TARE TO LEAR T

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING
Course Code	:	AEEB04
Program	:	B.Tech
Semester	:	III
Branch	:	Aeronautical Engineering
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty		Ms. B. Manogna, Assistant Professor
Course I dedity		Ms. B. Navothna, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:					
I	Understand Kirchhoff laws and their application in series and parallel circuits.					
II	Discuss principle and operation of measuring instruments.					
III	Analyze the characteristics of alternating quantities, electrical machines.					
IV	Illustrate the V-I characteristics of various diodes and bi-polar junction transistor.					

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE-	I			
1	Define Inductance.	The property of a conductor by which a change in current flowing through it induces a voltage in both the conductor itself (self-inductance) and in any nearby conductors (mutual inductance). Measured in Henry (H).	Remember	CO 1	CLO 1	AEEB04.01
2	Define Capacitance.	The ability of a body to store an electrical charge. Measured in Farads as the ratio of the electric charge of the object (Q, measured in Coulombs) to the voltage across the object (V, measured in Volts).	Remember	CO 1	CLO 1	AEEB04.01
3	Define Ampere-Hour (Ah).	A unit of measure for battery capacity. It is obtained by multiplying the current (in amperes) by the time (in hours) during which current flows.	Remember	CO 1	CLO 1	AEEB04.01
4	What is Conductor?	Any material where electric current can flow freely.	Remember	CO 1	CLO 1	AEEB04.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		Conductive materials, such as metals, have a relatively low resistance. Copper and aluminum wire are the most				
5	What is a Wattmeter?	common conductors. The wattmeter is an instrument for measuring the electric power in Watts of any given circuit.	Remember	CO 1	CLO 1	AEEB04.01
6	What is an Inductor?	A coil of wire wrapped around an iron core. The inductance is directly proportional to the number of turns in the coil.	Remember	CO 1	CLO 1	AEEB04.01
7	Define Electromotive Force (EMF)	A difference in potential that tends to give rise to an electric current. Measured in Volts.	Remember	CO 1	CLO 1	AEEB04.01
8	What is a measuring instrument?	Devices that are used for measuring, indicating, controlling, and recording can be considered as an instrument.	Remember	CO 1	CLO 4	AEEB04.04
9	What is working principle Moving-Iron (MI) Instruments?	These are generally used to measure alternating voltages and currents. In moving-iron instruments the movable system consists of one or more pieces of specially-shaped soft iron, which are so pivoted as to be acted upon by the magnetic field produced by the current in coil.	Remember	CO 1	CLO 4	AEEB04.04
10	What is working principle Moving-Coil(MC) Instruments?	When a current carrying conductor is placed in a magnetic field, it experiences a force and tends to move in the direction as per Fleming's left-hand rule.	Remember	CO 1	CLO 4	AEEB04.04
11	Explain Fleming's left- hand rule.	If the first and the second finger and the thumb of the left hand are held so that they are at right angle to each other, then the thumb shows the direction of the force on the conductor, the first finger points towards the direction of the magnetic field and the second finger shows the direction of the current in the wire.	Remember	CO 1	CLO 4	AEEB04.04
12	What are advantages & disadvantages of MC instruments?	Advantages: i) The MC consumes less power and has great accuracy. ii) It has efficient damping characteristics and is not affected by stray magnetic field.	Understand	CO 1	CLO 4	AEEB04.04
		Disadvantages: i) Moving coil instrument can only be used on DC supply as the reversal of current produces a reversal of torque on the coil. ii) It's costly as compared to moving iron instruments.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
13	What are advantages & disadvantages of MC instruments?	Advantages: i) The MC consumes less power and has great accuracy. ii) It has efficient damping characteristics and is not affected by stray magnetic field.	Remember	CO 1	CLO 4	AEEB04.04
		Disadvantages: i) Moving coil instrument can only be used on DC supply as the reversal of current produces a reversal of torque on the coil. ii) It's costly as compared to moving iron instruments.				
14	What are advantages & disadvantages of MI instruments?	Advantages: i)The moving iron instruments are cheap, robust and simple in construction. ii) These instruments can be used on both AC and DC. Disadvantages: i) The moving iron instruments have non-uniform scale; crowded at the beginning, therefore, accurate readings are not possible at this end. ii) These instruments are not very sensitive.	Remember	CO 1	CLO 4	AEEB04.04
15	Define electric current.	Electrical current is the flow of electrons from higher electric potential towards the lower electric potential.	Remember	CO 1	CLO 1	AEEB04.01
16	Define voltage.	The potential difference between two points in an electric circuit called voltage.	Remember	CO 1	CLO 1	AEEB04.01
17	Define power.	The rate of doing work by electrical energy per unit time is called the power.	Remember	CO 1	CLO 1	AEEB04.01
18	Define resistance.	Resistance is the property of a substance, which opposes the flow of electric current.	Remember	CO 1	CLO 1	AEEB04.01
19	State Kirchhoff's laws.	Kirchhoff's current law: The sum of currents flowing towards the junction is equal to the sum of the currents flowing away from it. Kirchhoff's voltage law: In a closed circuit, the sum of the potential drops is equal to the sum of the potential rises.	Understand	CO 1	CLO 1	AEEB04.01
20	Explain about the series and parallel circuits.		Understand	CO 1	CLO 2	AEEB04.02

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
21	State Ohm's	When temperature remains	Understand	CO 1	CLO 1	AEEB04.01
	law.	constant, current flowing through				
		a circuit is directly				
		proportional to potential deference across the conductor.				
