

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	MECHANICAL VIBRATIONS
Course Code	:	AME524
Program	:	B.Tech
Semester	:	VI
Branch	:	Mechanical Engineering
Section	:	A&B
Academic Year		2019–2020
Course Faculty	:	Mr. VVSH Prasad, Associate Professor.

COURSE OBJECTIVES:

Ι	Understand basic concepts of mechanical vibrations and phenomena of transmissibility.
Π	Analyze mechanical systems with or without damping for single and multi degrees of freedom environment.
III	Application of vibration measuring instruments and machine monitoring systems.
IV	Develop competency in analytical methods in solving problems of vibrations along with mode shapes.

DEFINITIONS AND TERMINOLOGY WITH COS AND CLOS

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		UNIT-I				
1	Amplitude	The maximum displacement of a	Remember	CO1	CLO 1	AME524.01
	C	vibrating body from its equilibrium			-	
	-	position is called the amplitude of	1		<u> </u>	
	2	vibration.	1		1.000	
2	Displacement	Amount of movement from one point	Remember	CO1	CLO 1	AME524.01
		to another. E.g. I just walked 100				
		meters.	-	0		
3	Velocity	The rate of movement, E.g. I moved	Remember	CO1	CLO 1	AME524.01
		the 100 meters in 10 seconds	1.000			
4	Acceleration	The rate of change of velocity. E.g. The	Remember	CO1	CLO 1	AME524.01
		car has the capability to go from 0 mph				
		to 100 mph in 8 Seconds.				
5	Frequency:	This denotes how frequently something	Remember	CO1	CLO 2	AME524.02
		occurs. For example, made to appear at				
		regular intervals based on their relative				
		motion.				
6	Hertz	The Hz denotes Hertz, the unit for	Remember	CO1	CLO 2	AME524.02
		frequency				
7	Time	To say in a graph with Time in the X –	Remember	CO1	CLO2	AME524.02
	Domain	Axis and Amplitude in the Y – Axis.				
		You can assume the amplitude to be for				
		example the amount of height a body				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		jumps due to vibration				
8	Cycle.	The movement of a vibrating body	Remember	CO1	CLO 2	AME524.02
		from its undisturbed or equilibrium				
		position to its extreme position in one				
		direction, then to the equilibrium				
		position, then to its extreme position in				
		the other direction, and back to				
		equilibrium position is called a cycle of vibration.				
9	Period of	The time taken to complete one cycle	Understand	CO1	CLO 3	AME524.03
	oscillation.	of motion is known as the period of	Childerstand	001	010 5	110111321.03
		oscillation $\tau=2 \pi/\omega$, Time period and is	_	-		
		denoted by τ , Rotate through an angle				
		of 2 π , The circular frequency ω	-			
10	Frequency of	The number of cycles per unit time is	Understand	CO1	CLO 3	AME524.03
	oscillation.	called the frequency of oscillation				
11	synchronous	Consider two vibratory motions	Understand	CO1	CLO 3	AME524.03
		denoted by $x1 = A1 \sin \omega t$				
		$x^2 = A2 \sin(\omega t + \varphi)$, The two				
		harmonic motions given by above Eqs.				
10	Dharanala	are called synchronous	Damanhan	001		A ME 524.04
12	Phase angle	Consider two vibratory motions denoted by $x1 = A1 \sin \omega t$	Remember	CO1	CLO 4	AME524.04
		$x^2 = A^2 \sin(\omega t + \phi)$, The two	-			
		harmonic motions given by above Eqs.				
		are called synchronous, Because they				
		have the same frequency or angular		-		
	1.00	velocity, Two synchronous oscillations	-	18		
	500	neednot have the same amplitude, and	_		1.1	
	0	they need not attain their maximum	-	1	-	2 C
		values at the same time, the second		7.	~	č
	0	vector leads the first one by an angle		V	-	
12	NIs formal	known as the phase angle.	Demonster	001		A ME 524.04
13	Natural frequency.	If a system, after an initial disturbance, is left to vibrate on its own, the	Remember	CO1	CLO 4	AME524.04
	frequency.	frequency with which it oscillates		0		
		without external forces is known as its		63	S	
		natural frequency.	0.	\sim		
14	Octave	When the maximum value of a range of	Remember	CO1	CLO 4	AME524.04
		frequency is twice its minimum value,	Sec.			
		it is known as an octave band.				
