

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	ENGINEERING MECHANICS
Course Code	:	AMEB03
Program	:	B.Tech
Semester	:	II
Branch	:	Aeronautical Engineering
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty	:	Mr. G.Venkateswarlu, Assistant Professor, AERO

OBJECTIVES:

C

Students should develop the ability to work comfortably with basic engineering mechanics
concepts required for analyzing static structures.
Identify an appropriate structural system to studying a given problem and isolate it from its
environment, model the problem using good free-body diagrams and accurate equilibrium
equations.
Understand the meaning of centre of gravity (mass)/centroid and moment of Inertia using
integration methods and method of moments.
To solve the problem of equilibrium by using the principle of work and energy, impulse
momentum and vibrations for preparing the students for higher level courses such as Mechanics
of Solids, Mechanics of Fluids, Mechanical Design and Structural Analysis etc

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code		
	UNIT-I INTRODUCTION TO ENGINEERING MECHANICS							
1	What is mechanics?	It is the branch of physics which deals with the study of effect of force system acting on a particle or a rigid body which may be at rest or in motion.	Remember	CO 1	CLO1	CAAEB01.01		
2	What is statics?	Statics deals with the forces acting on the stationary bodies that means at equilibrium.	Remember	CO 1	CLO1	CAAEB01.01		
3	What is dynamics?	Dynamics is the study of forces on moving bodies. Application of forces when they are in motion.	Remember	CO 1	CLO1	CAAEB01.01		
4	Define kinematics?	Kinematics is the study of the geometry of motion. It is used to relate displacement, velocity, acceleration and time, without reference to the cause of the	Remember	CO 1	CLO1	CAAEB01.01		