		V= I*R (Volts)				
22	Explain the	Faraday's first Law of	Understand	CO 1	CLO 4	AEEB04.04
	Faraday's first	electromagnetic Induction state				
	law of	that whenever a conductor are				
	electromagnetic	placed in a varying magnetic				
	induction.	field electromotive force(emf) are induced which is				
		called induced electromotive				
		force(emf), if the conductor				
		circuit are closed current are also				
		induced which is called induced				
		current.			GT C 4	
23	Explain the	Faraday's second law of	Understand	CO 1	CLO 4	AEEB04.04
	Faraday's second law of	electromagnetic induction states that, the magnitude of induced				
	electromagnetic	electromotive force is equal to				
	induction.	the rate of change of flux				
		linkages with the coil. The flux				
		linkages is the product of number				
		of turns and the flux associated				
24	Emploin about	with the coil. A measuring instrument is a	Understand	CO 1	CLO 4	AEEB04.04
24	Explain about measuring	device for measuring a physical	Understand	COT	CLO 4	AEED04.04
	instruments.	quantity. In the physical				
		sciences, quality assurance, and				
		engineering, measurement is the				
		activity of obtaining and				
		comparing physical quantities of real-world objects and events				
25	Mention the	The basic requirements of	Understand	CO 1	CLO 4	AEEB04.04
	basic	measurement are the standard	Chacistana	CO 1	CLO I	TIEBBO 110 T
	requirements of	used for comparison purpose				
	measurement.	must be accurately defined and			_	
		should be commonly accepted. The apparatus used and the				
		method adopted must be			. 10	
		provable.				
26	Define	Calibration is defined as the	Remember	CO 1	CLO 4	AEEB04.04
	calibration.	process by which comparing the				
		instrument with a standard to	1 1 1 1			
27	Why colibration	correct the accuracy. The calibration of all	Understand	CO 1	CLO 4	AEEB04.04
21	Why calibration of instrument is	instruments is important since it	Understand	COI	CLU 4	AEEDU4.U4
	important?	affords the opportunity to check				
	r - · · · · · · · · · · · · · · · · · ·	the instrument against a known				
		standard and subsequently to				
		errors in accuracy.		~-	a ·	
28	List the	The three main functional	Remember	CO 1	CLO 4	AEEB04.04
	functional elements of the	elements of the measurement systems are:				
	measurement	Primary sensing element				
	systems.	Variable conversion element				
		Data presentation element				
29	Mention the	The functions performed by the	Understand	CO 1	CLO 4	AEEB04.04
	functions	measurement system are Indicating function				
		mulcaung fullcuoli			<u> </u>	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	performed by	Recording function				
	the measurement	Controlling function				
	system.					
		MODULE-1	П			
1	What is a	A device which converts	Remember	CO 2	CLO 5	AEEB04.05
	Generator?	mechanical energy into electrical energy.				
2	Explain working	According to Farady's laws of	Understand	CO 2	CLO 5	AEEB04.05
	principle of a DC	electromagnetic induction,				
	generator	whenever a moving conductor				
		is placed in a magnetic field, an EMF (electromotive force)	4			
		gets induced in		$\overline{}$		
		the conductor.				
3	What are the main parts of a	Main Parts of DC machine: i) Armature, consists of	Remember	CO 2	CLO 6	AEEB04.06
	D.C machine?	conductors ii) Field Circuit,				
		provides magnetic field.				
4	What are types of	Types: i) Separately excited DC	Remember	CO 2	CLO 7	AEEB04.07
	D.C generator?	generator and ii) Self-excited				
5	What is meant by	DC generator. As the armature rotates, a	Remember	CO 2	CLO 8	AEEB04.08
3	EMF of a DC	voltage is generated in its coils.	Remember	CO 2	CLO 8	AEEB04.06
	machine?	In the case of a generator, the				
		EMF of rotation is called the				
		Generated EMF or Armature EMF and is denoted as E _r				
		= E _g . In the case of a motor, the				
		EMF of rotation is known as		79		-
		Back EMF or Counter EMF and represented as $E_r = E_b$.	- /	-97		
6	What is motor	A motor is an electrical	Remember	CO 2	CLO 5	AEEB04.05
	and what is the	machine which converts		_		
	working	electrical energy into mechanical energy. The		,	_	
	principle of a DC motor?	mechanical energy. The principle of working of a DC	1		5-	
	-97	motor is that "whenever a				
		current carrying		2.3		
		conductor is placed in a magnetic field, it experiences a		1		
		mechanical force".	111	1		
7	Explain about	The torque equation of DC	Understand	CO 2	CLO 9	AEEB04.09
	torque equation of a DC motor.	motor varies with only flux φ and armature current I_a .				
8	Mention about	Each DC machine can act as a		CO 2	CLO 7	AEEB04.07
	the classification	generator or a motor. Hence, this				
	of DC machines.	classification is valid for both: DC generators and DC motors.				
		DC machines are usually				
		classified on the basis of their				
		field excitation method. This				
		makes two broad categories of dc machines; i) Separately excited				
		and ii) Self-excited.				
