TARE NO. LIBERT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Title	DIGITAL	IMAGE PRO	CESSING		
Course Code	AEC508				
Programme	B.Tech	_			
Semester	VII EC	E			
Course Type	Elective				
Regulation	IARE - R16	5			
		Theory		ı	Practical
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Chief Coordinator	Dr. S China	Venkateswarlı	ı, Professor		
Course Faculty	Mr. D Khal	nanabha Reddy, andar Basha, A nosh Kumar, As	ssistant Profe		

OBJECTIVES:

I	Understand the image fundamentals and mathematical transforms necessary for image processing
II	Describe the image enhancement techniques.
III	Evaluate the image restoration procedures
IV	Analyze the image compression procedures
V	Design the image segmentation and representation techniques.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-I				
1	Define Pixel or	The resulting image of sampling and	Remember	CO1	CLO 3	AEC508.03
	Pel.	quantization is considered a matrix of				
		real numbers. By what name(s) the				
		element of this matrix array is called				
2	Define Image?	An image may be defined as two	Remember	CO1	CLO 1	AEC508.01
		dimensional light intensity function $f(x,$				
		y) where x and y denote spatial co-				
		ordinate and the amplitude or value of f				
		at any point (x, y) is called intensity or				
		grayscale or brightness of the image at				
		that point.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
3	Define Image element or Picture element or Pixel or Pel.	Sampling and Quantization of an image f(x, y) forms a matrix of real numbers and each element of this matrix array is commonly known as Image element or Picture element or Pixel or Pel.	Remember	CO1	CLO 2	AEC508.02
4	Define Image acquisition	Image acquisition is the first process in image processing. Note that acquisition could be as simple as being given an image that is already in digital form. Generally, the image acquisition stage involves preprocessing, such as scaling.	Remember	CO1	CLO 3	AEC508.03
5	What is Dynamic Range?	The range of values spanned by the gray scale is called dynamic range of an image. Image will have high contrast, if the dynamic range is high and image will have dull washed out gray look if the dynamic range is low.	Remember	CO1	CLO 4	AEC508.04
6	Why In Quantization Process if the gray levels also are integers the Digital image.	The Digital image then becomes a 2-D function whose coordinates and amplitude values are integers	Remember	CO1	CLO 1	AEC508.01
7	Define high contrast	When in an Image an appreciable number of pixels exhibit high dynamic range, the image will have high contrast.	Understand	CO1	CLO 1	AEC508.01
8	Define Brightness?	Brightness of an object is the perceived luminance of the surround. Two objects with different surroundings would have identical luminance but different brightness.	Understand	CO1	CLO 2	AEC508.02
9	Define Grid	The sampling points are ordered in the plane and their relation is called a Grid.	Remember	CO1	CLO 3	AEC508.03
10	Define Contrast	It is defined as the difference in intensity between the highest and lowest intensity levels in an image	Remember	CO1	CLO 4	AEC508.04
11	What is Quantisation.	The transition between continuous values of the image function and its digital equivalent is called Quantisation.	Remember	CO1	CLO 1	AEC508.01
12	What do you mean by Gray level?	Gray level refers to a scalar measure of intensity that ranges from black to grays and finally to white.	Remember	CO1	CLO 2	AEC508.02
13	What is Sensor strips	A geometry consisting of in-line arrangement of sensors for image acquisition/ Sensor strips are very common next to single sensor and use in-line arrangement.	Remember	CO1	CLO 3	AEC508.03
14	What do you meant by Color model?	A Color model is a specification of 3D-coordinates system and a subspace within that system where each color is represented by a single point.	Remember	CO1	CLO 4	AEC508.04
15	What is meant by pixel?	A digital image is composed of a finite number of elements each of which has a particular location or value. These elements are referred to as pixels or image elements or picture elements or pels elements.	Understand	CO1	CLO 1	AEC508.01
16	What is Computerised Axial Tomography	Industrial Computerized Axial Tomography is based on image acquisition using sensor strips.	Understand	CO1	CLO 2	AEC508.02

