

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	MECHANICS OF SOLIDS
Course Code	:	AAEB04
Program	:	B.Tech
Semester	:	III
Branch	:	Aeronautical Engineering
Section	:	A&B
Academic Year	:	2019 – 2020
Course Coordinator	:	Mr. G S D Madhav, Assistant Professor

COURSE OBJECTIVES

The course will enable the students to:							
I	Understand the behavior of structure basic structural components under loading conditions.						
II	Apply the shear force, bending moment and deflection methods to the beam in different load conditions.						
III	Relate the bending and flexural stress solving methods to real time problems.						
IV	Pertain the concept of buckling behavior of the columns along with eigen modes.						
V	Discuss the equilibrium and compatibility conditions for two-dimensional and three-dimensional elastic bodies.						

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms	CO	CLO	CLO Code			
			Level						
	MODULE-I								
		INTRODUCTION TO STRESSES &	& STRAINS						
1	Define Stress	The resistance offered by the body to	Understand	CO 1	CLO 1	AAEB04.01			
		applied force is called stress.							
2	Define strain	The ratio of change in dimension to	Remember	CO 1	CLO 1	AAEB04.01			
		original dimension is called strain.							
3	What is ductility?	The property of material to draw into	Remember	CO 1	CLO 2	AAEB04.02			
		thin wires is known as ductility.							
4	Define Hooke's	Hooke's law states that within elastic	Remember	CO 1	CLO 2	AAEB04.02			
	law.	limit stress is proportional to strain.							
5	What is isotropic	The materials which have the same	Remember	CO 1	CLO 2	AAEB04.02			
	material?	elastic properties in all directions are							
		called isotropic materials.							
6	Define Poisson's	The ratio of lateral strain to the	Remember	CO 1	CLO 2	AAEB04.02			
	ratio.	longitudinal strain is a constant when the							
		material is stressed within the elastic							
		limit is called Poisson's ratio.							

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
7	What is working stress?	The maximum safe stress that a material can carry is called working stress.	Remember	CO 1	CLO 2	AAEB04.02
8	What is factor of safety?	Factor of safety is a ratio of maximum stress withstand by an object to applied stress.	Remember	CO 1	CLO 2	AAEB04.02
9	What is rigidity modulus?	The ratio of shear stress to the corresponding shear strain within the elastic limit is known as modulus of rigidity.	Understand	CO 1	CLO 2	AAEB04.02
10	Define Resilience	The total strain energy stored in a body is known as resilience.	Understand	CO 1	CLO 3	AAEB04.03
11	What is proof Resilience?	The maximum strain energy, stored in a body is known as proof resilience.	Remember	CO 1	CLO 3	AAEB04.03
12	Define modulus of Resilience.	It is defined as the proof resilience of a material per MODULE volume.	Remember	CO 1	CLO 3	AAEB04.03
13	What is torsion?	Torsion is the twisting of an object due to an applied torque.	Remember	CO 1	CLO 3	AAEB04.03
14	What is polar modulus?	Polar modulus is defined as the ratio of the polar moment of inertia to the radius of the shaft.	Remember	CO 1	CLO 3	AAEB04.03
15	What is a creep?	A gradual increase of plastic strain with time at constant load.	Remember	CO 1	CLO 3	AAEB04.03
		MODULE-II FORCES, DEFLECTIONS	IN PEAMS			
1	What is elastic curve?	The line to which the longitudinal axis of the beam bends or deflects or deviates under given load is known as elastic	Understand	CO 2	CLO 4	AAEB04.04
2	Define slope	The slope is defined as at any point on the bent beam is the angle measured in terms of radians to which the tangent at that point makes with the X-axis.	Understand	CO 2	CLO 4	AAEB04.04
3	What is deflection of beam?	The deflection at any point on the axis of the beam is the distance between its position before and after loading.	Understand	CO 2	CLO 4	AAEB04.04
4	Define slope	Slope at any section in a deflected beam is defined as the angle in radians which the tangent at the section makes with the original axis of the beam.	Remember	CO 2	CLO 4	AAEB04.04
5	What is a Beam?	Beam is a horizontal structural member subjected to transverse loads perpendicular to axis.	Remember	CO 2	CLO 5	AAEB04.05
6	What is overhanging beam?	A beam which extends beyond it supports is known as overhanging beam.	Remember	CO 2	CLO 5	AAEB04.05
7	What is shear force?	Shear force is unbalanced vertical force to the left or right of the section.	Remember	CO 2	CLO 5	AAEB04.05
8	What is point of contraflexure?	The point where value of bending moment is zero is called point of contraflexure.	Remember	CO 2	CLO 5	AAEB04.05
9	Define U.D.L	The loads are uniformly spread over a portion or whole area.	Understand	CO 2	CLO 5	AAEB04.05
10	What is concentrated load?	Load acting at a point is known as concentrated load or point load.	Remember	CO 2	CLO 6	AAEB04.06