9	What are the	Direct Current (DC) motors are	Remember	CO 2	CLO 5	AEEB04.05
	applications of DC motors?	very commonly used as variable speed drives and in				
ш	DC IIIOIOIS!	variable speed drives and in			1	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		applications where severe torque variations occur.				
10	Why do we need	Starters are used to protect DC	Understand	CO 2	CLO 6	AEEB04.06
	starter to start a	motors from damage that can				
	DC motor?	be caused by very high current				
		and torque during startup. They				
		do this by providing external				
		resistance to the				
		motor, which is connected in				
		series to the motor's armature				
		winding and restricts the current to an acceptable level.				
11	What is the main	In an AC generator the field is	Understand	CO 2	CLO 6	AEEB04.06
11	difference	rotating and the armature is	Chacistana	CO 2	CLO	7 LLLD04.00
	between an AC	stationary whereas in DC		11		
	generator and DC	generator the field is stationary		$\overline{}$		
	generator?	and the armature is rotating.				
12	Define electric	An electrical machine, which	Remember	CO 2	CLO 5	AEEB04.05
	motor.	converts electrical energy into				
		mechanical energy, is called as electric motor.				
13	What is meant by	It is the effect of armature	Understand	CO 2	CLO 6	AEEB04.06
13	armature reaction?	magnetic field on the	Oliderstalld	CO 2	CLO	ALEB04.00
	armature reaction:	distribution of flux under main				
		poles of a generator.				
		The armature magnetic field				
		has two effects				
		1. It demagnetizes or				
		weakens the main flux				
		2. It cross-magnetizes or distorts it.				
14	What is the use	A device is used in a DC	Understand	CO 2	CLO 6	AEEB04.06
	of commutator?	generator to convert the		70		-
		alternating electromotive	- 78 -	-0		
	0	force(emf)				
		into unidirectional electromotive force(emf) is called commutator.				
15	State that the	The rules states that outstretch	Understand	CO 2	CLO 5	AEEB04.05
10	Fleming's left	the three fingers of the left hand	onder starte	202	020 0	12220
	hand rule.	namely the first finger, middle			100	
		finger and thumb such that they				
		are mutually perpendicular to		/ "		
		each other. Now point the first		1		
		finger in the direction of)		
		magnetic field and the middle finger in the direction of the	1 1 1			
		current then the thumb gives the	100			
		direction of the force				
		experienced by				
		the conductor				
16	Define Lenz's	Lenz's law states the direction	Remember	CO 2	CLO 5	AEEB04.05
	law.	of induced emf is always so as				
		to oppose the cause producing it				
17	Explain the	To restrict high starting	Understand	CO 2	CLO 6	AEEB04.06
'	necessity of	armature current, a variable	Chaciband	232	0200	111111111111111111111111111111111111111
	starter.	resistance is connected in series				
		with the e armature at start. This				
1.5	***	resistance is called starter			Gr o =	, npp 0 : 5=
18	What is meant by	Without actually loading the	Understand	CO 2	CLO 7	AEEB04.07
	Swinburne's test?	motor the losses and hence				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		efficiency at different loads				
		can be found out.				
19	What is meant	Practically though the generator	Understand	CO 2	CLO 5	AEEB04.05
	by residual	is not working, without any				
	magnetism?	current through field				
		winding, the field poles				
		posses some magnetic flux. This is called as				
		residual magnetism.				
20	Explain the back	When the armature of a DC	Understand	CO 2	CLO 8	AEEB04.08
20	emf or counter	motor rotates under the	Chacistana	CO 2	CLO	ALLDO00
	emf.	influence of the driving torque,				
	ciiii.	the armature conductors move				
		through the magnetic field and				
		hence e.m.f. is induced in them				
		as in a generator. The induced				
		e.m.f. acts in opposite direction				
		to the applied				
		voltage V (Lenz's law) and in				
		known as back or counter emf				
		(E _b). It is always less than the				
		applied voltage V, although this				
		difference is small when the				
		motor is running under normal				
		conditions.				
21	Why series	Series motor cannot be	Remember	CO 2	CLO 6	AEEB04.06
	motor cannot be	started without load				
	started on no-	because of high starting				
	load?	torque. Series motor are				
		used in Trains, Crane etc.				
22	Which type of	DC series motor is used in the	Remember	CO 2	CLO 6	AEEB04.06
22	motor is used in	trains to get high starting torque	Remember	CO 2	CLO	ALLD04.00
	trains?	while starting of the trains.	. 1			
23	How can you	We can reverse the direction of	Remember	CO 2	CLO 5	AEEB04.05
	reverse the	rotation of a DC motor by either				
	direction of	reversing the field current or			. "	
	rotation of a DC	armature current. If both the			_	
	Motor?	currents are reversed the motor				
		will run in original direction.			100	
24	Explain the	. Brake test Swinburne's test or	Understand	CO 2	CLO 7	AEEB04.07
	different tests	No-load test Regeneration test				
	conducted on DC	or Hopkinson's test Retardation	- 47	1		
	Machines.	or Running down test	1.7		·	
25	Mention the	Star delta starter Auto	Remember	CO 2	CLO 13	AEEB04.13
	methods for	transformer starter Resistance	1 0.365			
	starting an	starter Series reactor starter	=			
	induction motor?	Direct online starter (DOL)				
		MODULE-1	Ш			
		2,102.02				
1	What is an	An electric current that reverses	Remember	CO 3	CLO 10	AEEB04.10
	Alternating	its direction many times a second				
	Current	at regular intervals.				