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	•	motion.				
5	Define kinetics?	Kinetics is the branch of	Remember	CO 1	CLO1	CAAEB01.01
		classical mechanics that is				
		concerned with the				
		relationship between motion				
		and its causes, specifically,				
		forces and torques.				
6	Explain the term	The product of mass and	Understand	CO 1	CLO1	CAAEB01.01
	momentum?	velocity is called momentum				
		and it is denoted by M.				
		Mathematically M=mv				
7	Explain the term	A body is said to be rigid, if	Understand	CO 1	CLO1	CAAEB01.01
	rigid body?	the relative position of any two				
		particles do not change under		\sim		
	C	the action of force.				
8	State Newton's I st	Newton's First Law states that	Remember	CO 1	CLO1	CAAEB01.01
	law.	an object will remain at rest or				
		in uniform motion in a straight				
		line unless acted upon by an				
		external force.				
9	State Newton's II nd	The second law states that the	Remember	CO 1	CLO1	CAAEB01.01
	law.	rate of change of momentum				
		of a body is directly				
		proportional to the				
		force applied, and this change				
		in momentum takes place in				
		the direction of				
10		the applied force.	D 1	00.1	CL 01	
10	State Newton's III	The third law states that, for	Remember	COT	CLOI	CAAEB01.01
	law.	every action, there is an equal				
11	E-mlain law of	It states that the state of rest or	I Indoneton d	CO 1	CL 01	
11	Explain law of	It states that the state of rest or	Understand	01	CLUI	CAAEB01.01
	transmissionity?	unaltered if a force acting on				100 C
		the body is replaced by another	_		1	- · · · · · · · · · · · · · · · · · · ·
		force of the same magnitude				
		and direction but acting			1.77	
		anywhere on the body in the			-	
		line of action of the replaced				
		force.			100	
12	Explain Newton's	Newton's law of	Understand	CO 1	CLO1	CAAEB01.01
12	law of gravitation?	universal gravitation states that	Chacistana	001	CLOI	CILLEDOILOI
	8	every particle attracts every		· · · ·		
		other particle in the universe		1		
		with a force which is directly				
		proportional to the product of	1.00			
		their masses and inversely				
		proportional to the square of				
		the distance between their				
		centers.				
13	What is a force	When several forces acts	Remember	CO 1	CL01	CAAEB01.01
	system?	simultaneous on a body they				
		constitutes a system of force				
		system				
14	Define particle?	It is matter having	Remember	CO 1	CLO1	CAAEB01.01
		considerable mass but				
		negligible dimension.		~ -		
15	What is composition	The replacement of two or	Remember	CO 1	CLO1	CAAEB01.01
	of forces?	more forces by a single force				
		having the same effect.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
16	What is resolution of	The process of breaking the	Understand	CO 1	CLO1	CAAEB01.01
	force?	force into no of component				
		which are equivalent to the				
15	T	given force.			CT 01	
17	Explain moment of	It is a turning effect produced	Understand	CO 1	CLOI	CAAEB01.01
	force?	by a force on a body, on which				
		It acts. The moment of force is				
		force and the perpendicular				
		distance				
18	Define couple?	The two non collinear parallel	Remember	CO 1	CL01	CAAEB01.01
		forces of equal magnitude and				
		in opposite direction forms a				
		couple.				
19	What is moment of	The magnitude of the rotation	Remember	CO 1	CLO1	CAAEB01.01
	couple?	is known as moment of couple.				
		It is a product of common				
		magnitude of the two forces				
		and of the perpendicular				
		distance between the lines of				
20	Define concurrent	In a concurrent force system	Remember	CO 1	CL 01	CAAEB01.01
20	force system?	the line of action of all forces	Remember	COT	CLOI	CAALD01.01
	ioree system.	in a system passes through a				
		single point.				
21	Define collinear	If the line of action of all the	Remember	CO 1	CLO1	CAAEB01.01
	force system?	forces lies along a single line				
		then it called collinear force				
		system.				
22	State Varginon's	Varginon's theorem states that	Remember	CO 1	CLO1	CAAEB01.01
	theorem?	algebraic sum of the moment				
		of all the forces about any		-		-
		point is equal to the moment of		- 77		
		same point	-		1	
23	Define equilibrium?	If the resultant of a number of	Remember	CO 1	CL01	CAAEB01.01