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
17	What is	The digitization process i.e. the digital	Understand	CO1	CLO 3	AEC508.03
	digitization	image has M rows and N columns,				
	process	requires decisions about values for M, N,				
		and for the number, L, of gray levels allowed for each pixel. The value M and				
		N				
18	Define Digital	When x, y and the amplitude values of f	Understand	CO1	CLO 4	AEC508.04
	image? What is	all are finite discrete quantities, we call				
	gray scale image?	the image as digital image.				
19	Define	A typical size comparable in quality to	Understand	CO1	CLO 1	AEC508.01
	Monochromatic	monochromatic TV image is of size A				
20	Image Size What is	normal T.V have 512 x 512 resolution The interpretation is called the assigning	Understand	CO1	CLO 2	AEC508.02
20	Interpretation	meaning to recognized object.	Understand	COI	CLO 2	AEC308.02
21	What is dynamic	The range of values spanned by the gray	Understand	CO1	CLO 3	AEC508.03
21	range	scale is called or The valued spanned in	Officerstand	COI	CLO 3	AEC308.03
	runge	gray scale image are depicted using				
		dynamic range values.				
22	What is pixel?	Pixel is the elements of a digital image or	Remember	CO1	CLO 4	AEC508.04
		An Image is a collection of individual				
		points referred as pixel, thus a Pixel is				
		the element of a digital image.				
23	Define Amplitude	An image is considered to be a function	Remember	CO1	CLO 1	AEC508.01
	of image	of a(x,y), where a represents: or				
		The image is a collection of dots with a definite intensity or amplitude.				
24	Define Digital	Digital image processing is more flexible	Understand	CO1	CLO 2	AEC508.02
24	Define Digital	and agile techniques as it is fast, accurate	Onderstand	COI	CLO 2	AEC308.02
		and reliable.				
25	Define Brightness	The spatial coordinates of a digital image	Understand	CO1	CLO 3	AEC508.03
		(x,y) are proportional to or The				
		Brightness levels are distributed over the			-	
	642	spatial area. Hence, the spatial	Y		-	
		coordinates are proportional to			_	
26	The number of	brightness levels.	I I adamston d	601	CLO 4	AEC509.04
26	grey values are	The gray values are interpreted as the power of number of colors. In	Understand	CO1	CLO 4	AEC508.04
	integer powers of	monochromatic image the number of				
	integer powers or	colors is 2.				
27	What is the Steps	Image acquisition-> Image enhancement-	Remember	CO1	CLO 1	AEC508.01
	in image	>Image restoration->Color image		Q.		
	processing	processing->Wavelets and multi				
		resolution processing->Compression-	. 0. 1			
		>Morphological processing-				
		>Segmentation->Representation &				
20	What are the star	description->Object recognition.	Damam's	CO1	CLO 2	AEC508.02
28	What are the steps involved in DIP?	1. Image Acquisition 2. Preprocessing 3. Segmentation 4. Representation and	Remember	CO1	CLO 2	AEC508.02
	ilivoived ili Dir !	Description 5. Recognition and				
		Interpretation				
29	What is Sampling	The output of the most sensors is a	Remember	CO1	CLO 3	AEC508.03
		continuous waveform and the amplitude		J		
		and spatial behavior of such waveform				
		are related to the physical phenomenon				
		being sensed.				
30	What is	To convert a continuous sensed data into	Understand	CO1	CLO 4	AEC508.04
	Quantization	Digital form	TY 1		GY C 1	A.E.G.500.01
31	Define Sampling	To convert a continuous sensed data into	Understand	CO1	CLO 1	AEC508.01
	and Quantization	Digital form				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
32	Define	An image may be continuous in the x-	Understand	CO1	CLO 2	AEC508.02
	Coordinates	and y-coordinates or in amplitude, or in both.				
33	Define Amplitude	To convert a continuous image $f(x, y)$ to	Understand	CO1	CLO 3	AEC508.03
		digital form, we have to sample the		001	0200	12200000
		function in				
34	How could be	For a continuous image $f(x, y)$,	Understand	CO1	CLO 4	AEC508.04
25	Sampling defined?	Digitizing the coordinate values Sampling is the method of digitizing the	Remember	601	CI O 1	A E C 500 01
35	Define Sampling method	coordinate values of the image.	Remember	CO1	CLO 1	AEC508.01
36	For a continuous	Digitizing the amplitude values/	Remember	CO1	CLO 2	AEC508.02
	image f(x, y),	Sampling is the method of digitizing the				
	Quantization is	amplitude values of the image.				
27	defined as		D 1		GI O 2	4 EG500 02
37	How is sampling been done when an	The number of mechanical increments when the sensor is activated to collect	Remember	CO1	CLO 3	AEC508.03
	image is generated	data. When an image is generated by a				
	by a single sensing	single sensing element along with				
	element combined	mechanical motion, the output data is				
	with mechanical	quantized by dividing the gray-level				
38	motion? How does	scale into many discrete levels. The number of sensors in the strip	Understand	601	CLO 4	AEC508.04
38	sampling gets	establishes the sampling limitations in	Understand	CO1	CLO 4	AEC508.04
	accomplished with	one image direction and Mechanical				
	a sensing strip	motion in the other direction				
	being used for					
20	image acquisition?		XX 1		GY O. 1	A E G 500 04
39	How is sampling accomplished	The number of sensors in the sensing array defines the limits of sampling in	Understand	CO1	CLO 1	AEC508.01
	when a sensing	both directions				
	array is used for					
	image acquisition?					
40	What is the	The quality of a digital image is	Understand	CO1	CLO 2	AEC508.02
	relations of The number of samples	determined mostly by the number of samples and discrete gray levels used in				
	and The discrete	sampling and quantization.			_	
	gray levels	samping and quantization				
		UNIT-II				
1	What is Spatial	The section of the real plane spanned by	Understand	CO2	CLO 5	AEC508.05
-	Domain	the coordinates of an image is called the		1		
		Spatial Domain	~ ~ ~			
2	Define Contrast	The difference is intensity between the	Remember	CO2	CLO 6	AEC508.06
		highest and the lowest intensity levels in	L 10 -			
		an image is Contrast.				
3	Specify the	The objective of enhancement technique	Remember	CO2	CLO 7	AEC508.07
	objective of image	is to process an image so that the result is				
	enhancement	more suitable than the original image for				
1	technique Define additivity	a particular application.	Remember	CO3	CLO 8	AEC508.08
4	Define additivity	The property indicating that the output of a linear operation due to the sum of two	Kemember	CO2	CLU 8	ALC300.00
		inputs is same as performing the				
		operation on the inputs individually and				
		then summing the results is called/ This				
		property is called additivity.				
5	Explain the 2	i) Spatial domain refers to image plane	Understand	CO2	CLO 9	AEC508.09
	categories of	itself & approaches in this category are				
	image					