	(AC)?					
2	Define Power	The ratio of the actual electrical	Remember	CO 3	CLO 10	AEEB04.10
	Factor.	power dissipated by an AC				
		circuit to the product of the				
		r.m.s. values of current and				
		voltage.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
3	Define	The average value is defined as	Remember	CO 3	CLO 10	AEEB04.10
	Average value	"the average of all instantaneous				
	of an AC	values during one alternation".				
	signal.	That is, the ratio of the sum of				
		all considered instantaneous				
		values to the number of				
		instantaneous values in one				
		alternation period. Whereas the				
		average value for the entire cycle				
4	D.C., DMC	of alternating quantity is zero.	D 1	CO 2	CI O 10	AEED04.10
4	Define RMS	The Root Mean Square (RMS)	Remember	CO 3	CLO 10	AEEB04.10
	value of an	value is "the square root of the sum of squares of means of an				
	AC signal.	alternating quantity".				
		It can also express as "the				
		effect that produced by a		-		
		certain input of AC quantity				
		which is equivalent to an				
		effect produced by the equal				
		input of D.C quantity".				
5	Define a	A transformer consists of two	Remember	CO 3	CLO 14	AEEB04.14
	Transformer.	electrically isolated coils and				
		operates on Faraday's principal				
		of "electromagnetic mutual				
		induction", in which an EMF is				
		induced in the transformers				
		secondary coil by the magnetic				
		flux generated by the voltages				
		and currents flowing in the				
		primary coil winding.				
6	How an EMF is	Actually in electrical power	Remember	CO 3	CLO 14	AEEB04.14
	induced in a	transformer, one alternating				
	transformer?	electrical source is applied to the	. 10			
		primary winding and due to this,	4	- 77	-	
		magnetizing current flowing through the primary winding		_	\ \)
		which produces alternating flux		_		
		in the core of transformer. This		,	4	
		flux links with both primary and		•		
		secondary windings. As this			70-	
		flux is alternating in nature,				
		there must be a rate of change of		/ "		
		flux. According to Faraday's law		1		
		of electromagnetic induction if		5		
		any coil or conductor links with	1 1 1 1			
		any changing flux, there must be	100			
		an induced EMF in it.				
7	What are the	In any electrical machine, 'loss'	Remember	CO 3	CLO 14	AEEB04.014
	losses in a	can be defined as the difference				
	transformer?	between input power and output				
		power. An electrical transformer				
		is a static device, hence				
		mechanical losses (like windage				
		or friction losses) are absent in				
		it. A transformer only consists of				
		electrical losses (iron losses and				
0	Evaloin about	copper losses).	Undonoton d	CO 2	CI O 12	AEED04 012
8	Explain about working	In a D.C motor, supply is needed to be given for the stator winding	Understand	CO 3	CLO 13	AEEB04.013
	principle of	as well as the rotor winding. But				
	brincibie or	as well as the rotor willding. But				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	three-phase	in an induction motor only the				
	Induction motor.	stator winding is fed with an AC				
		supply.				
		Alternating flux is produced around the stator winding due				
		to AC supply. This alternating				
		flux revolves with synchronous				
		speed. The revolving flux is				
		called as "Rotating Magnetic				
		Field" (RMF).				
		The relative speed between				
		stator RMF and rotor conductors				
		causes an induced EMF in the				
		rotor conductors, according to				
		the Faraday's law of		111		
		electromagnetic induction. The	Name of Street			
		rotor conductors are short				
		circuited, and hence rotor current				
		is produced due to induced EMF.				
		That is why such motors are				
		called as induction motors. (This				
		action is same as that occurs in				
		transformers, hence induction				
		motors can be called as rotating transformers.)				
9	What are the	Three-phase A.C induction	Remember	CO 3	CLO 13	AEEB04.13
)	applications of	motors are widely used in	Remember	CO 3	CLO 13	ALED04.15
	three-phase AC	industrial and commercial				
	induction motor?	applications. These are of two				
		types, squirrel cage and slip ring				
		motors. Squirrel cage motors are				
		widely used due to their rugged				
		construction and simple design.				700
		Slip ring motors require external	- /1	-9		
	0	resistors to have high starting	10.0			
		torque.				
10	What is working	The machine which produces 3	Remember	CO 3	CLO 12	AEEB04.12
	principle of	phase power from mechanical		,		
	Alternator?	power is called an alternator or			T-1	
		synchronous generator. The				
		working of an alternator is based		, 4		
		on the principle that when the flux linking a conductor		V.		
		changes, an emf is induced in the	0	. "		
		conductor.	1 13			
11	What do you	Each cycle of a sinusoidal wave	Understand	CO 3	CLO 10	AEEB04.010
	understand by	spans 2π radians. Hence, if this				
	ω?	quantity is divided by				
		the time period, angular				
		velocity of the sinusoidal wave				
		is obtained. It is denoted by ω				
		and is expressed in radians per				
1.0	TTH 4 75.50	second	TT 1	00.5	OI O 11	APPROACTS
12	Why the RMS	RMS value of an alternating	Understand	CO 3	CLO 10	AEEB04.010
	value of an	current or voltage is used to				
	alternating	denote its amplitude because it is related to the power				
	current or voltage is used	is related to the power developed in a resistance by the				
	to denote its	alternating current or voltage.				
	amplitude?	and hading current or voltage.				