	2 chine equinerraint	forces, acting on a body is	1101110111011	001	0201	CI II III D'OTTOT
		zero, then that body is said to				
		be in equilibrium.			-	
24	What is free body	If a body is isolated from the	Remember	CO 1	CL01	CAAEB01.01
	diagram?	all the contact surfaces and		18	h	
		considering the reaction at		6.7		
		contact surface which is		~		
25	0 T '	perpendicular to the surface.	D 1	CO 1	CL 01	
25	State Lamis	Lamis theorem states that, if	Remember	COT	CLOI	CAAEB01.01
	theorem?	anybody is in equilibrium				
		coplanar concurrent forces				
		then each force is directly				
		proportional to the sine of the				
		angle between the other two				
		forces.				
26	What is equilibrant?	The force which brings the set	Remember	CO 1	CLO1	CAAEB01.01
		of forces in a equilibrium is				
		called an equilibrant.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-	II			
]	FRICTION AND BASICS ST	RUCTURAL	ANAL	YSIS	
1	What is friction?	When two bodies are in	Remember	CO 2	CLO4	CAAEB01.04
		contact, and an effort to move				
		one body over the other is				
		resisted. This resistance to				
		motion is called friction.	D	00.2	CL O1	
2	Define coefficient	A coefficient of friction is a	Remember	02	CLO4	CAAEB01.04
	of incuoit?	value that shows the				
		the force of friction between				
		two objects and the normal				
		reaction between the objects				
		that are involved.				
3	What is dry	The friction that exists between	Remember	CO 2	CLO4	CAAEB01.04
	friction?	perfectly cleaned and dry solid				
		surfaces is called dry friction.				
4	What is fluid	The Thick layer of oil lubricant	Remember	CO 2	CLO4	CAAEB01.04
	friction?	is introduced between two				
		surfaces, the friction between				
		surfaces are separated by a film				
		of lubricant is called fluid	1.00			
-	D.C. N	The dial large Chairman dial	Description	000	CI 04	
Э	Define Non-Viscous	The thin layer of lubricant is	Remember	02	CL04	CAAEB01.04
		contact between surfaces and				
		reduces the friction. The		_		
		friction that exists between				
		the surfaces is called non-				
		viscous friction.				
6	What is limiting	The maximum friction that can	Remember	CO 2	CLO4	CAAEB01.04
	friction?	be generated between two	-			
		static surfaces in contact with		- 7		
		each other is called limiting	-	_	1	-
7	Define engls of	Iniction.	Dementer	CO 2	CL O4	
/	friction?	It is the angle of a plane to the	Remember	02	CLO4	CAAEB01.04
	inction:	on the plane will just start to			~	
		slide.			1 miles	
8	What is angle of	Angle of repose is defined as	Remember	CO 2	CLO4	CAAEB01.04
	repose?	the minimum angle of an		12		
		inclined plane which causes an		Q		
		object to slide down the plane.	. 0.	1		
9	What is a beam?	It is a structural element that	Understand	CO 2	CLO6	CAAEB01.06
		primarily resists loads applied	1.00			
1.0		transverse to the beam's axis.		~~ •		<u></u>
10	What do you	In static friction the force	Remember	CO 2	CLO4	CAAEB01.04
	understand static	applied to the body is not				
	inction?	sufficient to move the body,				
		the body is called static				
		friction				
11	Describe kinetic	The friction acting on a body	Understand	CO 2	CLO4	CAAEB01.04
	friction?	which is actually in motion is	Chaptoning			51
		called kinetic friction				
12	What is truss?	A structural that is made of	Remember	CO 2	CLO5	CAAEB01.05
		straight slender bars that are				
		joined together at their ends by				
		frictionless pins to form a				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	-	pattern of triangle is called				
		truss.				
13	List different types	Cantilever, simple supported,	Remember	CO 2	CLO6	CAAEB01.06
	of beams?	over hanged, continuous, and				
		fixed.				
		UNIT-III				
	CENTROID AND	CENTRE OF GRAVITY ANI	D VIRTUAL V	WORK	AND E	NERGY
		METHOD				
1	What is meant by	Centre of gravity is a point	Remember	CO 3	CLO7	CAAEB01.07
	center of gravity?	where the whole weight of the				
		body is assumed to				
		concentrate.				
2	Define centroid?	It is a point where the whole	Remember	CO 3	CLO7	CAAEB01.07
		area of a plane is supposed to		C -1		
		concentrate.				
3	State parallel axis	Parallel axis theorem states	Remember	CO 3	CLO7	CAAEB01.07
	theorem?	that the MI of a plane area				
		with respect to any reference				
		axis in its plane is equal to the				
