TARE TO LEAD TO SERVICE TO SERVIC

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	DATA STRUCTURES
Course Code	:	ACSB03
Program	:	B.Tech
Semester	:	IV
Branch	:	EEE AE
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty	:	Ms Y Deepthi, Assistant Professor Ms. A Jayanthi, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:					
I	Learn the basic techniques of algorithm analysis.					
II	Demonstrate searching and sorting algorithms and analyze their time complexities.					
III	Implement linear data structures viz. stack, queue and linked list.					
IV	Demonstrate non-linear data structures viz. tree and graph traversal algorithms.					
V	Study and choose appropriate data structure to solve problems in real world.					

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code			
	MODULE-I								
1	What is data structure?	A data structure is a way of organizing data that considers not only the items stored, but also their relationship to each other.	Remember	CO 1	CLO 1	ACSB03.01			
2	What are the major data structures used in the following areas: RDBMS, Network data model and Hierarchical data model.	 RDBMS = Array (i.e. Array of structures) Network data model = Graph Hierarchical data model = Trees 	Understand	CO 1	CLO 1	ACSB03.01			
3	List out the areas in which data structures are applied extensively?	Compiler Design, Operating System, Database Management System, Statistical analysis package, Numerical Analysis, Graphics, Artificial Intelligence, Simulation.	Understand	CO 1	CLO 3	ACSB03.03			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	What is an	A sorting technique which uses	Remember	CO 1	CLO 1	ACSB03.01
	internal sorting algorithm?	internal main memory.				
5	What is the worst	O(n ²). Bubble sort works by	Understand	CO 1	CLO 4	ACSB03.04
	case complexity	starting from the first element				
	of bubble sort?	and swapping the elements if				
6	What is an	required in each iteration. A sorting technique which uses	Remember	CO 1	CLO 1	ACSB03.01
0	external sorting	external memory like tape or	Kemember	COT	CLO I	ACSB05.01
	algorithm?	disk.				
7	What is the	Bubble sort detects whether the	Understand	CO 1	CLO 1	ACSB03.01
	advantage of bubble sort over	input is already sorted				
	other sorting			_		
	techniques?					
8	What is the	O(N ²). On average, a call to	Understand	CO 1	CLO 4	ACSB03.04
	average case	insert on a subarray				
	running time of an insertion sort	of k elements would slide k/2 of them. The running time would				
	algorithm?	be half of the worst-case				
		running time.				
9	What is the	Selection sort requires no	Understand	CO 1	CLO 1	ACSB03.01
	advantage of selection sort	additional storage space				
	over other sorting					
	techniques?					
10	What is the best	Best case complexity is O(1).	Understand	CO 1	CLO 4	ACSB03.04
	case and worst case complexity	Worst case complexity is O(n)				
	of ordered linear					
	search?					
11	What is the	Recursive approach needs less	Understand	CO 1	CLO 3	ACSB03.03
	advantage of recursive	code and easy to implement.	. 11	-0		
	approach than an			_0		
	iterative				-	
10	approach?	0(1) B:	XX 1 . 1	CO 1	CI O 4	A CCD 02 04
12	What is the worst case complexity	O(logn). Binary search using recursion uses divide and	Understand	CO 1	CLO 4	ACSB03.04
	of binary search	conquer master theorem.			1	
	using recursion?			Q		
13	What are the	a. To find the lower/upper	Understand	CO 1	CLO 2	ACSB03.02
	applications of binary search?	bound in an ordered sequence		, "		
	omary Scarcil!	b. Union of intervals	1 1			
		c. Debugging	100			
14	What type of	Divide and conquer, since 'mid'	Understand	CO 1	CLO 3	ACSB03.03
	strategy does binary search	is calculated for every iteration or recursion, we are diving the				
	algorithm uses to	array into half and then try to				
	search an	solve the problem.				