$oxed{oxed}$	ampiituue:					

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
13	Define effective	The effective value of an	Remember	CO 3	CLO 10	AEEB04.010
	value of an	alternating current is given by				
	sinusoidal wave.	that steady current which when				
		flows through a given				
		resistance for a given time				
		produces the same amount of				
		heat as when the alternating				
		current is flowing through the same resistance for the same				
		time duration.				
14	Explain the	Form factor is a mean of	Understand	CO 3	CLO 10	AEEB04.010
17	significance of	relating the mean value with the	Chacistana	CO 3	CLO 10	ALLEDO4.010
	form factor.	effective value of alternating				
		quantity and it is useful in				
		determination of effective				
		values of the alternating	to and			
		quantities whose mean or				
		average values over half a				
		period can be determined				
4.5	D 11 1	conveniently.	TT 1	00.5	OI O 11	AFFROAGA
15	Explain the	Peak factor of an alternating	Understand	CO 3	CLO 11	AEEB04.011
	significance of	voltage is very essential in				
	peak factor.	connection with determining the dielectric strength since the				
		dielectric stress developed in an				
		insulting material is proportional				
		to the peak value of the voltage				
		applied to it.				
16	Define phase and	The phase of an alternating	Remember	CO 3	CLO 10	AEEB04.10
	phase difference.	quantity (voltage or current) at				
		any instant is defined as the				
		fractional part of a cycle through				
		which the quantity has advanced	. 1			
		while the phase difference may				
		be defined as the angular)
		displacement between the maximum positive values of the				
					A	
		two phasor's representation the two quantities having the same				
		frequency.			100	
17	Why are	Copper losses (I ² R) depend on	Understand	CO 2	CLO 14	AEEB04.14
	transformers rated	current which passing through		43		·
	in KVA?	transformer winding while Iron	1.00	1		
		losses or core losses or	1. 1.30			
		Insulation losses depend on	1 7 7 7 7			
		Voltage. That's why the	1 3 2			
		transformer rating may be	=			
		expressed in VA or kVA, not in				
18	Explain if DC	W or kW. If DC supply is given to the	Understand	CO 3	CLO 14	AEEB04.14
10	supply is applied	primary of Transformer then	Onder Stand	COS	CLU 14	ALEDU4.14
	to the	DC current flows through				
	transformer.	primary winding which is				
	a united in the same of the sa	constant(time invariant).For				
		production of emf in any				
		winding the current flowing				
		through that must be sinusoidal				
		since e=L*(dI/dt).So in the				
		given case ie, for DC input, no				
		emf produced in primary				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
10	****	winding.	TT 1 . 1	GO 2	CI O 12	AEED04.12
19	Why an induction motor sometimes called rotating transformer?	An induction motor is sometimes called a rotating transformer because the stator (stationary part) is essentially the primary side of the transformer	Understand	CO 3	CLO 13	AEEB04.13
		and the rotor (rotating part) is the secondary side.				
20	Define slip.	This difference between the speed of the rotor and speed of the rotating magnetic field in the stator is called slip. It is unit less and is the ratio between the relative speed of the	Remember	CO 3	CLO 11	AEEB04.11
		magnetic field as seen by the rotor to the speed of the rotating field. Due to this an induction motor is sometimes referred to as an asynchronous machine.				
21	What is a cogging torque?	Cogging torque of electrical motors is the torque due to the interaction between the permanent magnets of the rotor and the stator slots of a Permanent Magnet (PM) machine. Also termed as detent or 'no-current' torque, it is an undesirable component for the operation of such a motor. It is especially prominent at lower speeds, with the symptom of jerkiness.	Understand	CO 3	CLO 12	AEEB04.12
22	Explain the advantages of providing damper winding.	The damper winding is useful in preventing the hunting (momentary speed fluctuations) in generators. The damper winding also used to maintain balanced 3 phase voltage under unbalanced load conditions.	Understand	CO 3	CLO 12	AEEB04.12
23	Define turbo alternators.	High speed alternators are called as Turbo alternators. As it runs at very high speed, salient pole rotors are not used. Smooth cylindrical type rotor is suitable for turbo alternators.	Remember	CO 3	CLO 12	AEEB04.12
24	How is a direct- connected exciter arranged in an alternator ?	The armature of the exciter is mounted on the shaft of the alternator close to the spider hub. In some cases, it is mounted at a distance sufficient to permit a pedestal and bearing to be placed between the exciter and the hub	Understand	CO 3	CLO 14	AEEB04.14
		MODULE-1	IV			
1	What is a diode?	A semiconductor device with two terminals, typically	Remember	CO 4	CLO 15	AEEB04.15

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		allowing the flow of current in				
		one direction only. Diodes allow current to flow when the				
		anode is positive in relation				
		to the cathode.				
2	What is meant by	A solid substance that has	Remember	CO 4	CLO 15	AEEB04.15
	semiconductor	conductivity between that of an				
		insulator and that of most metals. Devices made of				
		semiconductors, notably silicon,				
		are essential components of most				
		electronic circuits.				