		sum of MI with respect to a				
		parallel centroid axis and				
		the square of the distance				
		between the two eves				
4	State perpendicular	Perpendicular axis theorem	Pomombor	CO 3	CL O7	CAAEB01.07
4	axis theorem?	states that the moment of	Keinenider	05	CLO/	CAALD01.07
		inertia of an area with respect				
		to an axis perpendicular to that				
		x-y plane and passing through				
		the origin will be equal to the				
		sum of moment of inertia of				
		the same area about x-x, y-y	-			
	(T)	axis.	_	- 11		
5	What is radius of	Radius of gyration is defined	Remember	CO 3	CLO7	CAAEB01.07
	gyration?	as the distance from the axis of	_			
		rotation to a point where the		×		
		total mass of the body is		×	A	
		supposed to be concentrated,			_	
		so that the moment of inertia			1	
		about the axis may remain the		0		
6	Define the term	same.	Domomhou	CO 2	CL O7	
0	moment of inertia?	It is the product of area and the	Remember	CO 3	CL07	CAAEB01.07
	moment of merua:	about a reference axis is called		1		
		moment of inertia				
7	Define mass moment	It is the product of mass and	Remember	CO 3	CL07	CAAEB01.07
,	of inertia?	the square of its moment arm	Remember	005	CLO/	CITED01.07
	or mortua.	about a reference axis is called				
		mass moment of inertia.				
8	State Pappus-	The area of surface generated	Remember	CO 3	CLO7	CAAEB01.07
	Guldinus theorem	by revolving a plane curve				
	for area?	about non-intersecting axis in				
		the plane of the curve is equal				
		to the length of the generating				
		curve times the distance				
		travelled by the centroid of the				
		curve in the revolution and				
		angle of rotation.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
9	State Pappus-	The volume of a solid	Understand	CO 3	CLO7	CAAEB01.07
	Guldinus theorem	generated by revolving a plane				
	for volume?	area about a non-intersecting				
		axis in the plane is equal to the				
		area of the generating plane				
		times the distance travelled by				
		the centroid of the plane area				
10	F 1 1	and its rotation.		<i>a</i> .		
10	Explain polar	Moment of inertia about an	Understand	CO 3	CLO7	CAAEB01.07
	moment of inertia?	axis perpendicular to the plane				
		of an area is known as polar				
11	What is the concept	Virtual work is the total work	Domomhor	CO 2	CLOS	
11	of virtual work?	done by the applied forces and	Keinenidei	005	CLU8	CAAED01.08
	of virtual work?	the inertial forces of a		1		
		mechanical system as it moves				
		through a set of virtual				
		displacements When				
		considering forces applied to a				
		body in static equilibrium, the				
		principle of least action				
		requires the virtual work of				
		these forces to be zero.				
12	Define degree of	It is defined as the minimum	Remember	CO 3	CLO8	CAAEB01.08
	freedom?	number of independent				
		variables required to define the				
		position or motion of a system				
		is known as degree of				
		freedom.				
13	What is meant by	The work done by a force on a	Remember	CO 3	CLO8	CAAEB01.08
	work done?	moving body is defined as the				
		product of the force and the	_			
		distance moved in the	_			
1.4		direction of the force.	D	00.0	CT OO	
14	Define kinetic	The kinetic energy of an object	Remember	CO 3	CL08	CAAEB01.08
	energy?	is the energy that it possesses		10		
		is defined as the work needed			-	
		to accelerate a body of a given				
		mass from rest to its stated			1	
		velocity		0		
15	Define potential	Potential energy is defined as	Remember	CO 3	CL08	CAAEB01.08
10	energy?	mechanical energy.	remember			C ILD 01.00
	6,	stored energy, or energy				
		caused by its position.				
		UNIT-	IV			
	PART	ICLE DYNAMICS AND INT	RODUCTIO	N TO F	KINETI	CS
1	What is motion?	The continuous change in	Remember	CO 4	CLO9	CAAEB01.09
		position of a body with respect				
		to time and relative to the				
		reference point or observer is				
		called motion.				
2	Define kinetics?	Kinetics is the branch of	Remember	CO 4	CLO9	CAAEB01.09
		classical mechanics that is				
		concerned with the				
		relationship between motion				
		and its causes, specifically,				
2	Define translation 9	In a straight line day of the	Daman	CO 4	CLOO	
3	Define translation?	II a straight line drawn on the	Kemember	0.04	LCLO9	CAAEBUI.09