15	Decibel	The various quantities encountered in	Remember	CO1	CLO 4	AME524.04
		the field of vibration and sound are				
		often represented using the notation of				
		decibel.				
		UNIT - II				
1	Resonance	Whenever the natural frequency of	Remember	CO2	CLO 5	AME524.05
		vibration of a machine or structure				
		coincides with the frequency of the				
		external excitation, there occurs a				
		phenomenon known as resonance				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
2	vibration or	Any motion that repeats itself after an	Remember	CO2	CLO 5	AME524.05
	oscillation	interval of time is called vibration or				
		oscillation				
3	generalized	The coordinates necessary to describe	Remember	CO2	CLO 5	AME524.05
	coordinates	the motion of a system constitute a set				
		of generalized coordinates. These are				
		usually denoted as and may represent				
		Cartesian and/or non-Cartesian				
4	discrete or	coordinates	Remember	CO2	CLO 5	AME524.05
4	lumped	Systems with a finite number of degrees of freedom are called discrete	Remember	02	CLU 5	AME524.05
	parameter	or lumped parameter systems		_		
	systems	or rumped parameter systems				
5	continuous or	Systems with a finite number of	Remember	CO2	CLO 6	AME524.06
-	distributed	degrees of freedom are called discrete				
	systems	or lumped parameter systems, and				
	-	those with an infinite number of				
		degrees of freedom are called				
		continuous or distributed systems				
6	Free	If a system, after an initial disturbance,	Remember	CO2	CLO 6	AME524.06
	Vibration.	is left to vibrate on its own, the ensuing				
		vibration is known as free vibration.				
		No external force acts on the system.		_		
		The oscillation of a simple pendulum is				
7	Forced	an example of free vibration. If a system is subjected to an external	Remember	CO2	CLO 6	AME524.06
/	Vibration.	force (often, a repeating type of force),	Kennennber	02	CLO 0	AME524.00
	v for atton.	the resulting vibration is known as		1		
	577	forced vibration.				-
8	When	If the frequency of the external force	Remember	CO2	CLO 6	AME524.06
	resonance will	coincides with one of the natural	_			2
	occur	frequencies of the system, a condition		1	-	
		known as resonance occurs.	/	-	~	
9	undamped	If no energy is lost or dissipated in	Understand	CO2	CLO 6	AME524.06
	vibration	friction or other resistance during		0		
		oscillation, the vibrationis known as		6.30	2	
10	Dominad	undamped vibration.	Doment	002		AMESO A OZ
10	Damped vibration.	If any energy is lost in this way, however, it is called damped vibration.	Remember	CO2	CLO 7	AME524.07
11	linear vibration		Remember	CO2	CLO 7	AME524.07
11		vibratory system the spring, the mass,	Remember	002		11111324.07
		and the damper behave linearly, the				
		resulting vibration is known as linear				
		vibration.				
12	nonlinear	If, however, any of the basic	Understand	CO2	CLO 7	AME524.07
	vibration	components behave nonlinearly, the				
		vibration is called nonlinear vibration.				