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
11	What is simply supported beam?	A beam supported or resting freely on the supports at its both ends is known as simply supported beam.	Remember	CO 2	CLO 6	AAEB04.06
12	Define bending moment diagram	The diagram which shows the variation of the bending moment along the length of a beam is known as bending moment diagram.	Remember	CO 2	CLO 6	AAEB04.06
13	Define shear force diagram.	The diagram which shows the variation of the shear force along the length of the beam is known as shear force diagram.	Remember	CO 2	CLO 6	AAEB04.06
14	Define U.D.L	The loads are uniformly spread over a portion or whole area.	Understand	CO 2	CLO 6	AAEB04.06
15	What is concentrated load?	Load acting at a point is known as concentrated load or point load.	Remember	CO 2	CLO 6	AAEB04.06
		MODULE-III STRESSES IN BEA	MS			
1	Define bending stresses.	The stresses introduced by bending moment are known as bending stresses.	Remember	CO 3	CLO 7	AAEB04.07
2	Define simple bending.	The beam subjected to a constant bending moment and no shear force, then the stresses set up in the beam due to bending moment is said to be simple bending.	Remember	CO 3	CLO 7	AAEB04.07
3	What is neutral layer?	The layer which is neither shortened nor elongated is known as neutral layer or neutral surfaces	Remember	CO 3	CLO 7	AAEB04.07
4	What is moment of resistance?	The compressive and tensile forces acting above and below the neutral axis will have moments. The total moment of these forces about N.A for a section is known as moment of resistance.	Remember	CO 3	CLO 7	AAEB04.07
5	Define section modulus	The ratio of moment of a section about the neutral axis to the distance of the outermost layer from the neutral axis is called section modulus.	Understand	CO 3	CLO 7	AAEB04.07
6	What is plane of bending?	When the loads are applied in xy plane, a plane of symmetry of the cross section, resulting in beam deflection in that same plane, known as the plane of bending.	Remember	CO 3	CLO 7	AAEB04.07
7	What is moment of inertia?	The mass moment of inertia of a solid measures the solid's ability to resist changes in rotational speed about a specific axis. The larger the mass moment of inertia the smaller the angular acceleration about the axis for a given torque.	Understand	CO 3	CLO 7	AAEB04.07
8	What is web?	The web is vertical section in any type of cross-section which resists the shear forces experienced by the beam.	Remember	CO 3	CLO 8	AAEB04.08
9	What is flange?	The flange is horizontal section in any type of cross-section which resist most of the bending moment experienced by the beam.	Remember	CO 3	CLO 8	AAEB04.08
10	Define direct stress	Direct stress is produced in a body when it is subjected to an axial tensile or compressive load.	Remember	CO 3	CLO 8	AAEB04.08

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	What is eccentric load?	Eccentric load is the load whose line of action does not pass through the axis of the column or, but passes through a point away from the axis of the column.	Remember	CO 3	CLO 8	AAEB04.08
12	What is principle of superposition?	The principle that when two or more forces act on a particle at the same time, the resultant force is the vector sum of the two.	Remember	CO 3	CLO 9	AAEB04.09
13	What is flexural rigidity?	Flexural stiffness is a stiffness of a material when subjected to bending mathematically the product of EI is called flexural rigidity.	Remember	CO 3	CLO 9	AAEB04.09
14	What is pure bending?	Pure bending refers to flexure of a beam under constant bending moment.	Remember	CO 3	CLO 9	AAEB04.09
15	What is principle of superposition?	The principle that when two or more forces act on a particle at the same time, the resultant force is the vector sum of the two.	Remember	CO 3	CLO 9	AAEB04.09
		MODULE-IV COLUMNS				
1	Define column	A vertical member of a structure which is subjected to axial compressive load and is fixed at both of its ends is known as a column.	Remember	CO 4	CLO 11	AAEB04.11
2	What is crippling load?	The load at which the column just buckles (or bends) is called crippling load.	Understand	CO 4	CLO 11	AAEB04.11
3	Define slenderness ratio	The ratio of the length of a column to the least radius of gyration of the column is known as slenderness ratio.	Remember	CO 4	CLO 10	AAEB04.10
4	Define crushing load.	The load at which short column fails is called crushing load.	Remember	CO 4	CLO 11	AAEB04.11
5	What is effective length of a column?	The effective length of a given column with the given end conditions is the length of an equivalent column of the same material and cross-section with hinged ends, and having the value of the crippling load equal to that of the given column.	Remember	CO 4	CLO 10	AAEB04.10
6	What is radius of gyration?	Radius of gyration of a body about an axis is distance such that its square multiplied by the area gives moment of inertia of the area about the given axis.	Remember	CO 4	CLO 10	AAEB04.10
7	Define factor of safety.	The ratio of the critical load to the safe load is known as factor of safety.	Remember	CO 4	CLO 10	AAEB04.10
8	What is beam column?	If the columns also subjected to transverse loads along with axial compressive loads they are known as beam columns.	Remember		CLO 10	
9	What is strut?	Strut is a member of a structure which is not vertical or whose one or both of its ends are hinged or pin joined.	Remember	CO 4	CLO 11	AAEB04.11
10	Define Young's modulus	The ratio of longitudinal stress to longitudinal strain is called Young's modulus or modulus of elasticity.	Remember	CO 4	CLO 11	AAEB04.11