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	enhancement	based on direct manipulation of picture				
		image. ii) Frequency domain methods				
		based on modifying the image by fourier				
	Define Subtraction	transform. Enhancement of differences between	Understand	602	CLO 5	AEC508.05
6	Define Subtraction	images is based on the principle of is	Understand	CO2	CLO 3	AEC306.03
		called Subtraction.				
7	What is contrast	Contrast stretching reduces an image of	Remember	CO2	CLO 6	AEC508.06
,	stretching?	higher contrast than the original by				
		darkening the levels below m and				
		brightening the levels above m in the				
		image.				
8	Define Mask mode	A commercial use of Image Subtraction	Remember	CO2	CLO 7	AEC508.07
	radiography	is called Mask mode radiography.				
9	What is grey level	Highlighting a specific range of grey	Remember	CO2	CLO 8	AEC508.08
	slicing?	levels in an image often is desired.				
		Applications include enhancing features				
		such as masses of water in satellite				
		imagery and enhancing flaws in x-ray images				
10	Define Masking	Region of Interest (ROI) operations is	Understand	CO2	CLO 9	AEC508.09
10	Define Wasking	commonly called as Masking.	Chacigana	COZ	CLO	71LC300.07
11	Define image	The difference between 2 images $f(x,y)$	Understand	CO2	CLO 5	AEC508.05
	subtraction.	and $h(x,y)$ expressed as $g(x,y)=f(x,y)$ -				
		h(x,y) is obtained by computing the				
		difference between all pairs of				
		corresponding pixels from f and h.				
12	Define False	False Contouring is the effect caused by	Remember	CO2	CLO 6	AEC508.06
	Contouring	the use of an insufficient number of				
	642	intensity levels in smooth areas of a	Y		-	
13	What is the	digital image. An important application of image	Remember	CO2	CLO 7	AEC508.07
13	purpose of image	averaging is in the field of astronomy,	Remember	COZ	CLO /	ALC300.07
	averaging?	where imaging with very low light levels				
	averaging.	is routine, causing sensor noise				
		frequently to render single images		. %		
	- 5	virtually useless for analysis.				
14	What are the	Pixelation .Because Pixelation deals with	Remember	CO2	CLO 8	AEC508.08
	applications of	enlargement of pixels.	0.1			
	Image	0,0	10			
	Multiplication?	7 500	5 1		GY O O	150500.00
15	What is meant by	Mask is the small 2-D array in which the values of mask co-efficient determine the	Remember	CO2	CLO 9	AEC508.09
	masking?	nature of process. The enhancement				
		technique based on this type of approach				
		is referred to as mask processing				
16	Define Single	The procedure done on a digital image	Understand	CO2	CLO 5	AEC508.05
	Pixel Operation	to alter the values of its individual pixels				
		is. It is expressed as a transformation				
		function T, of the form $s=T(z)$, where z				
		is the intensity.				
17	Define histogram.	The histogram of a digital image with	Understand	CO2	CLO 6	AEC508.06
		gray levels in the range [0, L-1] is a				
		discrete function h(rk)=nk. rk-k th gray				
		level; nk-number of pixels in the image				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		having gray level rk.				
18	Define Tie points	Geometric Spacial Transformation, points whose locations are known precisely in input and reference images.	Understand	CO2	CLO 7	AEC508.07
19	Define sine wave	Electromagnetic waves can be visualised as a/ Electromagnetic waves are visualised as sinusoidal wave.	Understand	CO2	CLO 8	AEC508.08
20	What is a Median filter?	The median filter replaces the value of a pixel by the median of the gray levels in the neighborhood of that pixel.	Understand	CO2	CLO 9	AEC508.09
21	What is Soft X-Rays	Soft X-Rays (low energy) are used for dental and chest scans.	Understand	CO2	CLO 5	AEC508.05
22	Name the different types of derivative filters	1. Perwitt operators 2. Roberts cross gradient operators 3. Sobel operators	Understand	CO2	CLO 6	AEC508.06
23	Define Brightness	Brightness is subjective descriptor of light perception that is impossible to measure.	Understand	CO2	CLO 7	AEC508.07
24	What are the types of noise models?	1. Guassian noise 2. Rayleigh noise 3. Erlang noise 4. Exponential noise 5. Uniform noise 6. Impulse noise	Understand	CO2	CLO 8	AEC508.08
25	Define Photon	Massless particle containing a certain amount of energy is called/ Each bundle of massless energy is called a Photon.	Understand	CO2	CLO 9	AEC508.09
26	What is Monochromatic light	Achromatic light is also called monochromatic light.(Light void of color)	Understand	CO2	CLO 5	AEC508.05
27	What is Brightness embodies	Brightness embodies the achromatic notion of intensity and is a key factor in describing color sensation.	Understand	CO2	CLO 6	AEC508.06
28	What is smoothing filter	Noise reduction is obtained by blurring the image using smoothing filter.	Understand	CO2	CLO 7	AEC508.07
29	What is Average of pixels	The output or response of a smoothing, linear spatial filter is simply the average of the pixels contained in the neighbourhood of the filter mask.	Understand	CO2	CLO 8	AEC508.08
30	What is the output of a smoothing, linear spatial filter?	The output or response of a smoothing, linear spatial filter is simply the average of the pixels contained in the neighbourhood of the filter mask.	Remember	CO2	CLO 9	AEC508.09
31	Define averaging filter.	Since the smoothing spatial filter performs the average of the pixels, it is also called as averaging filter.	Understand	CO2	CLO 5	AEC508.05
32	Define Sharp transitions of gray levels	Smoothing filter replaces the value of every pixel in an image by the average value of the gray levels. So, this helps in removing the sharp transitions in the gray levels between the pixels. This is done because, random noise typically consists of sharp transitions in gray levels.	Understand	CO2	CLO 6	AEC508.06
33	Define Blur edges	Edges, which almost always are desirable features of an image, also are characterized by sharp transitions in gray level. So, averaging filters have an undesirable side effect that they blur	Understand	CO2	CLO 7	AEC508.07

