INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

IARE TO LIBERTY

Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name		:	ADVANCED STRUCTURAL ANALYSIS AND DESIGN
Course Code		:	ACE016
Program	Jesse		B.Tech
Semester		•	VII
Branch			CivilEngineering
Section		:	A& B
Academic Year		:	2019- 2020
Course Faculty			Dr. Venu M, Professor

COURSE OBJECTIVES:

The	course should enable the students to:
I	Enhance knowledge of matrix stiffness and flexibility methods for analyzing continuous
	beams, portal frames and trusses.
II	Design advanced structures such as retaining walls against lateral earth pressure.
III	Analyze and design the different types of piles and flat slabs as per the recommendations of
111	Indian Standard codes.
IV	Explore and interpret the basic design concepts of water tanks, silos and bunkers.

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-I				
1	What is matrix method of analysis?	The matrix method is a structural analysis method used as a fundamental principle in many applications. The method is carried out, using either a stiffness matrix or a flexibility matrix.	Understand	CO 1	CLO 1	ACE016.01
2	What is static indeterminacy?	Static indeterminacy- when internal forces and reactions are greater than static equilibrium equations.	Remember	CO 1	CLO 1	ACE016.01
3	What is kinematic indeterminacy?	Kinematic indeterminacy- when number of unknown displacement greater than number of compatibility equations.	Remember	CO 1	CLO 2	ACE016.02
4	What is degree of static indeterminacy?	An indeterminate system is often described with the number of redundants it posses and this	Remember	CO 1	CLO 1	ACE016.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		number is known as its. degree				
		of static indeterminacy.				
5	What is	A kinematically determinate	Remember	CO 1	CLO 1	ACE016.01
	kinematically	structure can be defined as a				
	indeterminate	structure where, if it is possible				
	structure?	to find nodal displacements				
		compatible with member				
		extensions, those nodal				
	What is down of	displacements are unique. A redundant or indeterminate	Damanhan	CO 1	CLO 1	A CE01 (01
6	What is degree of redundancy in	structure has more structure than	Remember	CO 1	CLO I	ACE016.01
	structures?	is absolutely necessary. So, if				
	structures:	some part of the structure is				
		damaged or removed, the				
		structure will not necessarily fail				
		or collapse, as another part can				
		bear the load of the damaged or				
		missing piece.				
7	What is meant by	In the finite element method for	Remember	CO 1	CLO 1	ACE016.01
	stiffness matrix?	the numerical solution of elliptic				
		partial differential equations, the				
		stiffness matrix represents the				
		system of linear equations that				
		must be solved in order to				
		ascertain an approximate				
		solution to the differential				
		equation.				
8	What are the	Stiffness method of analysis of	Remember	CO 1	CLO 2	ACE016.01
	basic unknowns	structure also called as				
	in stiffness	displacement method. □ In the				
	matrix method?	method of displacement are used				
	William in a Communication	as the basic unknowns. Stiffness is the extent to which	Danish	CO 1	CI O 2	A CE01 (01
9	What is stiffness		Remember	CO 1	CLO 2	ACE016.01
	and flexibility?	an object resists deformation in	4		-	
		response to an applied force. The complementary concept is				2
		flexibility or pliability: the more				
		flexible an object is, the less			A	
		stiff it is.				
10	What is a	Flexibility matrix refers to the	Remember	CO 1	CLO 3	ACE016.01
10	flexibility	adaptability strategy,			0200	1102010101
	matrix?	additionally called the technique				
		for reliable deformations. In this		1		
		matrix, there are basic unknown	. 17			
		member forces.	1 1			
11	What are the uses	Flexibility matrix is widely used	Remember	CO 1	CLO 4	ACE016.04
	of flexibility	in analyzing beams, frames, and	=			
	matrix?	trusses.				
12	What is sway	Sway correction is defined as	Remember	CO 1	CLO 4	ACE016.04
	correction?	the removal of lateral movement				
		in the beams or frames by				
		correction factor is multiplied by				
12	Wile of the days of C	corresponding sway moment.	I In decree	CO 1	CLO 1	ACE016.01
13	What is degree of	Degree of static indeterminacy =	Understand	CO 1	CLO 1	ACE016.01
	static	Total number of unknown				
	indeterminacy?	forces Number of independent				
14	What makes a	equations of equilibrium. In regards to beams, if the	Remember	CO 1	CLO 2	ACE016.02
14	beam statically	reaction forces can be calculated	Kemember	COI	CLU 2	ACE010.02
	indeterminate?	using equilibrium equations				
$oxed{oxed}$		cquiriorium cquuions			l	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		alone, they are statically determinate				
15	What is single storey frame?	Single-storey frames use various column and portal frame solutions, combined with typically hollow section trusses.	Remember	CO 1	CLO 5	ACE016.01
		UNIT-II				
1	what is approximation method of analysis	Approximate analysis is conducted by making realistic assumptions about the behavior of the structure. Approximate Analysis of Indeterminate Trusses During preliminary design and analysis, the actual member dimensions are not usually known.	Remember	CO 2	CLO 7	ACE016.07
2	What is portal frame method?	Portal Frame Portal frames, used in several Civil Engineering structures like buildings, factories, bridges have the primary purpose of transferring horizontal loads applied at their tops to their foundations.	Remember	CO 2	CLO 7	ACE016.07
3	What is substitute frame method?	Substitute frame method for analysis of multistory frame can be handy in approximate and quick analysis. This method has been applied only for vertical loading conditions.	Understand	CO 2	CLO 9	ACE016.09
4	What is called as portal frame?	Portal frames are a type of structural frame, that, in their simplest form, are characterised by a beam (or rafter) supported at either end by columns, however, the joints between the beam and columns are 'rigid' so that the bending moment in the beam is transferred to the columns.	Understand	CO 2	CLO 9	ACE016.09
5	What is concrete portal frame?	Concrete Portal Frames are a combination of two columns and a normal beam with additional bending strength, to form a U shape.	Understand	CO 2	CLO 9	ACE016.09
6	What does gravity load mean?	A gravity load is one that the downward force of gravity affects.	Remember	CO 2	CLO 9	ACE016.09
7	What is a lateral load?	Most lateral loads are live loads whose main component is a horizontal force acting on the structure. Typical lateral loads would be a wind load against a facade, an earthquake, the earth pressure against a beach front retaining wall or the earth pressure against a basement wall.	Remember	CO 2	CLO 7	ACE016.07