4.5	element?	mi i · · · ·	TT 1	G0 :	CI C :	1.000000
15	Which sorting algorithm is best	The best case running time of the insertion sort is O(n). The	Understand	CO 1	CLO 4	ACSB03.04
	suited if the	best case occurs when the input				
	elements are	array is already sorted. As the				
	already sorted?	elements are already sorted,				
		only one comparison is made on				
		each pass, so that the time required is O(n).				
			l			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE-	П			
1	What is a queue?	A queue is a sequential organization of data. A queue is a first in first out type of data structure. An element is inserted at the last position and an element is always taken out from the first position.	Understand	CO 2	CLO 5	ACSB03.05
2	What method is used to place a value onto the top of a stack?	push() method, Push is the direction that data is being added to the stack. push() member method places a value onto the top of a stack.	Remember	CO 2	CLO 5	ACSB03.05
3	What method removes the value from the top of a stack?	The pop() member method removes the value from the top of a stack, which is then returned by the pop() member method to the statement that calls the pop() member method.	Understand	CO 2	CLO 5	ACSB03.05
4	How is the front of the queue calculated?	The front of the queue is calculated by front = (front+1) % size.	Understand	CO 2	CLO 5	ACSB03.05
5	Convert the expression ((A + B) * C - (D - E)^ (F + G)) to equivalent Prefix and Postfix notations.	a) Prefix Notation: - * +ABC ^ - DE + FG b) Postfix Notation: AB + C * DE - FG + ^ -	Understand	CO 2	CLO 6	ACSB03.06
6	Define overflow condition.	Pushing an element into stack already having 'n' elements and stack size of 'n', then stack encounters overflow condition.	Understand	CO 2	CLO 5	ACSB03.05
7	What are the applications of stack?	 a) A parentheses balancing program b) Tracking of local variables at run time c) Compiler Syntax Analyzer 	Remember	CO 2	CLO 6	ACSB03.06
8	What is a dequeue?	A data structure in which elements can be inserted or deleted at/from both the ends but not in the middle is called as dequeue.	Remember	CO 2	CLO 7	ACSB03.07
9	What does 'stack underflow' refer to?	Removing items from an empty stack is called stack underflow.	Understand	CO 2	CLO 5	ACSB03.05
10	What is the time complexity of pop() operation when the stack is implemented using an array?	O(1) because pop() accesses only one end of the structure, and hence constant time	Understand	CO 2	CLO 5	ACSB03.05
11	What is the advantage of priority scheduling in operating systems?	Interrupt handling because interrupts should be given more priority than the task at hand so that the interrupt can be serviced.	Remember	CO 2	CLO 6	ACSB03.06

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code			
12	What are the advantages of priority queues?	a) Easy to implement b) Processes with different priority can be efficiently handled	Remember	CO 2	CLO 6	ACSB03.06			
		c) Applications with differing requirements							
13	What the applications are of dequeue?	 a) Scheduling algorithm b) Can be used as both stack and queue c) To find the maximum of all sub arrays of size k 	Remember	CO 2	CLO 6	ACSB03.06			
14	To implement a stack using queue (with only enqueue and dequeue operations), how many queues will you need? Explain	Two queues are used to implement a stack using queue. Either the push or the pop has to be a costly operation, and the costlier operation requires two queues.	Remember	CO 2	CLO 7	ACSB03.07			
15	In a circular queue, how do you increment the rear end of the queue?	(rear+1) % CAPACITY. Ensures rear takes the values from 0 to (CAPACITY-1)	Understand	CO 2	CLO 7	ACSB03.07			
	MODULE-III								
1	What is Linked List?	A linked list is a self-referential data type because it contains a pointer or link to another data of the same type. Linked lists permit insertion and removal of nodes at any point in the list in	Remember	CO 3	CLO 08	ACSB03.08			
		constant time, but do not allow random access.	. 4						
2	What type of memory allocation is referred for Linked lists?	Dynamic memory allocation is referred for Linked lists.	Understand	CO 3	CLO 09	ACSB03.09			
3	What are dynamic data structures?	Dynamic data structures are structures that expand and contract as a program runs. It provides a flexible means of manipulating data because it can adjust according to the size of the data.	Remember	CO 3	CLO 09	ACSB03.09			
4	What are the applications of Linked Lists?	Both stacks and queues are often implemented using linked lists, other applications are skip list, binary tree, unrolled linked list, hash table, heap, self-organizing list.	Understand	CO 3	CLO 08	ACSB03.08			
5	How many pointers are required to implement a simple Linked list?	Generally 3 pointers engaged: a) A head pointer, pointing to the start of the record. b) A tail pointer, pointing on the last node of the list. The key property in the	Understand	CO 3	CLO 09	ACSB03.09			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		last node is that its subsequent pointer points to nothing at all (NULL). c) A pointer in every node, pointing to the next node element.				