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		these edges.				
34	What is the disadvantage of using smoothing filter?	Blur edges	Understand	CO2	CLO 8	AEC508.08
35	What is smoothing spatial filters	One of the applications of smoothing spatial filters is that, they help in smoothing the false contours that result from using an insufficient number of gray levels.	Understand	CO2	CLO 9	AEC508.09
36	Define Smoothing spatial filter	This is a smoothing spatial filter. This mask yields a so called weighted average, which means that different pixels are multiplied with different coefficient values. This helps in giving much importance to the some pixels at the expense of others.	Understand	CO2	CLO 5	AEC508.05
37	Define Box filter	A spatial averaging filter or spatial smoothening filter in which all the coefficients are equal is also called as box filter.	Understand	CO2	CLO 6	AEC508.06
38	Define Gross representation	An important application of spatial averaging is to blur an image for the purpose of getting a gross representation of interested objects, such that the intensity of the small objects blends with the background and large objects become easy to detect.	Understand	CO2	CLO 7	AEC508.07
39	What is the application of image blurring?	Gross representation	Understand	CO2	CLO 8	AEC508.08
40	What is Nonlinear smoothing filters	Order static filters are nonlinear smoothing spatial filters whose response is based on the ordering or ranking the pixels contained in the image area encompassed by the filter, and then replacing the value of the central pixel with the value determined by the ranking result.	Understand	CO2	CLO 9	AEC508.09
		UNIT-III				
1	Define Image restoration	Steps in image processing: Image acquisition-> Image enhancement- > Image restoration-> Color image processing-> Wavelets and multi resolution processing-> Compression-> Morphological processing-> Segmentation-> Representation & description-> Object recognition.	Remember	CO3	CLO 10	AEC508.10
2	What is the step that is performed before color image processing in image processing?	Image restoration: Steps in image processing: Image acquisition-> Image enhancement-> Image restoration-> Color image processing-> Wavelets and multi resolution processing-> Compression->Morphological processing-> Segmentation-> Representation & description-> Object	Understand	CO3	CLO 11	AEC508.11

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		recognition.				
3	What is meant by Image Restoration?	Restoration attempts to reconstruct or recover an image that has been degraded by using a clear knowledge of the degrading phenomenon.	Remember	CO3	CLO 12	AEC508.12
4	Define Reseau Marks	Imaging systems having physical artefacts embedded in the imaging sensors produce a set of points called Reseau Marks.	Remember	CO3	CLO 13	AEC508.13
5	What are the two properties in Linear Operator?	1. Additivity 2. Homogenity	Remember	CO3	CLO 12	AEC508.12
6	How many number of steps are involved in image processing?	Steps in image processing: Image acquisition-> Image enhancement- > Image restoration-> Color image processing-> Wavelets and multi resolution processing-> Compression-> Morphological processing-> Segmentation-> Representation & description-> Object recognition.	Remember	CO3	CLO 10	AEC508.10
7	What is concept algebraic approach?	The concept of algebraic approach is to estimate the original image which minimizes a predefined criterion of performances.	Remember	CO3	CLO 11	AEC508.11
8	Define object recognition	Recognition is the process that assigns a label (e.g., "vehicle") to an object based on its descriptors. We conclude our coverage of digital image processing with the development of methods for recognition of individual objects	Remember	CO3	CLO 12	AEC508.12
9	What is contrast stretching, if $r_1=s_1$ and $r_2=s_2$	The transformation is a linear function that produces no changes in gray levels	Remember	CO3	CLO 13	AEC508.13
10	What are the two methods of algebraic approach?	1. Unconstraint restoration approach 2. Constraint restoration approach	Understand	CO3	CLO 10	AEC508.10
11	Define transformation- linear function	The locations of points (r_1,s_1) and (r_2,s_2) control the shape of the transformation function. If r_1 = s_1 and r_2 = s_2 then the transformation is a linear function that produces no changes in gray levels.	Understand	CO3	CLO 11	AEC508.11
12	how to transformation becomes a thresholding function	The transformation becomes a thresholding function that creates a binary image i.e., In contrast stretching, if r_1 = r_2 , s_1 =0 and s_2 = L -1/	Understand	CO3	CLO 12	AEC508.12
13	Define Gray-level interpolation	Gray-level interpolation deals with the assignment of gray levels to pixels in the spatially transformed image	Understand	CO3	CLO 13	AEC508.13
14	How to create a binary image	If $r_1=r_2$, $s_1=0$ and $s_2=L-1$, the transformation becomes a thresholding function that creates a binary image.	Understand	CO3	CLO 10	AEC508.10
15	What is meant by Noise probability	The spatial noise descriptor is the statistical behavior of gray level values	Remember	CO3	CLO 11	AEC508.11

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	density function?	in the noise component of the model.				
16	Define Gray-level slicing	Highlighting a specific range of gray levels in an image often is desired in gray-level slicing. Applications include enhancing features such as masses of water in satellite imagery and enhancing flaws in X-ray images.	Understand	CO3	CLO 12	AEC508.12
17	Which one is the primary objective of sharpening of an image?	Highlight fine details in the image.	Understand	CO3	CLO 13	AEC508.13
18	What is image translation and scaling?	Image translation means reposition the image from one co-ordinate location to another along straight line path. Scaling is used to alter the size of the object or image (ie) a co-ordinate system is scaled by a factor	Understand	CO3	CLO 10	AEC508.10
19	Define Image sharpening process	Image sharpening process is used in electronic printing.	Understand	CO3	CLO 11	AEC508.11
20	Define The second order derivative of a digital function	Must be zero in the flat areas i.e. areas of constant grey values. Must be nonzero at the onset of a gray-level step or ramp discontinuities. Must be zero along the gray-level ramps of constant slope.	Understand	CO3	CLO 12	AEC508.12
21	Why the restoration is called as unconstrained restoration?	In the absence of any knowledge about the noise 'n', a meaningful criterion function is to seek an such that H approximates of in a least square sense by assuming the noise term is as small as possible. Where H = system operator. = estimated input image. g = degraded image	Understand	CO3	CLO 13	AEC508.13
22	Define Differentiation	We know that, in blurring the image, we perform the average of pixels which can be considered as integration. As sharpening is the opposite process of blurring, logically we can tell that we perform differentiation on the pixels to sharpen the image.	Understand	CO3	CLO 10	AEC508.10
23	What is Image differentiation	Image differentiation enhances the edges, discontinuities and deemphasizes the pixels with slow varying gray levels.	Understand	CO3	CLO 11	AEC508.11
24	What are the three methods of estimating the degradation function?	1. Observation 2. Experimentation 3. Mathematical modeling. The simplest approach to restoration is direct inverse filtering, an estimate F^(u,v) of the transform of the original image simply by dividing the transform of the degraded image G^(u,v)	Understand	CO3	CLO 12	AEC508.12
25	Give the difference between Enhancement and Restoration	Enhancement technique is based primarily on the pleasing aspects it might present to the viewer. For example: Contrast Stretching. Whereas Removal of image blur by applying a deblurrings function is considered a restoration	Understand	CO3	CLO 13	AEC508.13

