

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name		:	MATHEMATICAL TRANSFORM TECHNIQUES
Course Code		:	AHSB11
Program		:	B.Tech
Semester		•	II
Branch	1	:	Electronics and Communication Engineering
Section	1	:	A, B, C, D
Academic Year		:	2019 – 2020
Course Faculty		:	Dr. S. Jagadha, Associate Professor

OBJECTIVES:

Ι	Enrich the knowledge solving algebra and transcendental equations and understanding Laplace transforms.
Π	Determine the unknown values of a function by interpolation and applying inverse Laplace transforms.
III	Fitting of a curve and determining the Fourier transform of a function.
IV	Solving the ordinary differential equations by numerical techniques.
V	Formulate to solve Partial differential equation

DEFINITIONS AND TERMINOLOGY QUESTION BANK

~ ~ ~ ~				~ ~	-					
S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code				
	MODULE-I									
1	What is the order of convergence in Bisection method?	The order of convergence in Bisection method is one or linear.	Remember	CO 1	CLO 1	AHSB11.01				
2	What is the order of convergence in Newton-Raphson method?	The order of convergence Newton- Raphson method is two.	Remember	CO 1	CLO 1	AHSB11.01				
3	State the other name of Bisection method in determining the real root of algebraic and transcendental equation.	Bisection method is also called as Bolzono method in solving the real root of algebraic and transcendental equation.	Remember	CO 1	CLO 1	AHSB11.01				
4	State the most powerful and elegant method in determining the real root of algebraic and transcendental equation.	Newton-Raphson method is the powerful and elegant method in solving the real root of algebraic and transcendental equation.	Remember	CO 1	CLO 1	AHSB11.01				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
5	Define the term	If f(t) be a given function which is defined	Remember	CO 1	CLO 2	AHSB11.02
	Laplace transform	for all positive values of t, if				
		$F(s) = \int_{-\infty}^{\infty} e^{-st} f(t) dt$ exists, then $F(s)$ is				
		$F(s) = \int_{0}^{\infty} e^{-1}(t) dt exists, then F(s) is$				
		called Laplace transform of f(t) and is				
		denoted by $L{f(t)}$				
6	State linearity	If $L{f(t)} = f(s)$ then	Understand	CO 1	CLO 2	AHSB11.02
	property of Laplace	L [a f(t) + b g(t)] = a L [f(t)] + b L [g(t)]				
7	transform State change of scale	If $L{f(t)} = f(s)$ then	Understand	CO 1	CLO 3	AHSB11.03
,	property of Laplace	$L[f(at)] = \frac{1}{a}f(\frac{s}{a})$	Chacibtana	001	CLO 5	1115011.05
	transform	u u				
8	State Laplace	If $L{f(t)} = f(s)$ and $f(t)$ is a periodic	Understand	CO 1	CLO 6	AHSB11.06
	transform of periodic functions	function with period T then		A		
		$L[f(t)] = \frac{1}{1 - e^{-sT}} \int_0^T f(t) e^{-st} dt$		-		
9	When does a Laplace	Laplace Transform exists the function is	Understand	CO 1	CLO 2	AHSB11.02
	transform exists?	piece-wise continuous and of exponential	Onderstand	01	CLO 2	AIISD11.02
		order				
10	State the Laplace	The Laplace transform of unit impulse function is e ^{-as}	Understand	CO 1	CLO 2	AHSB11.02
	transform of unit impulse function	lunction is e				
11	Describe the use of	Laplace Transformation is very much	Understand	CO 1	CLO 2	AHSB11.02
	studying the Laplace	useful in obtaining solution of Linear				
	transforms?	D.E's(both Ordinary and Partial), Solution of system of simultaneous D.E's,				
		Solution of system of simulateous D.E.s, Solutions of Integral equations, solutions				
		of Linear Difference equations and in the				
	~ ~ ~	evaluation of definite Integral. If $f(t), f'(t), f''(t), \dots, f^{(n-1)}(t)$ are		20.4		
12	State Laplace transform of	If $f(t)$, $f'(t)$, $f''(t)$,, $f^{(n+1)}(t)$ are continuous, and $f^{(n)}(t)$ is piecewise	Understand	CO 1	CLO 4	AHSB11.04
	derivatives	continuous, and <i>J</i> (<i>I</i>) is piecewise			_	
	0	exponential order functions, then			0	
	6	$L[f^{(n)}(t)] = s^{n} F(s) - \sum_{n=1}^{n} s^{n-i} f^{(i-1)}(0)$		1.10	1. C	
	0	$L[j (i)] - S T(S) - \sum_{i=1}^{j} S J (0)$		-		
13	State Laplace	If $L{f(t)} = f(s)$ then	Understand	CO 1	CLO 4	AHSB11.04
	transform of integrals	$\Rightarrow \int_{s}^{\infty} \int_{s}^{\infty} \cdots \int_{s}^{\infty} F(s) ds ds \cdots ds = L \left[\frac{1}{t^{n}} f(t) \right]$	× 1	2		
		$\Rightarrow \int_{s} \int_{s} \cdots \int_{s} T(s) ds ds \cdots ds = \mathbf{L} \left[\frac{1}{t^{n}} f(t) \right]$		C		
			V			
14	Why Laplace transforms are so	Laplace transforms are so useful for solving linear differential equations	Understand	CO 1	CLO 2	AHSB11.02
	useful for solving	because the Laplace transform of the n th				
	linear differential	derivative $f^{n}(x)$ can be related to the				
	equations?	transform of $f(x)$ in a simple manner.	TT 1			
15	In H(t-a) at what point unit step	At the point $t = a$	Understand	CO 1	CLO 2	AHSB11.02
	function is defined					
		MODULE-II			1	
1	What is the symbol μ called as?	The symbol μ is called as Average or Mean operator	Remember	CO 2	CLO 7	AHSB11.07
2	What is the symbol E	The symbol E is called as Shift operator	Remember	CO 2	CLO 7	AHSB11.07
3	called as? Express the relation	The relation between E in terms of Δ	Remember	CO 2	CLO 7	AHSB11.07
4	between E in terms of	is $1+\Delta$				
	Δ.					