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	What are Eigen values?	The column will buckle at discrete values of axial load and that associated with each value of buckling load there is a particular buckling mode. These discrete values of buckling load are called Eigen values.	Remember	CO 4	CLO 11	AAEB04.11
12	What is eigen function?	The function associated with eigen values is called Eigen function.	Remember	CO 4	CLO 12	AAEB04.12
13	Define bifurcation point.	If the column is disturbed it would buckle in either of two lateral directions. The point at which this possible branching occurs is called a bifurcation point.	Remember	CO 4	CLO 12	AAEB04.12
14	What is reduced modulus theory?	The method of predicting critical loads and stresses outside the elastic range is known as the reduced modulus theory.	Remember	CO 4	CLO 13	AAEB04.13
15	What is tangent modulus?	At the point above the elastic limit if the stress is increasing then Young's modulus E is known as tangent modulus E _t .	Remember	CO 4	CLO 13	AAEB04.13
		MODULE-V	~			
1	What are body	THEORY OF ELASTI The forces derived from gravitational and	Understand	CO 5	CLO 14	AAEB04.14
1	What are body forces?	inertia effects are known as body forces.	Understand	CO 3	CLO 14	AAEDU4.14
2	What is plane stress?	If all stress components along z-axis are zero then that condition is known as plane stress.	Remember	CO 5	CLO 14	AAEB04.14
3	What are principal stresses?	Principal stresses are the stresses that can act on inclined planes where shear stresses are zero.	Remember	CO 5	CLO 14	AAEB04.14
4	What are principal planes?	The inclines planes on which principal stresses act are called as principal planes.	Remember	CO 5	CLO 15	AAEB04.15
5	What is elasticity?	The property by which a body returns to its original shape after removal of the force is called elasticity.	Remember	CO 5	CLO 15	AAEB04.15
6	What are equilibrium equations?	A solid static body is in static equilibrium when the resultant force and the moment on each axis is equal to zero. This can be expressed by the equilibrium equations.	Remember		CLO 15	AAEB04.15
7	What are compatibility equations?	Compatability equations are those additional equations which can be made considering equilibrium of the structure.	Remember	CO 5	CLO 15	AAEB04.15
8	What is compatibility method?	Displacement method of analysis is known as compatibility method. It is also known as stiffness matrix method.	Remember	CO 5	CLO 15	AAEB04.15
9	What is Airy's Stress function?	The Airy stress function is scalar potential function that can be used to find the stress.	Remember	CO 5	CLO 15	AAEB04.15
10	Define obliquity	The angle made by the resultant stress with the normal of the oblique plane is known as obliquity.	Remember	CO 5	CLO 16	AAEB04.16
11	Where the maximum shear stress does occurs?	The planes which are at an angle of 45° or 135° with the normal cross-section carry the maximum shear stresses.	Remember	CO 5	CLO 16	AAEB04.16

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
12	Define allowable stress	The allowable stress is the maximum stress that is allowed to be applied on a structural material.	Remember	CO 5	CLO 17	AAEB04.17
13	What is Mohr's circle?	Mohr's circle is a graphical method of finding normal, tangential and resultant stresses on an oblique plane.	Remember	CO 5	CLO 17	AAEB04.17
14	Define shear stress.	Shear stress is defined as the component of stress arising from the force vector component parallel to the cross-section of the material.	Remember	CO 5	CLO 15	AAEB04.15
15	Define shear force.	Shear force is a force that acts on a plane passing through the body.	Remember	CO 5	CLO 16	AAEB04.16

Signature of the Faculty

Signature of HOD