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		technique.	** 1		GY 0 10	150500.10
26	Define Slow	We are interested in the behaviour of	Understand	CO3	CLO 10	AEC508.10
	varying gray	derivatives used in sharpening in the				
	values	constant gray level areas i.e., flat				
		segments, and at the onset and end of				
		discontinuities, i.e., step and ramp discontinuities.				
27	What is	Highlighting the fine detail in an image	Remember	CO3	CLO 10	AEC508.11
21	sharpening spatial	or Enhancing detail that has been blurred	remember	COS	CEO 10	1120500111
	filters	because of some error or some natural				
		effect of some method of image				
		acquisition, is the principal objective of				
		sharpening spatial filters.				
28	Sharpening is	To spatial differentiation/ Smoothing is	Remember	CO3	CLO 12	AEC508.12
	analogous to	analogous to integration and so,				
	which of the following	sharpening to spatial differentiation.				
	operations?					
29	Which are the	Sharpening spatial filters enhances edges	Remember	CO3	CLO 13	AEC508.13
	sharpening spatial	and discontinuities like noise				
		Sharpening spatial filters deemphasizes				
	differentiation?	areas that have slowly varying gray-level				
		values				
30	What is Image	The negative of an image with gray	Understand	CO3	CLO 13	AEC508.13
	Negatives?	levels in the range [0, L-1] is obtained by				
		using the negative transformation, which				
		is given by the expression. $s = L-1-r$				
		Where s is output pixel r is input pixel	XX 1 . 1		GY 0.10	AEG500.10
31	Define Intensity	The principle objective of Sharpening, to highlight transitions is called intensity/	Understand	CO3	CLO 10	AEC508.10
	623	The principle objective of Sharpening, to				
	-	highlight transitions is Intensity.			_	
32	Give the formula	Negative: $S=L-1-r$; Log: $S = c \log(1+r)$	Understand	CO3	CLO 11	AEC508.11
	for negative and	Where c-constant and ≥0			_	
	log transformation				1	
33	What is meant by	Instead of highlighting gray level ranges,	Understand	CO3	CLO 12	AEC508.12
	bit plane slicing?	highlighting the contribution made to				
		total image appearance by specific bits might be desired. Suppose that each pixel				
		in an image is represented by 8 bits.	~ ~ ~			
		Imagine that the image is composed of	1,10			
		eight 1-bit planes, ranging from bit plane				
	****	0 for LSB to bit plane-7 for MSB.	** 1		GY 0 12	170500 10
34	Why blur is to be removed from	The blur is caused by lens that is	Understand	CO3	CLO 13	AEC508.13
	images?	improper manner, relative motion				
	mages.	between camera and scene and				
		atmospheric turbulence. It will introduce bandwidth reduction and make the image				
		analysis as complex. To prevent the				
		issues, blur is removed from the images.				
35	What is meant by	Restoration attempts to reconstruct or	Understand	CO3	CLO 10	AEC508.10
	Image	recover an image that has been degraded				
	Restoration?	by using a clear knowledge of the				
2.5	XX71	degrading phenomenon.	Do	600	CI O 11	AEC500 11
36	What are the two	Additivity and Homogenity	Remember	CO3	CLO 11	AEC508.11
	properties in				1	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	Linear Operator?					
37	How a degradation process is modeled?	A system operator H, which together with an additive white noise term (x,y) a operates on an input image $f(x,y)$ to produce a degraded image $g(x,y)$.	Remember	CO3	CLO 12	AEC508.12
38	Define homogenity property in Linear Operator	The homogeneity property says that, the response to a constant multiple of any input is equal to the response to that input multiplied by the same constant.	Remember	CO3	CLO 13	AEC508.13
39	Define circulant matrix?	A square matrix, in which each row is a circular shift of the preceding row and the first row is a circular shift of the last row, is called circulant matrix.	Remember	CO3	CLO 10	AEC508.10
40	What is concept algebraic approach?	The concept of algebraic approach is to estimate the original image which minimizes a predefined criterion of performances.	Remember	CO3	CLO 11	AEC508.11
		UNIT-IV				
1	What is Morphological processing	Morphological processing deals with tools for extracting image components that are useful in the representation and description of shape. The material in this chapter begins a transition from processes that output images to processes that output image attributes.	Remember	CO4	CLO 14	AEC508.14
2	What role does the segmentation play in image processing?	Deals with partitioning an image into its constituent parts or objects	Remember	CO4	CLO 15	AEC508.15
3	What is segmentation?	Segmentation is the process of portioning an image into its constitute regions or objects based on certain criteria. Image segmentation algorithms are based on either discontinuity principle or similarity principle.	Remember	CO4	CLO 15	AEC508.15
4	What is the Segmentation procedures	Segmentation procedures partition an image into its constituent parts or objects. In general, autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged segmentation procedure brings the process a long way toward successful solution of imaging problems that require objects to be identified individually.	Understand	CO4	CLO 16	AEC508.16
5	What is Zero in flat segments	The derivations of digital functions are defined in terms of differences. The definition we use for first derivative should be zero in flat segments, nonzero at the onset of a gray level step or ramp and nonzero along the ramps.	Remember	CO4	CLO 15	AEC508.15
6	Write the applications of segmentation	Detection of isolated points. * Detection of lines and edges in an image.	Remember	CO4	CLO 14	AEC508.14
7	Define Nonzero response at onset	The derivations of digital functions are defined in terms of differences. The	Remember	CO4	CLO 15	AEC508.15

