE009.14 |
| 16   | What is meant<br>by degrees of<br>freedom?                                                                      | When the force or reaction act at<br>nodal point node is subjected to<br>deformation. The deformation<br>includes displacement rotation, and<br>or strains. These are collectively<br>known as degrees of freedom.        | Remember        | CLO13 | CO 4 | AAE009.13 |
| 17   | Give example<br>for non-<br>essential<br>boundary<br>conditions.                                                | The natural boundary conditions<br>are bending moment, shear force.                                                                                                                                                       | Remember        | CLO13 | CO 4 | AAE009.13 |
| 18   | What is simple<br>natural<br>coordinate?                                                                        | A simple natural coordinate is one whose value between -1 and 1.                                                                                                                                                          | Remember        | CLO13 | CO 4 | AAE009.13 |
| 19   | Define Thermal conductivity.                                                                                    | Thermal conductivity is defined as<br>the ability of a substance to<br>conduct heat.                                                                                                                                      | Remember        | CLO13 | CO 4 | AAE009.13 |
| 20   | What is conduction?                                                                                             | Heat conduction is a mechanism of<br>heat transfer from a region of high<br>temperature to a region of low<br>temperature with in a medium<br>(Solid, liquid or Gases) or different<br>medium in direct physical contact. | Remember        | CLO13 | CO 4 | AAE009.13 |
| 21   | Define<br>convection.                                                                                           | Convection is a process of heat<br>transfer that will occur between<br>solid surface and a fluid medium<br>when they are at different<br>temperatures. Convection is<br>possible only in the presence of<br>fluid medium. | Understand      | CLO14 | CO 4 | AAE009.14 |

| S.No | QUESTION                      | ANSWER                                                                                                                      | Blooms<br>Level | CLO   | СО   | CLO Code  |  |  |
|------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|--|--|
|      | UNIT-V                        |                                                                                                                             |                 |       |      |           |  |  |
| 1    | What are types of vibrations? | According to the actuating force1. Free or natural vibrations2. Forced vibrations3. Damped vibrations4. Undamped vibrations | Remember        | CLO16 | CO 5 | AAE009.16 |  |  |

| S.No | QUESTION                                                                                         | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                   | Blooms<br>Level | CLO   | СО   | CLO Code  |
|------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|
|      |                                                                                                  | According to motion of system<br>with respect to axis<br>1. Longitudinal vibrations<br>2. Transverse vibrations<br>3. Torsional vibrations                                                                                                                                                                                                                                                                                               |                 |       |      |           |
| 2    | What are the<br>locations at<br>which nodes<br>can be<br>positioned<br>during<br>discretization? | <ol> <li>The point of change of cross<br/>section</li> <li>The point of concentrated load<br/>acting</li> <li>The point of different material<br/>connection 4. The point of load<br/>changing.</li> </ol>                                                                                                                                                                                                                               | Remember        | CLO16 | CO 5 | AAE009.16 |
| 3    | Define - (a)<br>time period (b)<br>frequency (c)<br>amplitude with<br>respect to<br>FEM.         | Time period is defined as the time<br>taken by a motion to repeat itself.<br>That is, it is the time required for<br>one complete motion, usually<br>measured in seconds.<br>Frequency is defined as the number<br>of cycles completed in one second.<br>It is expressed in hertz (Hz). It is<br>the reciprocal of time period.<br>Amplitude is defined as the<br>maximum displacement of a<br>vibrating body from the mean<br>position. | Remember        | CLO16 | CO 5 | AAE009.16 |
| 4    | Define - free<br>vibration and<br>forced<br>vibration.                                           | When a system oscillates only<br>under an initial disturbance with<br>no external force acting after the<br>initial disturbance, that system is<br>said to undergo free vibration. If a<br>system is subjected to an external<br>force, the resulting vibration is<br>known as forced vibration.                                                                                                                                         | Understand      | CLO17 | CO 5 | AAE009.17 |
| 5    | What is static analysis?                                                                         | The solution of the problem does<br>not vary with time is known as<br>static analysis Example: stress<br>analysis on a beam                                                                                                                                                                                                                                                                                                              | Understand      | CLO17 | CO 5 | AAE009.17 |
| 6    | What is<br>dynamic<br>analysis?                                                                  | The solution of the problem varies<br>with time is known as dynamic<br>analysis Example: vibration<br>analysis problem.                                                                                                                                                                                                                                                                                                                  | Understand      | CLO17 | CO 5 | AAE009.17 |
| 7    | What is Aspect<br>ratio?                                                                         | It is defined as the ratio of the<br>largest dimension of the element to<br>the smallest dimension. In many<br>cases, as the aspect ratio increases<br>the in accuracy of the solution<br>increases. The conclusion of many<br>researches is that the aspect ratio<br>should be close to unity as<br>possible.                                                                                                                           | Remember        | CLO16 | CO 5 | AAE009.16 |
| 8    | What is<br>essential<br>boundary<br>condition?                                                   | Primary boundary condition or<br>EBC, Boundary condition which<br>in terms of field variable.                                                                                                                                                                                                                                                                                                                                            | Understand      | CLO17 | CO 5 | AAE009.17 |
| 9    | What is non-<br>homogeneous<br>form?                                                             | Non-homogeneous form: When the<br>specified values of dependent<br>variables are non-zero, the<br>boundary condition.                                                                                                                                                                                                                                                                                                                    | Understand      | CLO17 | CO 5 | AAE009.17 |