3	What is a	An electrical device that converts	Remember	CO 4	CLO 16	AEEB04.16
	Rectifier?	an alternating current into a				
		direct one by allowing a current				
		to flow through it in one direction only.	Name and Park			
4	What is half-	The half wave rectifier is a type	Remember	CO 4	CLO 16	AEEB04.16
'	wave rectifier?	of rectifier which converts half	Remember		CLO 10	71EEB0 1.10
		of the AC input signal (positive				
		half cycle) into pulsating DC				
		output signal and the remaining				
		half signal (negative half cycle)				
		is blocked or lost. In half wave rectifier circuit, we use only a				
		single diode.				
5	What is full -	The full wave rectifier is a type	Remember	CO 4	CLO 16	AEEB04.16
	wave rectifier?	of rectifier which converts the				
		full AC input signal (positive				
		half cycle and negative half				
		cycle) to pulsating DC output				
		signal. Unlike the half wave rectifier, the input				
		signal is not wasted in full wave	. 10			
		rectifier. The efficiency of full	4		-	
		wave rectifier is high as			_ \	2.
		compared to the half wave			. ~	
	XX 1 C 11	rectifier.	D 1	00.4	OI 0 16	4 EED 0 4 1 6
6	What is full-	Another, more popular full-wave rectifier design exists, and it is	Remember	CO 4	CLO 16	AEEB04.16
	wave Bridge rectifier?	built around a four-			1	
	rectifier:	diode bridge configuration.				
		For obvious reasons, this		×.		
		design is called a 'full-wave				
	XX71- a4 1 1	bridge'.	Day 1	CO 4	CI O 16	AEEDO4.16
7	What is ripple voltage?	The amount of AC voltage mixed with the rectifier's DC	Remember	CO 4	CLO 16	AEEB04.16
	voitage:	output is called 'ripple				
		voltage'. In most cases, since				
		"pure" DC is the desired goal,				
		ripple voltage is				
	D.C. Elli	undesirable.	D .	GO 1	OI 0 15	AEEDO4.45
8	Define Filter.	A filter is a circuit capable of	Remember	CO 4	CLO 17	AEEB04.17
		passing (or amplifying) certain frequencies while attenuating				
		other frequencies. Thus, a filter				
		can extract important frequencies				
		from				
		signals that also contain				
		undesirable or irrelevant				
		frequencies.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
9	Define	A graphical representation of	Remember	CO 4	CLO 15	AEEB04.15
	Waveform.	electrical cycles which shows the				
		amount of variation in amplitude over some period of				
		time.				
10	Explain about	Diode is a two terminal p-n	Understand	CO 4	CLO 17	AEEB04.17
	Diode as a	junction that can be used in				
	Switch.	various applications. One of				
		such applications is an				
		electrical switch. The p-n				
		junction, when forward biased acts as close circuited and when				
		reverse biased acts as open				
		circuited. Hence the change of		_		
		forward and reverse biased				
		states makes the diode work as		$\overline{}$		
		a switch, the forward being				
		ON and the reverse being OFF				
11	What is a zener	A zener diode is a special type	Remember	CO 4	CLO 15	AEEB04.15
**	diode?	of device designed to operate in			220 13	
		the zener breakdown region.				
		Zener diodes acts like normal				
		p-n junction diodes under				
		forward biased condition.				
		When forward biased voltage is applied to the zener diode it				
		allows large				
		amount of electric current and				
		blocks only a small amount of				
12	Emploin about	electric current. Zener diode is a silicon	Understand	CO 4	CLO 15	AEEB04.15
1.2	Explain about zener diode as a	Zener diode is a silicon semiconductor with a p-n	Understand	CO 4	CLO 13	AEED04.13
	voltage	junction diode which operates	. 10			
	regulator.	under reverse biased condition. It	48	- 707	-	
		is used as a voltage regulator in		_	_ \	2
		DC circuit. The primary			. ^~	
		objective of the zener diode as a voltage regulator is to maintain a		,	^	
		constant voltage.				
13	Define what a p-n	The contact surface between the	Remember	CO 4	CLO 15	AEEB04.15
	junction.	layers of p-type and n-type		~ <		
		semiconductor pieces			·	
14	Explain space	The region around the junction	Understand	CO 4	CLO 15	AEEB04.15
	region called the depletion region.	is completely ionized on formation of p-n junction. As a	1 1 1 1			
	uepieuon region.	result, there are neither free				
		electrons on the n-side nor the				
		holes on the p-side. Since the				
		region around the junction is				
		depleted of mobile charges, it is				
15	Define cut-in	called the depletion region	Remember	CO 4	CLO 15	AEEB04.15
13	voltage of a p-n	The forward voltage, at which the current through	Kennennber	CO 4	CLO 13	AEEDU4.13
	junction diode.	the p-n junction starts				
	J	increasing rapidly, is called				
		the cut-in voltage				
16	Define peak	Peak inverse voltage is the	Remember	CO 4	CLO 15	AEEB04.15
	inverse voltage.	maximum voltage that can				
		be applied to the p-n				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		junction without damaging				
		the junction. If the reverse				
		voltage across the junction exceeds its peak inverse				
		voltage (PIV), the junction				
		may get destroyed owing to				
		excessive heat.				