13	deterministic	If the value or magnitude of the	Understand	CO2	CLO 7	AME524.07
		excitation (force or motion) acting on a				
		vibratory system is known at any given				
		time, the excitation is called				
		deterministic.				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
14	deterministic vibration	If the value or magnitude of the excitation (force or motion) acting on a vibratory system is known at any given time, the excitation is called deterministic. The resulting vibrationis	Remember	CO2	CLO 8	AME524.08
15	random vibration	known as deterministic vibration. If the excitation is random, the resulting vibration is called random vibration	Understand	CO2	CLO 8	AME524.08
		UNIT - III	<u> </u>			
1	Spring constant or spring stiffness or spring rate.	elongation or reduction in length x is	Remember	CO3	CLO 9	AME524.09
2	Damping	The mechanism by which the vibrational energy is gradually converted into heat or sound is known as damping.	Remember	CO3	CLO 9	AME524.09
3	Viscous damping	In viscous damping, the damping force is proportional to the velocity of the vibrating body.	Remember	CO3	CLO 9	AME524.09
4	Coulomb or Dry-Friction Damping.	The damping force is constant in magnitude but opposite in direction to that of the motion of the vibrating body. It is caused by friction between rubbing surfaces that either are dry or have insufficient lubrication.	Remember	CO3	CLO 10	AME524.10
5	Material or Solid or Hysteretic Damping.	When a material is deformed, energy is absorbed and dissipated by the material. The effect is due to friction between the internal planes, which slip or slide as the deformations take place.	Remember	CO3	CLO 10	AME524.10
6	Periodic motion.	Oscillatory motion may repeat itself regularly, as in the case of a simple pendulum, or it may display considerable irregularity, as in the case of ground motion during an earthquake. If the motion is repeated after equal intervals of time, it is called periodic motion.	Remember	CO3	CLO 10	AME524.10
7	Harmonic motion	The simplest type of periodic motion is harmonic motion.	Remember	CO3	CLO 10	AME524.10
8	Simple harmonic motion	It can be seen that the acceleration is directly proportional to the displacement. Such a vibration, with the acceleration proportional to the displacement and directed toward themean position, is known as simple harmonic motion.	Remember	CO3	CLO 10	AME524.10

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
9	Torsional	If a rigid body oscillates about a	Remember	CO3	CLO 11	AME524.11
	vibration	specific reference axis, the resulting				
		motion is calledtorsional vibration.				
10	Orthogonality	As the number of degrees of freedom	Remember	CO3	CLO 11	AME524.11
		increases, the solution of the				
		characteristicequation becomes more				
		complex. The mode shapes exhibit a				
- 11	D	property known asorthogonality.		GOA	GT 0 11	
11	Proportional	The solution of forced-vibration problemsassociated with viscously	Remember	CO3	CLO 11	AME524.11
	damping.	problemsassociated with viscously damped systems can also be found				
		conveniently by using a conceptcalled				
		proportional damping.				
12	lumped-	The lumped masses are assumed to be	Remember	CO3	CLO 12	AME524.12
12	parameter or	connected by massless elastic and	Remember	COS	CLO 12	AML524.12
	lumped-mass	damping members. Linear (or angular)				
	or discrete-	coordinates are used to describe the				
	mass systems	motion of the lumped masses (or rigid				
	2	bodies). Such models are called				
		lumped-parameter or lumped-mass or				
		discrete-mass systems				
13	Finite	Method of approximating a continuous	Remember	CO3	CLO 12	AME524.12
	element	system as a multidegree-				
	method	offreedomsystem involves replacing				
		the geometry of the system by a large				
		number of small elements. By				
		assuming a simple solution within each				
		element, the principles of compatibility	-			-
		and equilibrium are used to find an				S
		approximate solution to the original system. This method, known as the			- C	· · · · ·
		finite element method.				0
14	Influence	The equations of motion of a	Remember	CO3	CLO 12	AME524.12
14	coefficients	multidegree-of-freedom system can	Remember	COS	CLO 12	AWIL524.12
	coefficients	also be written in terms of influence			100	
		coefficients, which are extensively		0		
		used in structural engineering.	-			
		Basically, one setof influence	0.			
		coefficients can be associated with each	1114			
		of the matrices involved in the	100			
		equations of motion.				