6	What is the primary advantage of a linked list?	A linked list is an ideal data structure because it can be modified easily. This means that editing a linked list works regardless of how many elements are in the list.	Understand	CO 3	CLO 08	ACSB03.08
7	What is a Doubly Linked list?	A doubly linked list has two pointers 'left' and 'right' which enable it to traverse in either direction. Compared to singly liked list which has only a 'next' pointer, doubly linked list requires extra space to store this extra pointer. Every insertion and deletion requires manipulation of two pointers; hence it takes a bit longer time.	Remember	CO 3	CLO 10	ACSB03.10
8	What is a Circular Linked list?	In the last node of a singly linear list, the link field often contains a null reference. A less common convention is to make the last node to point to the first node of the list; in this case the list is said to be 'circular' or 'circularly linked'.	Remember	CO 3	CLO 10	ACSB03.10
9	What is a memory efficient double linked list?	Memory efficient doubly linked list has been proposed recently which has only one pointer to traverse the list back and forth. The implementation is based on pointer difference.	Understand	CO 3	CLO 10	ACSB03.10
10	What is the application of circular linked lists?	Circular linked lists are used to allocate CPU to resource.	Understand	CO 3	CLO 10	ACSB03.10
11	How do you calculate the pointer difference in a memory efficient double linked list?	The pointer difference is calculated using pointer to previous node xor pointer to next node	Understand	CO 3	CLO 10	ACSB03.10
12	What is the time complexity of inserting a node in a doubly linked list?	O(n), in the worst case, the position to be inserted maybe at the end of the list, hence you have to traverse through the entire list to get to the correct position, hence O(n).	Understand	CO 3	CLO 10	ACSB03.10
13	What differentiates a circular linked list from a normal linked list?	The 'next' pointer points to null only when the list is empty, otherwise it points to the head of the list in a circular linked list.	Understand	CO 3	CLO 10	ACSB03.10

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
14	What is a sparse matrix?	Sparse Matrix is a matrix in which most of the elements are Zero. Identity Matrix is a matrix in which all principle diagonal elements are 1 and rest of the elements are Zero. Unit Matrix is also called Identity Matrix. Zero Matrix is a matrix in which all the elements are Zero.	Remember	CO 3	CLO 08	ACSB03.08
15	What is the time complexity of inserting a new node at the head of a circular linked list?	Time complexity of inserting a new node at the head of the list is O(n) because you have to traverse through the list to find the tail node.	Understand	CO 3	CLO 10	ACSB03.10
		MODULE-1	IV			
1	What is binary tree?	A Binary tree is a tree where each node is having at most two children. A property of a binary tree is that the depth of an average binary tree is smaller than N.	Remember	CO 4	CLO 11	ACSB03.11
2	What is the minimum number of nodes that a binary tree can have?	A binary tree can have a minimum of zero nodes, which occurs when the nodes have NULL values. Furthermore, a binary tree can also have 1 or 2 nodes.	Understand	CO 4	CLO 11	ACSB03.11
3	List out few of the application of tree data- structure	 a) The manipulation of Arithmetic expression b) Symbol Table construction c) Syntax analysis. 	Understand	CO 4	CLO 12	ACSB03.12
4	What is the disadvantage of using array representation for binary trees is?	The array is fixed size (may be dynamic array or static array) but size is fixed.	Understand	CO 4	CLO 11	ACSB03.11