17	Define	Breakdown voltage is defined as	Remember	CO 4	CLO 15	AEEB04.15
	breakdown	the reverse voltage at which p-n				
	voltage.	junction breaks down with sudden rise with reverse				
		current				
18	Explain about	Constant voltage regulator is a p-	Understand	CO 4	CLO 15	AEEB04.15
	the constant	n junction diode specially	_			
	voltage	designed for operation in the				
	regulator.	breakdown region in reverse bias	Name and Property of the Park		1	
		condition.				
19	What is the	Principle behind zener diode	Understand	CO 4	CLO 15	AEEB04.15
	working	working. As stated above the				
	principle of zener diode?	basic principle behind the working of a zener diode lies in				
	zener diode:	the cause of breakdown for a				
		diode in reverse biased				
		condition. Normally there are				
		two types of breakdown- zener				
		and avalanche. This type of				
		breakdown occurs for a reverse				
20	Explain how	bias voltage between 2 to 8v. Zener diode has the property	Understand	CO 4	CLO 15	AEEB04.15
20	zener diode	of behaving like a dc battery	Chacistana	001	CLO 13	71EEB0 1.13
	maintains	in 'on' state. If the zener				
	constant voltage	diode is shunted across the				
	across the load.	load RL and the voltage	. 30 -			
	derops are road.	across zener diode is more than the zener voltage VZ	-		-	
		then zener diode is on 'on'				1
		state, and any variation in			. ~	
		voltage across the zener diode				
		due to variations either in			500	
		supply voltage or in load				
		resistance is not able				
		to change the output voltage. Thus zener diode maintains		~		
		voltage constant across the				
		load	1 1 1			
21	Define AC to	A rectifier is a device which	Remember	CO 4	CLO 17	AEEB04.17
	DC power	converts alternating current				
	converter.	(or) voltage into unidirectional current (or)				
		unidirectional current (or) voltage.				
22	Define why	The type of supply available	Remember	CO 4	CLO 16	AEEB04.16
	half-wave	from half-wave rectifier is not				
	rectifiers	satisfactory for general power				
	are generally	supply. That is defining why				
	not used in dc	it is generally not used in dc				
23	power supply. What is	power supply. Transformer utilization factor is	Understand	CO 4	CLO 16	AEEB04.16
23	transformer	defined as the ratio of power	Onderstand	CO 4	CLO 10	ALEDU4.10
	utilization	delivered to the load and ac				
	factor?	rating of secondary of supply				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		power transformer.				
24	Which device	Filter is a device that converts	Understand	CO 4	CLO 16	AEEB04.16
	used to remove the harmonics of	pulsating output of rectifier into a steady dc level.				
	DC signal?	a steady de level.				
25	Why capacitor	In capacitor input filter, the dc	Understand	CO 4	CLO 16	AEEB04.16
	input filter is	output is much larger and				
	preferred to	ripples are less in comparison to				
	choke input filter?	those in choke input filter. So, capacitor input filter is preferred				
	inter:	to choke input filter.				
26	Explain π-filters	Voltage regulation in case of π -	Understand	CO 4	CLO 16	AEEB04.16
	are not suitable	filters is very poor and,				
	for varying loads.	therefore, π -filters are not suitable for varying loads.				
27	Why series	Series inductor and L-section	Understand	CO 4	CLO 16	AEEB04.16
	inductor and l-	filters cannot be used with half-				
	section filters	wave rectifiers because				
	cannot be used	operation of series inductor				
	with half- wave rectifiers?	depends upon the current through it and needs a				
	rectificis:	minimum current to flow at all				
		times.				
		MODULE-	V			
		MODULE-	*			
1	Define Bipolar	A semiconductor device with	Remember	CO 5	CLO 20	AEEB04.020
	Junction Transister (DIT)	three connections, capable of				
	Transistor (BJT).	amplification in addition to rectification. The fusion of two				
		diodes produces a three layer,				
		two junctions, three				
		terminal device forming the	. 10			
		basis of a Bipolar Junction Transistor, or BJT for short.	4		-	
2	What is Solid	Electronic (integrated) circuits	Remember	CO 5	CLO 20	AEEB04.20
	State Circuit?	which utilize semiconductor				
		devices such as transistors, diodes and silicon controlled				
		rectifiers.			70	
3	7	Bipolar transistors have the	Understand	CO 5	CLO 20	AEEB04.020
		ability to operate within three				
	Explain shortly	different regions: Active Region – the transistor	- 0			
	about operation	operates as an amplifier and I _c	11			
	of BJT?	$=\beta*I_b$				
		Saturation – the transistor is				
		"Fully-ON" operating as a				
		switch and $I_c = I(saturation)$ Cut-off – the transistor is				
		"Fully-OFF" operating as a				
		switch and $I_c = 0$				
4	Wilson in Con	In the Common Base or	Remember	CO 5	CLO 20	AEEB04.020
	What is Common Base (CB)	grounded base configuration, the base connection is common				
	configuration?	to both the input signal and the				
	<i>6</i>	output signal. The input signal				
		is applied between the				
		transistors base and the emitter				
		terminals, while the				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		corresponding output signal is				
		taken				
		from between the base and the collector terminals				
5	What is the main	CB bipolar transistor	Remember	CO 5	CLO 20	AEEB04.020
	feature of CB	configuration has a high ratio of				
	configuration?	output to input resistance or				
		more importantly "load"				
		resistance (R_L) to "input"				
		resistance (R _{in}) giving it a value of "Resistance Gain".				