15	Flexibility	The influence coefficients	Remember	CO3	CLO 12	AME524.12
	influence	corresponding to the inverse stiffness				
	coefficients	matrix are called the flexibility				
		influence coefficients.				
		UNIT - IV				
1	Condition	Condition monitoring (or,	Remember	CO4	CLO 13	AME524.13
	monitoring	colloquially, CM) is the process of				
		monitoring a parameter of condition in				
		machinery (vibration, temperature etc.),				
		in order to identify a significant change				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		which is indicative of a developing fault				
2	Rotating equipment	Rotating equipment is an industry umbrella term that includes gearboxes, reciprocating and centrifugal machinery.	Remember	CO4	CLO 13	AME524.13
3	Criticality Index	The Criticality Index is often used to determine the degree on condition monitoring on a given machine taking into account the machines purpose.	Remember	CO4	CLO 13	AME524.13
4	What technique will be used by most vibration analysis instruments?	Fast Fourier Transform	Remember	CO4	CLO 13	AME524.13
5	Chip Detectors	Filters and magnetic plugs are designed to retain chips and other debris in circulating lubricant systems and these are analysed for quantity, type, shape, size, and so on. Alternatively, suspended particles can be detected in flow past a window.	Remember	CO4	CLO 13	AME524.13
6	Ferrography.	This represents the microscopic investigation and analysis of debris retained magnetically (hence the name) but which can contain non-magnetic particles caught up with the magnetic ones.	Remember	CO4	CLO 13	AME524.13
7	Root cause analysis(RCA)	root cause analysis (RCA) is a method of problem solving used for identifying the root causes of faults or problems.	Remember	CO4	CLO 13	AME524.13
8	Applications of RCA	Manufacturing and industrial process control, IT and Telecommunications, Health and Safety.	Remember	CO4	CLO 13	AME524.13
9	How do you analyze a trend analysis?	Trend analysis is the process of comparing business data over time to identify any consistent results or trends. You can then develop a strategy to respond to thesetrends in line with your business goals	Remember	CO4	CLO 13	AME524.13
10	What is frequency domain analysis?	In electronics, control systems engineering, and statistics, the frequency domainrefers to the analysis of mathematical functions or signals with respect to frequency, rather than time. The inverse Fourier transform converts the frequency-do main function back to the time function.	Remember	CO4	CLO 13	AME524.13
11	What is vibration analysis?	Vibration Analysis refers to the process of measuring the vibration levels and frequencies of industrial machinery,	Remember	CO4	CLO 13	AME524.13

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		and using that information to determine				
		the "health" of the machine, and its				
		components This vibration can be				
		measured, using a device called an accelerometer.				
12	Why	Frequency domain analysis is mostly	Remember	CO4	CLO 13	AME524.13
12	frequency	used to signals or functions that are	Kemember	04	CLO 15	AWIE524.15
	domain	periodic over time. This does not mean				
	analysis is	that frequency domain analysis cannot				
	important?	be used in signals that are not periodic.				
	-	The most important concept in				
		the frequency domain analysis is the	_			
		transformation.				
13	What are	A given function or signal can be	Remember	CO4	CLO 13	AME524.13
	frequency	converted between the time				
	components?	and frequencydomains with a pair of				
		mathematical operators called a				
		transform. An example is the Fourier				
		transform, which converts the time function into a sum of sine waves of				
		different frequencies, each of which				
		represents a frequency component.				