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	of gray level step	definition we use for second derivative should be zero in flat segments, zero at the onset of a gray level step or ramp and nonzero along the ramps.				
8	What are the three types of discontinuity in digital image?	Points, lines and edges	Remember	CO4	CLO 15	AEC508.15
9	If f(x,y) is an image function of two variables, then the first order derivative of a one dimensional function, f(x) is:	$f(x+1)$ - $f(x)$: The first order derivative of a single dimensional function $f(x)$ is the difference between $f(x)$ and $f(x+1)$. That is, $\partial f/\partial x = f(x+1)$ - $f(x)$.	Understand	CO4	CLO 16	AEC508.16
10	How the derivatives are obtained in edge detection during formulation?	The first derivative at any in an image is obtained by using the magnitude of the gradient at that point. Similarly the second derivatives are obtained by using the laplacian.	Understand	CO4	CLO 14	AEC508.14
11	Define noise point.	Isolated point is also called as noise point.	Understand	CO4	CLO 15	AEC508.15
12	Write about linking edge points.	The approach for linking edge points is to analyze the characteristics of pixels in a small neighborhood (3x3 or 5x5) about every point (x,y)in an image that has undergone edge detection. All points that are similar are linked, forming a boundary of pixels that share some common properties.	Understand	CO4	CLO 15	AEC508.15
13	Define Thicker	We know that, the first order derivative is nonzero along the entire ramp while the second order is zero along the ramp. So, we can conclude that the first order derivatives produce thicker edges and the second order derivatives produce much finer edges.	Understand	CO4	CLO 16	AEC508.16
14	What are the two properties used for establishing similarity of edge pixels?	(1) The strength of the response of the gradient operator used to produce the edge pixel. (2) The direction of the gradient.	Understand	CO4	CLO 14	AEC508.14
15	What is Edges	Image Differentiation enhances Edges and other discontinuities.	Understand	CO4	CLO 15	AEC508.15
16	What is edge?	An edge isa set of connected pixels that lie on the boundary between two regions edges are more closely modeled as having a ramplike profile. The slope of the ramp is inversely proportional to the degree of blurring in the edge.	Understand	CO4	CLO 16	AEC508.16
17	Define Pixel Density	Image Differentiation de-emphasizes areas with slowly varying intensities.	Understand	CO4	CLO 16	AEC508.16
18	Give the properties of the second derivative around an edge	The sign of the second derivative can be used to determine whether an edge pixel lies on the dark or light side of an edge. It produces two values for every edge in an image. x An imaginary straightline joining the extreme positive and negative	Understand	CO4	CLO 14	AEC508.14