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		moving body remains parallel				
		to its original then such motion				
		is called translation.				
4	Explain the term	If the path followed by a point	Understand	CO 4	CLO9	CAAEB01.09
	rectilinear motion?	is a straight line then such				
		motion is called rectilinear				
		motion.				
5	Define curvilinear	If the path followed by appoint	Remember	CO 4	CLO9	CAAEB01.09
	motion?	is a curve then such motion is				
		called a curvilinear motion.		~~ `	ax a a	
6	Define term plane	Plain motion is combination of	Remember	CO 4	CLO9	CAAEB01.09
-	motion?	both translation and rotation.	D 1	<u> </u>	CT OO	
1	What do you mean	Position means the location of	Remember	CO 4	CLO9	CAAEB01.09
	by a position?	a particle with respect to				
0	What is projectile	Origin.	Domomhor	CO 4	CLOD	
ð	what is projectile	in a particle is freely thrown in	Remember	004	CL09	CAAEB01.09
	motion?	than vertical it will follow a				
		curves path which is parabolic				
		in nature. This motion is a				
		called projectile				
9	What is meant by	The rate of change of distance	Remember	CO 4	CLO9	CAAEB01.09
	speed?	with respect to time is called	remember	001	CLO,	CI II ILD 011.07
	specar	speed.				
10	Define trajectory?	The path traced by a projectile	Remember	CO 4	CLO9	CAAEB01.09
	5	is called trajectory.				
11	Define time of flight?	The time taken by projectile to	Remember	CO 4	CLO9	CAAEB01.09
	C C	move from point of projection				
		to point of target is called time				
		of flight.				
12	What is a maximum	When projectile reaches to the	Remember	CO 4	CLO9	CAAEB01.09
	height?	max height where vertical	-			
		component of velocity is zero				
13	What is a range?	It is a horizontal distance from	Remember	CO 4	CLO9	CAAEB01.09
		point of projection to point of				0.
1.4	P 1 1 4 4	target is called a range.	TT 1 / 1	CO 4	CL 014	
14	Explain the term	A body is said to be rigid, if	Understand	CO 4	CL014	CAAEB01.14
	rigid body?	ne relative position of any two				
		the action of force			1	
15	Define the term	It defines the rate of change of	Remember	CO 4	CI 014	CAAFR01 1/
15	angular velocity?	angular position with respect to	Kelhelhoel	004	CL014	CAALD01.14
	angular verberty.	time		~		
16	What is Newton's	The second law states that the	Remember	CO 4	CLO9	CAAEB01.09
10	second law?	rate of change of momentum of			0207	01111111001109
		a body is directly proportional				
		to the force applied, and this				
		change in momentum takes				
		place in the direction of				
		the applied force.				
17	What is	The algebraic sum of external	Remember	CO 4	CLO11	CAAEB01.11
	D'Alembert's	forces and inertial forces is				
	principle?	equal to zero.				
		UNIT-				
		MECHANICAL V	IBRATIONS		1	
1	Explain the	If the body is given a small	Understand	CO 5	CLO15	CAAEB01.15
	Vibration?	displacement from the position,				
		a force comes into play which				
		mes to bring the body back to				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		the equilibrium point, giving				
		rise to oscillations or vibrations				
2	What is Simple	Oscillatory motion under a	Remember	CO 5	CLO15	CAAEB01.15
	harmonic motion?	retarding force proportional to				
		from an aquilibrium position is				
		called simple harmonic motion				
3	Describe longitudinal	Longitudinal wayes are wayes	Understand	CO 5	CLO15	CAAEB01 15
5	waves.	in which the displacement of	Chacistana	005	CLOID	
		the medium is parallel to the				
		direction of propagation of the				
		wave.				
4	What is Damped	The oscillatory motion in	Remember	CO 5	CLO15	CAAEB01.15
	Vibration?	which the amplitude decreases				
		continuously with the passage		\square		
		oscillation				
5	What are "Forced	All free oscillations eventually	Remember	CO 5	CL015	CAAEB01 15
5	(or) driven Vibration	die out because of the ever	remember	005	CLOID	
		present damping forces.				
		However, an external agency	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		can maintain these oscillations.	1.00			
		These are called forced or				
6		driven oscillations	D 1	00.5	01.015	CAAED01.15
6	Define the term	It is defined as the minimum	Remember	CO 5	CLOIS	CAAEB01.15
	degree of freedom?	variables required to define the				
		position or motion of a system				
		is known as degree of freedom.				
7	Explain term about	When the driving frequency is	Understand	CO 5	CLO15	CAAEB01.15
	"Resonance"	equal to the natural frequency				
		the oscillations can be large -	-			
		this is called resonance		_		
8	Recall wavelength.	A wavelength is a measure of	Remember	CO 5	CLO15	CAAEB01.15
		distance between two identical	_			
0	Define frequency	Frequency is the number of	Remember	CO 5	CL 015	CAAEB01 15
,	Define frequency.	occurrences of a repeating	Kemember	05	CLOIJ	CAALD01.15
		event per unit time.			-	
10	Define pendulum?	A pendulum is a weight	Remember	CO 5	CLO15	CAAEB01.15
	1 2.0	suspended from a pivot so that		. 9		
		it can swing freely. When		6.7		
		a pendulum is displaced		~		
		sideways from its resting,				
		equilibrium position, it is				
		to gravity that will accelerate it				
		back toward the equilibrium				
		position.				
11	Define amplitude.	The maximum extent of a	Remember	CO 5	CLO15	CAAEB01.15
	1	vibration or oscillation,				
		measured from the position of				
		equilibrium.				a
12	Define time period	It the time needed for one	Understand	CO 5	CLO15	CAAEB01.15
	for simple	complete cycle of vibration to				
12	What is meant by	A torsion pendulum is a mass	Remember	CO 5	CLOIE	
13	torsional pendulum?	suspended on a string that	Kentenibei	005		CAALDUI.10
	tororonar pendurum?	rotates periodically. When the				
		mass of a torsion pendulum is				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		rotated from its equilibrium				
		position, the fiber resists the				
		rotation and provides a				
		restoring force that causes the				
		mass to rotate back to its				
		original equilibrium position.				
14	What is meant by	Any swinging rigid body free	Remember	CO 5	CLO16	CAAEB01.16
	compound	to rotate about a fixed				
	pendulum?	horizontal axis is called				
	-	a compound pendulum				
15	Explain about under-	An under-damped system	Understand	CO 5	CLO15	CAAEB01.15
	damped systems.	yields an exponentially				
		decreasing sinusoidal output in				
		response to a step input.				
16	Describe critically-	A critically damped system the	Understand	CO 5	CLO15	CAAEB01.15
	damped systems.	minimum amount of damping				
		that will yield a non-				
		oscillatory output in response				
		to a step input.				
17	What do you mean	An over-damped system also	Understand	CO 5	CLO15	CAAEB01.15
	by over-damp <mark>ed</mark>	yields a non-oscillatory output				
	systems?	in response to a step input, but				
		has more damping than				
		necessary to achieve the non-				
		oscillatory output.				

Signature of the Faculty

DCCARION F

Signature of HOD

LIBER