5	Define complete binary tree?	A binary tree in which every non leaf node has exactly two children not necessarily on the same level. It is also called as strictly binary tree.	Remember	CO 4	CLO 11	ACSB03.11
6	What are the children for node 'w' of a complete-binary tree in an array representation?	2w and 2w+1. Since each node has 2 children and so counting from beginning, a particular node will have children as option a.	Understand	CO 4	CLO 11	ACSB03.11
7	What is breadth first traversal?	Breadth first traversal, also known as level order traversal is the traversal strategy used in a binary tree. It involves visiting all the nodes at a given level.	Remember	CO 4	CLO 12	ACSB03.12
8	What is depth first traversal?	Depth first traversal is a recursive algorithm that uses the idea of backtracking. It involves	Remember	CO 4	CLO 12	ACSB03.12

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		exhaustive searches of all the nodes by going ahead, if possible, else by backtracking.				
9	How many orders of traversal can be applied to a binary tree?	The three orders of traversal that can be applied to a binary tree are in-order, pre-order and post order traversal.	Understand	CO 4	CLO 12	ACSB03.12
10	If binary trees are represented in arrays, what formula can be used to locate a left child, if the node has an index	If binary trees are represented in arrays, left children are located at indices 2i+1 and right children at 2i+2.	Understand	CO 4	CLO 11	ACSB03.11
11	i? What is a graph?	A graph is a data structure that contains a set of ordered pairs. These ordered pairs are also referred to as edges or arcs and are used to connect nodes where data can be stored and retrieved.	Remember	CO 4	CLO 11	ACSB03.11
12	Define Minimum Spanning Tree?	A minimum Spanning Tree of an undirected graph G is a tree formed from graph edges that connects all the vertices of G at lowest total cost.	Remember	CO 4	CLO 11	ACSB03.11
13	List out the Applications of Minimum Spanning Tree?	 a) Networking of computers in the lab for minimizing the length of wire. b) Telephone exchanges. c) In provides a reasonable way for clustering points in space in to natural groups. 	Understand	CO 4	CLO 11	ACSB03.11
14	What are the different ways a tree can be represented?	Adjacency List, Adjacency Matrix as well as Incidence Matrix	Understand	CO 4	CLO 12	ACSB03.12
15	Define regular graph?	A graph with all vertices having equal degree is known as a regular graph.	Remember	CO 4	CLO 11	ACSB03.11
		MODULE-	V			
1	What is a binary search tree?	A binary search tree stores data in such a way that they can be retrieved very efficiently. The left subtree contains nodes whose keys are less than the node's key value, while the right subtree contains nodes whose keys are greater than or equal to the node's key value. Moreover, both subtrees are also binary search trees.	Remember	CO 5	CLO 13	ACSB03.13
2	How do you insert a new item in a binary	Assuming that the data to be inserted is a unique value (that is, not an existing entry in the	Understand	CO 5	CLO 13	ACSB03.13

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	search tree?	tree), check first if the tree is				
		empty. If it's empty, just insert				
		the new item in the root node. If it's not empty, refer to the new				
		item's key. If it's smaller than				
		the root's key, insert it into the				
		root's left subtree, otherwise,				
		insert it into the root's right subtree.				
3	What is the	As a binary search tree consists	Understand	CO 5	CLO 13	ACSB03.13
	specialty about	of elements lesser than the node				
	the inorder	to the left and the ones greater				
	traversal of a binary search	than the node to the right, an inorder traversal will give the				
	tree?	elements in an increasing order.				