14	Why do we	Almost every imaginable signal can be	Remember	CO4	CLO 13	AME524.13
	use Fourier	broken down into a combination of				
	transform?	simple waves This break down, and				
	What is	how much of each wave is needed, is				
	it used for?	the Fourier Transform. Fourier				
	1.000	transforms (FT) take a signal and	-			
	00	express it in terms of the frequencies of				C
	-	the waves that make up that signal.		-	-	
15	What is time	Time domain is the analysis of	Remember	CO4	CLO 13	AME524.13
	domain analysis?	mathematical functions, physical signals or timeseries of economic or	1000		4	
	allarysis?	environmental data, with respect				
		to time. In the time domain, the signal			100	
		or function's value is known for all real		0		
		numbers, for the case of continuous			5	
		time, or at various separate instants in	0.			
		the case of discrete time.	1 1 1			
		UNIT - V	·		·	
1	Nodes	The points at which w _n =0 for all times	Remember	CO5	CLO 13	AME524.13
		are called nodes.				
2	Euler-	From the elementary theory of bending	Remember	CO5	CLO 13	AME524.13
	Bernoulli or	of beams.				
	thin beam					
2	theory Thick beem	If the areas particul dimensions	Dorr and to a	CO5	CL 0.12	AME504.12
3	Thick beam theory or	If the cross-sectional dimensions are not small compared to the length of the	Remember	CO5	CLO 13	AME524.13
	theory or Timoshenko	beam, we need to consider the effects				
	beam theory	of rotary inertia and shear deformation.				
	seam meory	Is known as the thick beam theory or				
		as anown as the unex beam theory of				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		Timoshenko beam theory.				
4	Timoshenko s shear coefficient	Where G denotes the modulus of rigidity of the material of the beam and k is a constant, also known as Timoshenko s shear coefficient.	Remember	CO5	CLO 13	AME524.13
5	Rayleigh-Ritz method	Based on Rayleigh s quotient, for finding the approximate fundamental frequencies of continuous systems is outlined. The extension of the method, known as the Rayleigh-Ritz method.	Remember	CO5	CLO 13	AME524.13
6	Distributed or continuous systems	Systems where mass, damping, and elasticity were assumed to be present only at certain discrete points in the system. In many cases, known as distributed or continuous systems.	Understand	CO5	CLO 19	AME524.19
7	Systemofinfinitedegreesoffreedom	A continuous system is also called a system of infinite degrees of freedom.	Remember	CO5	CLO 14	AME524.14
8	Wave equation	The Equation $c^2 \frac{\partial^2 w}{\partial x^2} = \frac{\partial^2 w}{\partial t^2}$ is also known as the wave equation.	Remember	CO5	CLO 14	AME524.14
9	Frequency or characteristic equation	Equation $\sin \frac{\omega l}{c} = 0$ is called the frequency or characteristic equation.	Remember	CO5	CLO 14	AME524.14
10	Eigen values	Equation $\sin \frac{\omega l}{c} = 0$ is called the frequency or characteristic equation and is satisfied by several values of ω The values of ω are called the eigen values (or natural frequencies or characteristic values) of the problem.	Remember	CO5	CLO 15	AME524.15
11	Fundamental mode	The mode corresponding to $n = 1$ is called the fundamental mode.	Remember	CO5	CLO 15	AME524.15
12	Fundamental frequency.	The mode corresponding to $n = 1$ is called the fundamental mode, and ω_1 is called the fundamental frequency.	Remember	CO5	CLO 16	AME524.16
13	Mode superposition method	The solution given by Eq. $w(x, t) = \sum_{n=1}^{\infty} w_n(x, t)$ $= \sum_{n=1}^{\infty} \sin \frac{n\pi x}{l} \left[C_n \cos \frac{nc\pi t}{l} + D_n \sin \frac{nc\pi t}{l} \right]$ can be identified as the mode superposition method.	Remember	CO5	CLO 17	AME524.17
14	Torsional stiffness	Where G is the shear modulus and $GJ(x)$ is the torsional stiffness.	Remember	CO5	CLO 17	AME524.17
15	Dunkerley's method.	Dunkerley's method is used in mechanical engineering to determine the critical speed of a shaft-rotor system.	Remember	CO5	CLO 17	AME524.17

Signature of the Faculty