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
5	Establish the relation	The relation between E and D is $E = e^{hD}$	Remember	CO 2	CLO 7	AHSB11.07
	between E and D.					
6	Express ∇y_5 in terms of y_2 , y_3 , y_4 and y_5 ?	$\nabla y_5 = y_5 - 3y_4 - 3y_3 - y_2$	Understand	CO 2	CLO 8	AHSB11.08
7	Define the term Interpolation.	Interpolation is an estimation of a value within two known values in a sequence of values.	Remember	CO 2	CLO 7	AHSB11.07
8	Represent the range of p in Gauss- Forward interpolation formulae.	The range of p in Gauss-Forward interpolation formulae is $0 < P < 1$	Remember	CO 2	CLO 8	AHSB11.08
9	Represent the range of p in Gauss- Backward interpolation formulae.	The range of p in Gauss-Forward interpolation formulae is $-1 < P < 0$	Remember	CO 2	CLO 8	AHSB11.08
10	Mention the name of formulae is used for unequal interval of x values to obtain the desired value of y.	The name of formulae is used for unequal interval of x values to obtain the desired value of y is Lagrange's interpolation formulae	Remember	CO 2	CLO 8	AHSB11.08
11	Define Average or Mean operator.	$\mu y_r = \frac{1}{2} \left[y_{r+1/2} + y_{r-1/2} \right]$	Remember	CO 2	CLO 7	AHSB11.07
12	State Newton's forward interpolation formulae for equal length of intervals.	$\frac{y = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \dots + \frac{p(p-1)(p-2)\dots(p-(n-1))}{n!} \Delta^n y_0$	Remember	CO 2	CLO 8	AHSB11.08
13	State Newton's backward interpolation formulae for equal length of intervals.	$\frac{y = y_0 + p \nabla y_n + \frac{p(p+1)}{2!} \nabla^2 y_n + \dots + \frac{p(p+1)(p+2)\dots(p+(n-1))}{n!} \nabla^n y_n$	Remember	CO 2	CLO 8	AHSB11.08
14	State Gauss's forward interpolation formulae for equal length of intervals.	$y = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!} \Delta^3 y_{-1} + \cdots$	Remember	CO 2	CLO 8	AHSB11.08
15	State Gauss's forward interpolation formulae for equal length of intervals.	$y = y_0 + p \Delta y_{-1} + \frac{(p+1)p}{2!} \Delta^2 y_{-1} + \frac{(p+1)p(p-1)}{3!} \Delta^3 y_{-1} + \cdots$	Remember	CO 2	CLO 8	AHSB11.08
16	State Lagrange interpolation formulae for unequal length of intervals.	$y = f(x) = \frac{y = f(x) = \frac{(x - x_1)(x - x_2)(x - x_n)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_n)} \cdot y_0 + + \frac{(x - x_1)(x - x_2)(x_0 - x_n)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_n)} \cdot y_n$ The value of $(n + 1)^{th}$ order difference of	Remember	CO 2	CLO 8	AHSB11.08
17	Express the value of $(n + 1)^{th}$ order difference of a polynomial of n^{th} degree.	a polynomial of n^{th} degree is always zero	Understand	CO 2	CLO 8	AHSB11.08
18	Define the term Inverse Laplace transform	The inverse transform, or inverse of $L{f(t)}$ or $F(s)$, is $f(t) = L^{-1}{F(s)}$ where s is real or complex.	Remember	CO 2	CLO 9	AHSB11.09
19	State linearity property of Inverse Laplace transform	If $L^{-1}{f(s)} = f(t)$ then $L^{-1}[a f(s) + b g(s)]$ $= a L^{-1}[f(s)] + b L^{-1}[g(s)]$	Understand	CO 2	CLO 9	AHSB11.09
20	State change of scale property of Inverse Laplace transform	If $L^{-1}{f(s)} = f(t)$ then $L^{-1}{F(s-a)} = e^{at} f(t) = e^{at} L^{-1}{F(s)}$	Understand	CO 2	CLO 9	AHSB11.09