6	What is Common	In the common emitter or	Remember	CO 5	CLO 20	AEEB04.020
	Emitter (CE)	grounded emitter configuration,	Remember	CO 3	CLO 20	7 LLLD04.020
	configuration?	the input signal is applied				
	,	between the base and the				
		emitter, while the output is	tana di			
		taken from between the collector and the emitter. This				
		type of configuration is the				
		most commonly used circuit				
		for transistor based amplifiers				
		and which represents the				
		"normal" method of bipolar				
7	What is the main	transistor connection. The CE amplifier	Remember	CO 5	CLO 20	AEEB04.020
/	feature of CE	The CE amplifier configuration produces the	Remember	CO 3	CLO 20	AEED04.020
	configuration?	highest current and power gain				
		of all the three bipolar				
		transistor configurations. This				
		is mainly because the input				
		impedance is low as it is connected to a forward biased				
		PN-junction, while the output				
	177	impedance is high as it is taken				700
		from a reverse biased PN-	- 41 -			
	0	junction.	7 1			3
8	What is	In the common collector or	Remember	CO 5	CLO 20	AEEB04.020
	Common Collector (CC)	grounded collector configuration, the collector is			4	
	configuration?	now				
	configuration:	common through the supply.			100	
	- 7	The input signal is connected				
		directly to the base, while the				
		output is taken from the				
		emitter. This type of				
		configuration is commonly known as	-			
9	What is the main	The Common Collector or	Remember	CO 5	CLO 20	AEEB04.020
	feature of CC	emitter follower configuration		-		
	configuration?	is very useful for impedance				
		matching applications because				
		of the very high input				
		impedance, in the region of hundreds of thousands of Ohms				
		while having relatively low				
		output impedance.				
10	What is meant by	The transistor raises the strength	Remember	CO 5	CLO 21	AEEB04.021
	the word	of a weak signal and hence acts				
	transistor as an	an amplifier				
	amplifier'?					

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	Why is transistor called current controlled device	The output voltage, current or power is controlled by the input current in a transistor. So it is called the current controlled device.	Remember	CO 5	CLO 21	AEEB04.021
12	Why silicon types are more used than germanium type transistor.	Silicon transistor has smaller cut-off current ICBO, small variations in ICBO due to variations in temperature and high operating temperature as compared to those in case of germanium type.	Remember	CO 5	CLO 20	AEEB04.020
13	Why collector is made larger that base and emitter?	Collector is made physically larger than emitter and base because collector is to dissipate much power.	Remember	CO 5	CLO 20	AEEB04.020
14	How α and β are related to each other	α and β are related as below: $\alpha = \beta/(1+\beta)$ or $\beta = \alpha/(1-\alpha)$ Q14. Define beta of a transistor. The β factor transistor is the common emitter current gain of that transistor and is defined as the ratio of collector current to the base current: $B = IC/IB$	Understand	CO 5	CLO 21	AEEB04.021
15	Why CE configuration more popular in amplifier circuits?	CE configuration is mainly used because its current, voltage and power gains are quite high and the ratio of output impedance and input impedance are quite moderate.	Understand	CO 5	CLO 21	AEEB04.021
16	What is collector reverse saturation?	When input current (IE in case of CB configuration and IB in case of CE configuration) is zero, collector current IC is not zero although it is very small. In fact this is the reverse leakage current or collector reverse saturation current (ICBO or simply ICO in CB configuration and ICEO in CE configuration).	Understand	CO 5	CLO 20	AEEB04.020
17	What is operating point?	Quiescent point is a point on the <i>dc</i> load line which represents VCE and IC in the absence of ac signal and variations in VCE and IC take place around this point when ac signal is applied.	Understand	CO 5	CLO 22	AEEB04.022
18	How is BJT used as amplifier	A transistor operates as an amplifier by transfer of the current from low impedance loop to high impedance loop.	Understand	CO 5	CLO 21	AEEB04.021
19	Why ICEO >> ICBO	The collector cut-off current denoted by ICBO is much larger than ICBO. ICEO is given as: ICEO = ICBO/(1- α) Because α is nearly equal to unity (slightly less than unity),	Understand	CO 5	CLO 22	AEEB04.022

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		ICEO >> ICBO				
20	Why is there a	Although collector current is	Understand	CO 5	CLO 20	AEEB04.020
	maximum limit	practically independent of				
	of collector	collector supply voltage over the				
	supply voltage to	transistor operating range, but if				
	transistor	VCB is increase beyond a				
		certain vale collector current				
		IC is eventually increases				
		rapidly and possibly destroys the				
		device.				
21	Why is ordinary		Understand	CO 5	CLO 23	AEEB04.023
	junction	is carried out by two types of				
	transistor called	charge carriers (majority and				
	bipolar?	minority carriers), an ordinary				
		transistor is called bipolar.				
22	Can a transistor	No. Because in case of two	Understand	CO 5	CLO 23	AEEB04.023
	be formed by	discrete back-to-back connected				
	connecting two	diodes there are four doped				
	diodes back to	regions instead of three and				
	back?	there is nothing that resembles a				
		thin base region between an				
		emitter and a collector.				

Signature of the Faculty

HOD, AE