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		values of the second derivative would				
10	Define Gradient	cross zero near the midpoint of the edge	Remember	604	CLO 15	AEC508.15
19	Operator	First order derivatives of a digital image are based on various approximation of	Kemember	CO4	CLO 13	AEC306.13
	Operator	the 2-D gradient. The gradient of an				
		image $f(x,y)$ at $location(x,y)$ is defined as				
		the vector Magnitude of the vector is				
20	What is meant by	$\Delta f=mag(\Delta f)=[Gx 2 + Gy 2] 1$ To execute the objects from the	Remember	CO4	CLO 14	AEC508.14
20	object point and	background is to select a threshold T that	Kemember	CO4	CLO 14	ALC306.14
	background point?	separates these modes. Then any point				
	ouckground point.	(x,y) for which $f(x,y)>T$ is called an				
		object point. Otherwise the point is				
21	What is global	called background point When Threshold T depends only on	Remember	CO4	CLO 15	AEC508.15
21	threshold?	f(x,y) then the threshold is called global.	Kemember	004	CLO 13	ALC300.13
22	Define region	Region growing is a procedure that	Understand	CO4	CLO 15	AEC508.15
	growing	groups pixels or subregions in to layer				
		regions based on predefined criteria. The				
		basic approach is to start with a set of seed points and from there grow regions				
		by appending to each seed these				
		neighbouring pixels that have properties				
		similar to the seed.				
23	Specify the steps	Split into 4 disjoint quadrants any region Ri for which P(Ri)=FALSE. Merge any	Understand	CO4	CLO 16	AEC508.16
	involved in	adjacent regions Rj and Rk for which				
	splitting and	P(RjURk)=TRUE. Stop when no further				
	merging	merging or splitting is positive.				
24	What is Local	If Threshold T depends both on $f(x,y)$	Understand	CO4	CLO 14	AEC508.14
	threshold?	and p(x,y) is called local.			~ ~	
25	What is dynamic	If Threshold T depends on the spatial	Remember	CO4	CLO 14	AEC508.14
	or adaptive threshold?	coordinates x and y the threshold is			_	
	unresnoia?	called dynamic or adaptive where $f(x,y)$ is the original image			V	
26	How edges are	The edges are linked through hough	Remember	CO4	CLO 15	AEC508.15
	linked through	transform by using intersecting of 2 lines	7			
	hough transform?	equations. The straight line equation is y		- %		
	-5	= mx+b. In polar coordinates				
		$\rho = x\cos\theta + y\sin\theta$ where ρ & θ are the	1			
		coordinates of parameter space. The	0.7			
		hough transform of a straight line in the	10			
27	State the problems	x,y space is a single point in ρ , θ space Initial seed points – different set of initial	Remember	CO4	CLO 14	AEC508.14
21	in region splitting	seed point cause different segmented		554	22311	
	and merging based	result. x Time consuming problem x This				
	image	method is not suitable for color images				
	segmentation	and produce fault colors sometime. x				
		Region growth may stop at any time				
20	What are factors	when no more pixel satisfy the criteria.	Undoustand	604	CI O 15	AEC500 15
28	What are factors affecting the	The factors affecting the accuracy of region growing are like lightning	Understand	CO4	CLO 15	AEC508.15
	accuracy of region	variations, pixel's intensity value				
	growing?					
29	Define region	Region splitting and merging is a	Remember	CO4	CLO 14	AEC508.14
	splitting and merging	segmentation process in which an image is initially subdivided into a set of				
	merging	is minany subdivided lillo a set of				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		arbitrary ,disjoint regions and then the regions are merger and /or splitted to satisfy the basic conditions.				
30	What is Image Segmentation	The segmentation algorithms can be divided into two broad categories based on the two important properties, namely, discontinuity and Similarity.	Remember	CO4	CLO 15	AEC508.15
31	What are the Image Segmentation Techniques	The various segmentation techniques based on (1) gray level discontinuity and (2) gray level similarity are well depicted in a graph	Remember	CO4	CLO 14	AEC508.14
32	What is the cause of ringing effect?	If your sampling rate does not include all frequencies in your image, ringing effect occurs.	Understand	CO4	CLO 15	AEC508.15
33	What problem occurs when the histogram has only one lobe?	When the image histogram has only one lobe then a threshold cannot be found.	Understand	CO4	CLO 14	AEC508.14
34	What problem occurs when the image has low luminance?	Then the histogram of the image is restricted to a small region of luminance intensity and uniform thresholding does not give good results.	Understand	CO4	CLO 15	AEC508.15
35	What are the advantages of the non-uniform thresholding?	Non-uniform thresholding solves the above mentioned problem, since it first modifies the histogram in order to be better distributed in all luminance values.	Understand	CO4	CLO 14	AEC508.14
36	What is the definition of the pixel neighborhood?	In many applications, it is important to check the connectedness of a region, something that it is done using the neighborhood definition.	Remember	CO4	CLO 15	AEC508.15
37	What is the definition of region connectedness?	A region R is called connected if any two pixels (xA, yA), (xB, yB) belonging to R.	Remember	CO4	CLO 14	AEC508.14
38	Segmentation is usually not perfect due to number of factors such as	Noise, Bad illumination	Remember	CO4	CLO 15	AEC508.15
39	What are the two approaches to segmentation?	Region based segmentation & edge segmentation	Understand	CO4	CLO 14	AEC508.14
40	Define closing	Dilation followed by erosion is called	Understand	CO4	CLO 15	AEC508.15
		UNIT-V				
1	What is the expanded form of JPEG?	Image compression is familiar (perhaps inadvertently) to most users of computers in the form of image file extensions, such as the jpg file extension used in the JPEG (Joint Photographic Experts Group) image compression standard.	Remember	CO5	CLO 17	AEC508.17
2	What is image compression?	Image compression refers to the process of redundancy amount of data required to represent the given quantity of information for digital image. The basis of reduction process is removal of redundant data	Understand	CO5	CLO 18	AEC508.18
3	What are two main types of Data compression?	Lossless compression can recover the exact original data after compression. It is used mainly for compressing database	Remember	CO5	CLO 19	AEC508.18

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		records, spreadsheets or word processing files, where exact replication of the original is essential.				
4	What is the need for Compression?	In terms of storage, the capacity of a storage device can be effectively increased with methods that compress a body of data on its way to a storage device and decompress it when it is retrieved.	Remember	CO5	CLO 17	AEC508.17
5	What is Data Compression?	Data compression requires the identification and extraction of source redundancy. In other words, data compression seeks to reduce the number of bits used to store or transmit information	Remember	CO5	CLO 17	AEC508.17
6	What are different Compression Methods?	Run Length Encoding (RLE) Arithmetic coding Huffman coding and Transform coding	Understand	CO5	CLO 18	AEC508.18
7	Define is coding redundancy	If the gray level of an image is coded in a way that uses more code words than necessary to represent each gray level, then the resulting image is said to contain coding redundancy.	Remember	CO5	CLO 19	AEC508.19
8	Define interpixel redundancy	The value of any given pixel can be predicted from the values of its neighbors. The information carried by is small. Therefore the visual contribution of a single pixel to an image is redundant. Otherwise called as spatial redundant geometric redundant or interpixel redundant. Eg: Run length coding	Remember	CO5	CLO 17	AEC508.17
9	What is run length coding?	Run-length Encoding, or RLE is a technique used to reduce the size of a repeating string of characters. This repeating string is called a run; typically RLE encodes a run of symbols into two bytes, a count and a symbol.	Understand	CO5	CLO 18	AEC508.18
10	Define compression ratio.	Compression Ratio = original size / compressed size	Remember	CO5	CLO 17	AEC508.17
11	Define psycho visual redundancy	In normal visual processing certain information has less importance than other information. So this information is said to be psycho visual redundant.	Remember	CO5	CLO 18	AEC508.18
12	Define encoder	Source encoder is responsible for removing the coding and interpixel redundancy and psycho visual redundancy. There are two components A) Source Encoder B) Channel Encoder	Understand	CO5	CLO 19	AEC508.19
13	Define source encoder	Source encoder performs three operations 1) Mapper -this transforms the input data into non-visual format. It reduces the interpixel redundancy.	Remember	CO5	CLO 17	AEC508.17
14	Define channel encoder	The channel encoder reduces reduces the impact of the channel noise by inserting redundant bits into the source encoded data. Eg: Hamming code	Understand	CO5	CLO 18	AEC508.18
15	What are the types of decoder?	Source decoder- has two components a) Symbol decoder- This performs inverse operation of symbol encoder. b) Inverse	Remember	CO5	CLO 19	AEC508.19