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
21	State convolution	If $L{f(t)} = f(s)$ then	Understand	CO 2	CLO 10	AHSB11.10
	theorem of Laplace	$L[\int_{0}^{t} f(\tau)g(t-\tau)d\tau] = F(s).G(s)$				
	transform	$L[j_0](t)g(t-t)dt] = I(5).O(5)$				
22	State Inverse shifting	If $L\{ua(t) f(t-a)\} = e^{-as} L\{f(t)\} =$	Understand	CO 2	CLO 9	AHSB11.09
	property of Inverse	$e^{-as} F(s)$, then $L^{-1} \{ e^{-as} F(s) \} = ua(t) f(t-a)$				
23	Laplace transform State convolution	If $L{f *g} = L {f(t)}.L{g(t)} = F(s).G(s)$	Understand	CO 2	CLO 10	AHSB11.10
23	theorem of Inverse	then $L^{-1}{F(s).G(s)} = f(t)^{s}.C(s)$	Understand	02		Ansbir.iu
	Laplace transform					
		MODULE-III	•		1	
1	Define the term curve	It is the process of finding the best fit	Remember	CO 3	CLO 13	AHSB11.13
	fitting.	curve for the set of given data values				
2	State through how	Through the three paired data points the	Understand	CO 3	CLO 13	AHSB11.13
	many paired data points does fitting of	fitting of the best straight line is obtained.				
	the best straight line					
	must pass through?					
3	Mention the principle	The principle involved in determining the	Remember	CO 3	CLO 13	AHSB11.13
	involved in	best fit curve for the set of given data				
	determining the best fit curve for the set of	values is the Method of least squares				
	given data values.					
4	Describe the term	The principle of least squares is described	Remember	CO 3	CLO 13	AHSB11.13
	principle of least	as "Sum of the squares of the errors or				
	squares in obtaining	residuals is minimum"				
	the best fit of the					
5	Curve.	Through the two points data points the	Understand	CO 3	CLO 13	AHSB11.13
5	State through how many paired data	Through the two paired data points the fitting of the best straight line is obtained.	Understand	005	CLO 15	АПЗД11.15
	points does fitting of	inting of the best straight line is obtained.			-	
	the best straight line				100 C	
	must pass through?				0	
6	State the Normal	The normal equations of the straight line	Remember	CO 3	CLO 13	AHSB11.13
	equations of the straight line	y = a + bx are		- A.	-	
	y = a + bx	$\sum y = na + b\sum x$ $\sum xy = a\sum x + b\sum x^{2}$				
		$\sum xy = a\sum x + b\sum x^2$		100		
7	State the Normal	The normal equations of the second degree	Remember	CO 3	CLO 13	AHSB11.13
/	equations of the	parabola $y = a + bx + cx^2$ are	Kentenibei			AU3011.13
	second degree	$\varepsilon y = na + b\varepsilon x + c\varepsilon x^2$. 0. 7			
	parabola					
	$y = a + bx + cx^2$	$\varepsilon xy = a\varepsilon x + b\varepsilon x^2 + c\varepsilon x^3$	1			
		$\varepsilon x^2 y = a\varepsilon x^2 + b\varepsilon x^3 + c\varepsilon x^4$				
8	Define Fourier	Fourier integral is a pair of integralsa	Remember	CO 3	CLO 14	AHSB11.14
0	integral transforms	"lower Fourier integral" and an "upper	Kenteniber			/113011.14
		Fourier integral"which allow				
		certain complex-valued functions f to				
		be decomposed as the sum of integral-				
		defined functions, each of which				
		resembles the usual Fourier				