4	What are the	Worst case arises when the tree	Understand	CO 5	CLO 13	ACSB03.13
	worst case and	is skewed(either to the left or				
	average case	right) in which case you have to				
	complexities of a binary search	process all the nodes of the tree				
	tree?	giving O(n) complexity, otherwise O(logn) as you				
	ucc.	process only the left half or the				
		right half of the tree.				
5	What are the	The tree should not be modified	Remember	CO 5	CLO 13	ACSB03.13
	conditions for an optimal binary	and you should know how often the keys are accessed, it				
	search tree and	improves the lookup cost				
	what is its	improves the rooting cost				
	advantage?					
6	What is an AVL	An AVL tree is a type of binary	Remember	CO 5	CLO 13	ACSB03.13
	tree?	search tree that is always in a state of partially balanced. The				
		balance is measured as a				-
		difference between the heights	- //			
		of the subtrees from the root.	. 10			
		This self-balancing tree was known to be the first data			-	
		structure to be designed as such.			1	
7	In an AVL tree,	If the pivotal value (or the	Understand	CO 5	CLO 13	ACSB03.13
	at what condition	Height factor) is greater than 1			100	
	the balancing is	or less than 1.			100	
8	to be done? Define M – way	A binary search tree has one	Remember	CO 5	CLO 14	ACSB03.14
0	search trees.	value in each node and two	Kemember	203	CLO 14	ACBD03.14
		subtrees. This notion easily	1 1			
		generalizes to an M-way search				
		tree, which has (M-1) values per				
		node and M subtrees. M is called the degree of the tree.				
9	What is the	Insertion and deletion, in both	Understand	CO 5	CLO 13	ACSB03.13
	advantage of	the binary heap and balanced				
	balanced binary	binary search tree takes O(log				
	search tree, like	n). But searching in balanced				
	AVL tree, compared to	binary search tree requires O(log n) while binary heap takes O(n).				
	binary heap?	Construction of balanced binary				
		search tree takes O(nlog n) time				
		while binary heap takes O(n).				
10	Define a hash	A hash function is a function	Remember	CO 5	CLO 15	ACSB03.15
	function.	which when given a key,				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		generates an address in the table.				
		The example of a hash function is a book call number.				
11	Define collision.	A collision or clash is a situation	Remember	CO 5	CLO 16	ACSB03.16
		that occurs when two distinct				1100200110
		pieces of data have the				
		same hash value, checksum,				
		fingerprint, or cryptographic				
10	XXII	digest.	D1	CO 5	CI O 15	A CCD 02 15
12	What are the applications of	a) Message Digestb) Password Verification	Remember	CO 5	CLO 15	ACSB03.15
	hashing?	c) Data Structures				
	nasining.	(Programming Languages)				
		d) Compiler Operation				
		e) Rabin-Karp algorithm				
		f) Linking File name and path	Name of Street			
		together				
10	Cl. 'C d	D: (1.1	D 1	GO 5	CT 0.15	4 CCD 02 15
13	Classify the hashing	a) Direct methodb) Subtraction method	Remember	CO 5	CLO 15	ACSB03.15
	functions based	c) Modulo-Division method				
	on the various	d) Digit-Extraction method				
	methods by	e) Mid-Square method				
	which the	f) Folding method				
	key value is	g) Pseudo-random method				
	found.					
14	What is the	One. If there is only one entry	Remember	CO 5	CLO 16	ACSB03.16
	bucket size, when the	possible in the bucket, when the				
	overlapping and	collision occurs, there is no way to accommodate the colliding				
	collision occur at	value. This results in the				
	same time?	overlapping of values.				
15	What are the	a) Open addressing (closed	Remember	CO 5	CLO 16	ACSB03.16
	types of collision	hashing): The methods used				
	resolution	include: Overflow block.				
	techniques and	b) Closed addressing (open				
	the methods used in each of the	hashing): The methods used			4	
	type?	include: Linked list, Binary tree.				
	type:	ucc.			100	
						1

Signature of the Faculty HOD, AE