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		mapping- This performs inverse operation of mapper. Channel decoder-this is omitted if the system is error free				
16	What are the operations performed by error free compression?	1) Devising an alternative representation of the image in which its interpixel redundant are reduced. 2) Coding the representation to eliminate coding redundancy	Understand	CO5	CLO 17	AEC508.17
17	What is Variable Length Coding?	Variable Length Coding is the simplest approach to error free compression. It reduces only the coding redundancy. It assigns the shortest possible codeword to the most probable gray levels.	Remember	CO5	CLO 18	AEC508.18
18	Define Huffman coding and mention its limitation	Huffman coding is a popular technique for removing coding redundancy.	Understand	CO5	CLO 19	AEC508.19
19	Define Block code	Each source symbol is mapped into fixed sequence of code symbols or code words. So it is called as block code	Remember	CO5	CLO 17	AEC508.17
20	Define instantaneous code	A code word that is not a prefix of any other code word is called instantaneous or prefix codeword	Remember	CO5	CLO 18	AEC508.18
21	Define uniquely decodable code	A code word that is not a combination of any other codeword is said to be uniquely decodable code.	Remember	CO5	CLO 19	AEC508.19
22	Define B2 code	Each code word is made up of continuation bit c and information bit which are binary numbers. This is called B2 code or B code. This is called B2 code because two information bits are used for continuation bits	Understand	CO5	CLO 17	AEC508.17
23	Define the procedure for Huffman shift coding	List all the source symbols along with its probabilities in descending order. Divide the total number of symbols into block of equal size. Sum the probabilities of all the source symbols outside the reference block.	Understand	CO5	CLO 17	AEC508.17
24	Define arithmetic coding	In arithmetic coding one to one corresponds between source symbols and code word doesn't exist where as the single arithmetic code word assigned for a sequence of source symbols. A code word defines an interval of number between 0 and 1.	Understand	CO5	CLO 18	AEC508.18
25	What is bit plane Decomposition?	An effective technique for reducing an image's inter pixel redundancies is to process the image's bit plane individually.	Understand	CO5	CLO 19	AEC508.19
26	How effectiveness of quantization can be improved?	1. Introducing an enlarged quantization interval around zero, called a dead zero. 2. Adapting the size of the quantization intervals from scale to scale. In either case, the selected quantization intervals must be transmitted to the decoder with the encoded image bit stream	Remember	CO5	CLO 17	AEC508.17
27	What are the coding systems in JPEG?	1. A lossy baseline coding system, which is based on the DCT and is adequate for most compression application. 2. An extended coding system for greater	Remember	CO5	CLO 18	AEC508.18

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		compression, higher precision or progressive reconstruction applications. 3. A lossless independent coding system for reversible compression.				
28	What is JPEG?	The acronym is expanded as "Joint Photographic Expert Group". It is an international standard in 1992. It perfectly Works with color and grayscale images, Many applications e.g., satellite, medical	Remember	CO5	CLO 19	AEC508.19
29	What are the basic steps in JPEG?	The Major Steps in JPEG Coding involve: 1. DCT (Discrete Cosine Transformation) 2. Quantization 3. Zigzag Scan 4. DPCM on DC component 5. RLE on AC Components 6. Entropy Coding	Understand	CO5	CLO 17	AEC508.17
30	What is MPEG?	The acronym is expanded as "Moving Picture Expert Group". It is an international standard in 1992. It perfectly Works with video and also used in teleconferencing	Understand	CO5	CLO 18	AEC508.18
31	Define I-frame	I-frame is Intraframe or Independent frame. An I-frame is compressed independently of all frames. It resembles a JPEG encoded image. It is the reference point for the motion estimation needed to generate subsequent P and P-frame.	Understand	CO5	CLO 19	AEC508.19
32	Define P-frame	P-frame is called predictive frame. A P-frame is the compressed difference between the current frame and a prediction of it based on the previous I or P-frame	Understand	CO5	CLO 17	AEC508.17
33	Define B-frame	B-frame is the bidirectional frame. A B-frame is the compressed difference between the current frame and a prediction of it based on the previous I or P-frame or next P-frame. Accordingly the decoder must have access to both past and future reference frames.	Understand	CO5	CLO 18	AEC508.18
34	What is shift code?	The two variable length codes (Binary shift, Huffman Shift) are referred to as shift codes. A shift code is generated by i)Arranging probabilities of the source symbols are monotonically decreasing.	Understand	CO5	CLO 19	AEC508.19
35	What are the types of redundancy?	i) Coding Redundancy ii) Interpixel Redundancy iii) Psychovisual Redundancy	Remember	CO5	CLO 17	AEC508.17
36	Define Psychovisual redundancy.	Certain information which has less relative importance than other information in normal visual processing are said to be psychovisually redundant information.	Remember	CO5	CLO 18	AEC508.18
37	What is image compression?	Image compression refers to the process of redundancy amount of data required to represent the given quantity of information for digital image. The basis of reduction process is removal of redundant data.	Remember	CO5	CLO 19	AEC508.19

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
38	What is Data	Data compression requires the	Understand	CO5	CLO 17	AEC508.17
	Compression?	identification and extraction of source				
		redundancy. In other words, data				
		compression seeks to reduce the number				
		of bits used to store or transmit				
		information.				
39	What are two main	1. Lossless compression	Understand	CO5	CLO 18	AEC508.18
	types of Data	2. Lossy compression				
	compression?					
40	What is the need	In terms of communications, the	Remember	CO5	CLO 19	AEC508.19
	for Compression?	bandwidth of a digital communication				
		link can be effectively increased by				
		compressing data at the sending end and				
		decompressing data at the receiving end.				

Prepared By:
Dr. S China Venkateswarlu, Professor

HOD, ECE