		integral associated to f .				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
9	State Fourier integral	If $f(x)$ is a given function defined in	Understand	CO 3	CLO 14	AHSB11.14
	theorem.	(- <i>l</i> , <i>l</i>) and satisfies the Dirichlet				
		conditions then				
		$f(x) = \frac{1}{\pi} \int_{0}^{\infty} \int_{-\infty}^{\infty} f(t) \cos \lambda(t-x) dt d\lambda$				
		$\int_{-\infty}^{\infty} \pi \int_{0}^{\infty} \int_{-\infty}^{\infty} \pi \int_{0}^{\infty} \pi \int_{0$	·			
10	State Fourier Sine) [∞] [∞]	Remember	CO 3	CLO 14	AHSB11.14
	integral formulae.	$f(x) = \frac{2}{\pi} \int_{0}^{\infty} \sin \lambda x \int_{0}^{\infty} f(t) \sin \lambda t dt d\lambda$				
		π_0^J				
11	State Fourier Cosine		Remember	CO 3	CLO 14	AHSB11.14
	integral formulae.	$f(x) = \frac{2}{\pi} \int_{0}^{\infty} \cos \lambda x \int_{0}^{\infty} f(t) \cos \lambda t dt d\lambda$				
		π_0^J				
				A		
12	Define the term	The integral transform of a function f(x) is	Remember	CO 3	CLO 15	AHSB11.15
	Integral transform	given by $I[f(x)]$ or $F(s)$				
		$= \int_{0}^{b} f(x)k(s,x)dx$				
		a Where $k(a, y)$ is a known function called				
		Where k(s, x) is a known function called kernel of the transform, s is called the				
		parameter of the transform, $f(x)$ is called				
		the inverse transform of F(s)				
13	Define Fourier	The Fourier transform (FT) decomposes a	Remember	CO 3	CLO 15	AHSB11.15
	transforms	function of time (a signal) into the				
		frequencies that make it up, in a way				
		similar to how a musical chord can be expressed as the frequencies (or pitches)				
		of its constituent notes.				
14	Why to we need	A complicated signal can be broken down	Understand	CO 3	CLO 19	AHSB11.19
	Fourier transforms	into simple waves. This break down, and				
	0	how much of each wave is needed, is			0	
		the Fourier Transform. Fourier transforms	7		<u> </u>	
	0	(FT) take a signal and express it in terms of the frequencies of the waves that make			· · · ·	
	0	up that signal.		-		
15	What is difference	The Fourier series is used to represent a	Understand	CO 3	CLO 19	AHSB11.19
	between Fourier	periodic function by a discrete sum of		1		
	series and Fourier	complex exponentials, while the Fourier		C		
	transform?	transform is then used to represent a general, non periodic function by a	~~~	1		
		continuous superposition or integral of	10			
		complex exponentials.				
16	How to represent	Fourier transforms of function F(s) is	Understand	CO 3	CLO 15	AHSB11.15
	Fourier transforms of	defined by				
	function F(s)	$F(s) \equiv \int_{-\infty}^{\infty} f(x) e^{-2\pi i s x} dx$				
		$I(3) = \int_{-\infty} f(x) e^{-\alpha x} dx$				
17	How to represent	Inverse Fourier transforms of function $f(x)$	Understand	CO 3	CLO 15	AHSB11.15
	Inverse Fourier	is defined by				
	transforms of	$f(x) = \int_{-\infty}^{\infty} E(x) e^{2\pi i s x} dx$				
	function f(x)	$f(x) \equiv \int_{-\infty}^{\infty} F(s) e^{2\pi i s x} ds$				
18	State linearity	$F[af_1(x) + bf_2(x)] = aF_1(s) + bF_2(s)$	Understand	CO 3	CLO 15	AHSB11.15
	property of Fourier					
	transforms					
ļ						