| S.No   | QUESTION                                                                | ANSWER                                                                                                                                                                                                                                                                                                                                                        | Blooms<br>Level | CLO   | СО   | CLO Code  |
|--------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|------|-----------|
| 10     | What is<br>homogeneous<br>form?                                         | When the specified values of dependent variables is zero, the boundary condition are said to be homogeneous.                                                                                                                                                                                                                                                  | Remember        | CLO16 | CO 5 | AAE009.16 |
| 11     | Define initial value problem.                                           | An initial value problem is one in<br>which the dependent variable and<br>possibly is derivatives are specified<br>initially.                                                                                                                                                                                                                                 | Understand      | CLO17 | CO 5 | AAE009.17 |
| 12     | Define<br>Boundary value<br>problem.                                    | A differential equation is said to<br>describe a boundary value problem<br>if the dependent variable and its<br>derivatives are required to take<br>specified values on the boundary.                                                                                                                                                                         | Understand      | CLO17 | CO 5 | AAE009.17 |
| 13     | Write the<br>governing<br>equation.                                     | The governing equation is given<br>as:<br>$\frac{d}{dx}EA\left(\frac{du}{dx}\right) + \rho A = 0$                                                                                                                                                                                                                                                             | Understand      | CLO17 | CO 5 | AAE009.17 |
| 14     | What are the 'h'<br>and 'p' versions<br>of finite<br>element<br>method? | It is used to improve the accuracy<br>of the finite element method. In h<br>version, the order of polynomial<br>approximation for all elements is<br>kept constant and the numbers of<br>elements are increased. In p<br>version, the numbers of elements<br>are maintained constant and the<br>order of polynomial approximation<br>of element is increased. | Remember        | CLO16 | CO 5 | AAE009.16 |
| 15     | Define - free<br>vibration and<br>forced vibration                      | When a system oscillates only<br>under an initial disturbance with no<br>external force acting after the<br>initial disturbance, that system is<br>said to undergo free vibration. If a<br>system is subjected to an external<br>force, the resulting vibration is<br>known as forced vibration.                                                              | Remember        | CLO16 | CO 5 | AAE009.16 |
| Signat | Signature of the Faculty Signature HOD, AE                              |                                                                                                                                                                                                                                                                                                                                                               |                 |       |      |           |