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
19	State change of scale		Understand	CO 3	CLO 15	AHSB11.15
	property of Fourier transforms	$F[f(ax)] = \frac{1}{a}F(\frac{s}{a})(a > 0)$				
20	State Modulation property of Fourier transforms	$F[f(x)\cos ax] = \frac{1}{2} [F(s+a) + F(s-a)], F[s] = F[f(x)]$	Understand	CO 3	CLO 15	AHSB11.15
21	Define Fourier sine transforms	The Fourier sine transform is he imaginary part of the full complex Fourier transform	Remember	CO 3	CLO 16	AHSB11.16
22	Define Fourier cosine transforms	The Fourier cosine transform is the a real part of the full complex Fourier transform.	Remember	CO 3	CLO 16	AHSB11.16
23	Define inverse Fourier transforms	A mathematical operation that transforms a function for a discrete or continuous spectrum into a function for the amplitude with the given spectrum; an inverse transform of the Fourier transform	Remember	CO 3	CLO 17	AHSB11.17
		MODULE-IV	1	1		
1	What is single step method in determining the numerical solution to ordinary differential equation?	Taylor's series method is single step method in determining the numerical solution to ordinary differential equation	Remember	CO 4	CLO 20	AHSB11.20
2	What are multi step methods in determining the numerical solution to ordinary differential equation?	Euler's method, Modified Euler's method and Runge-Kutta method are multi step method in determining the numerical solution to ordinary differential equation	Remember	CO 4	CLO 20	AHSB11.20
3	Define Taylor's series formulae.	$y(x) = y(0) + x.y'(0) + \frac{x^2}{2!}y''(0) + \dots + \frac{x^n}{n!}y^n(0) + \dots$ $y_{n+1} = y_n + hf(x_n, y_n)$	Remember 	CO 4	CLO 20	AHSB11.20
4	State the Euler formula to determine the numerical solution of ordinary differential equation.	$y_{n+1} = y_n + hf(x_n, y_n)$	Understand	CO 4	CLO 20	AHSB11.20
5	State the second order Runge- Kutta method to determine the numerical solution of ordinary differential equation.	Second order R-K Formula $y_{i+1} = y_i + 1/2 (K_1 + K_2),$ Where $K_1 = h (x_i, y_i)$ $K_2 = h (x_i + h, y_i + k_1)$ For $i = 0, 1, 2$	Understand	CO 4	CLO 21	AHSB11.21
6	State the third order Runge- Kutta method to determine the numerical solution of ordinary differential equation.	Third order R-K Formula $y_{i+1} = y_i+1/6 (K_1+4K_2+K_3),$ Where $K_1 = h (x_i, y_i)$ $K_2 = h (x_i+h/2, y_0+k_1/2)$ $K_3 = h (x_i+h, y_i+2k_2-k_1)$ For $i = 0, 1, 2$	Understand	CO 4	CLO 21	AHSB11.21
7	State the fourth order Runge- Kutta method to determine the numerical solution of ordinary differential equation	Fourth order R-K Formula $y_{i+1} = y_i+1/6 (K_1+2K_2+2K_3+K_4),$ Where $K_1 = h (x_i, y_i)$ $K_2 = h (x_i+h/2, y_i+k_1/2)$ $K_3 = h (x_i+h/2, y_i+k_2/2)$ $K_4 = h (x_i+h, y_i+k_3)$ For i= 0,1,2	Understand	CO 4	CLO 21	AHSB11.21
8	State the modified Euler formula to	$y_{k+1}^{(i)} = y_k + h/2f\left[(x_k, y_k) + f(x_{k+1}, 1)_{k+1}\right]$, i Understand	CO 4	CLO 20	AHSB11.20

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	determine the	For i=0,1,2,3				
	numerical solution of					
	ordinary differential					
9	equation. List numerical	Taylor's method is a single-step method	Remember	CO 4	CLO 20	AHSB11.20
9	method of single-	rayior's method is a single-step method	Kennennber	CO 4	CLO 20	АПЗВ11.20
	step					
10	List numerical	Euler and Runge-Kutta methods are step	Remember	CO 4	CLO 21	AHSB11.21
	method of step by	by step methods				
	step	•				
11	Define boundary-	If the conditions on y are prescribed at n	Remember	CO 4	CLO 20	AHSB11.20
	value problem	distinct points, then the problems are				
10		called boundary-value problems	D 1	GO 4	CT 0 20	AUGD11.00
12	Drawback of Taylor	To evaluate higher order derivatives is	Remember	CO 4	CLO 20	AHSB11.20
13	method Which method is	difficult Taylor's form is unsuitable for tabular	Remember	CO 4	CLO 20	AHSB11.20
15	unsuitable if $f(x,y)$ is	form of datas	Kennennber	004	CLO 20	АПЗВ11.20
	given in tabular form	Torm of datas				
14	Which numerical	Runge-Kutta method is very powerful	Understand	CO 4	CLO 21	AHSB11.21
	method is powerful	generation and the second second				
15	Define initial value	The values of y are specified at the same	Understand	CO 4	CLO 20	AHSB11.20
	problems	value of x is called initial value problem.				
		MODULE-V	1	r	T	
1	Define the term	An equation involving partial derivatives	Remember	CO 5	CLO 22	AHSB11.22
	partial differential	of one dependent variable with respective				
2	equation Describe the	more than one independent variables. A partial differential equation of given	Understand	CO 5	CLO 23	AHSB11.23
2	formation of partial	curve can be formed in two ways	Understand	05	CLO 25	АПЗВ11.25
	differential equation	1. By eliminating arbitrary constants				
	uniforential equation	2. By eliminating arbitrary functions				
3	Write Lagrange's	An equation of the form $Pp + Qq = R$ is	Remember	CO 5	CLO 24	AHSB11.24
	linear equation of a	called Lagrange's linear equation.		7	-	
	non linear partial				-	
	differential equation			GO F		
4	Write auxillary	Lagrange's linear equation consider	Remember	CO 5	CLO 24	AHSB11.24
	equation of Lagrange's linear	auxiliary equation is given by $dx = dy = dz$			100 C	
	partial differential	$\overline{P} = \frac{1}{Q} = \frac{1}{R}$				
	equation					
5	Define first order	A differential equation involving partial	Understand	CO 5	CLO 23	AHSB11.23
	equation	derivatives p and q only and no higher		C		
		order derivatives is called a first order	1.50			
		equation.	. 0. 7			
6	Write one example of	The example of linear p.d.e is	Understand	CO 5	CLO 23	AHSB11.23
	linear p.d.e	$px + qy^2 = z$	100			
7	Write general	$\phi(u,v) = 0$	Understand	CO 5	CLO 24	AHSB11.24
	solution of					
	$P_p + Q_q = R$					
8	Define order of p.d.e	Highest partial derivative appearing in the	Understand	CO 5	CLO 23	AHSB11.23
	I I I I I I I I I I I I I I I I I I I	equation				
9	Describe one	The equation which governs the motion of	Understand	CO 5	CLO 26	AHSB11.26
	dimensional wave	the vibrating string over time, is called the				
	equation of partial	one-dimensional wave equation. It is a				
	differential equation	second order PDE, and it's linear and				
		homogeneous.				
L	1	1	1	1	1	

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
10	Describe one dimensional heat equation of partial differential equation	The equation which governs the mathematical model of how heat spreads or diffuses through an object such as a metal rod or a body of water.	Understand	CO 5	CLO 27	AHSB11.27
11	Express one dimensional wave equation of partial differential equation	$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	Understand	CO 5	CLO 26	AHSB11.26
12	Express one dimensional heat equation of partial differential equation	$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$	Understand	CO 5	CLO 26	AHSB11.26
13	Express two dimensional laplace equation of partial differential equation	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$	Understand	CO 5	CLO 26	AHSB11.26
14	Define the boundary conditions of one dimensional wave equation	y(0,t) = 0 for all t and $y(l,t) = 0$ for all t	Remember	CO 5	CLO 26	AHSB11.26
15	Define the boundary conditions of one dimensional heat equation	u(0,t) = 0 for all values of t and $u(l,t) = f(x)$ for $0 \le x \le l$	Remember	CO 5	CLO 26	AHSB11.26

Signature of the faculty

CATION F

HOD, ECE

LIBER