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
8	What is single storey frame?	Single-storey frame and envelope deliveries Project- specific designed steel trusses are a cost and material efficient solution, especially for long span buildings	Remember	CO 2	CLO 7	ACE016.07
9	What is multi storey framed structure?	Multi-storey steel frame structure consist of beams and columns from welded H-shaped steel, hot-rolled H-shaped steel.	Remember	CO 2	CLO 7	ACE016.07
10	Define trusses.	A Truss is a structure composed of slender members (two-force members) joined together at their end points. Joints are modeled by smooth pin connections. What is the purpose of a truss? The purpose of a truss is to distribute the load through all the members.	Remember	CO 2	CLO 7	ACE016.07
11	Define Trussed Beam.	A beam strengthened by providing ties and struts is known as Trussed Beams.	Remember	CO 2	CLO 7	ACE016.07
12	What is meant by thermal stresses?	Thermal stresses are stresses developed in a structure/member due to change in temperature. Normally, determine structures do not develop thermal stresses. They can absorb changes in lengths and consequent displacements without developing stresses.	Remember	CO 2	CLO 7	ACE016.07
13	What is the effect of temperature on the members of a statically determinate plane truss.	In determinate structures temperature changes do not create any internal stresses. The changes in lengths of members may result in displacement of joints. But these would not result in internal stresses or changes in external reactions.	Remember	CO 2	CLO 7	ACE016.07
14	What Is Stability?	The stability may be defined as an ability of a material to withstand high load without deformation.	Remember	CO 2	CLO 7	ACE016.07
15	Where does maximum deflection occur in a beam?	Generally maximum deflection occurs at the middle of the load for uniformly distributed load. However, when there is point load it varies. Depending on the location of the point load and location it may vary.	Remember	CO 2	CLO 7	ACE016.07
		UNIT-III				
1	What is a retaining wall?	A retaining wall is a structure designed and constructed to resist the lateral pressure of soil, when there is a desired change in ground elevation that exceeds the angle of repose of the soil.	Understand	CO 3	CLO 13	ACE016.13

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
2	What is a	A basement wall is thus one	Remember	CO 3	CLO 13	ACE016.13
	basement wall?	kind of retaining wall.				
3	What is	A retaining wall is a structure	Remember	CO 3	CLO 13	ACE016.13
	considered a	that holds or retains soil behind				
	retaining wall?	it. There are many types of				
		materials that can be used to				
		create retaining walls like				
		concrete blocks, poured				
		concrete, treated timbers, rocks				
		or boulders. Some are easy to				
		use, others have a shorter life				
4	XX 71	span, but all can retain soil.	D 1	GO 2	GI O 12	A CE016 12
4	What are the	Cantilever Retaining Walls	Remember	CO 3	CLO 13	ACE016.13
	types of retaining	Counterfort Retaining Walls				
	wall?	Gravity Poured Concrete				
		Retaining Walls				
5	Why oro	Semi-Gravity Retaining Walls Retaining walls are meant to	Remember	CO 3	CLO 13	ACE016.13
)	Why are retaining walls	hold the soil, on a slope, without	Kennennber	COS	CLO 13	ACE010.13
	important?	it eroding.				
6	What are the	Lateral forces: Earth pressure	Understand	CO 3	CLO 13	ACE016.13
0	forces acting on a	due to backfill and surcharge.	Chacistalla	003	CLO 13	ACE010.13
	retaining wall?	Vertical forces: Acting				
	retuining wan.	downwards: Self weight of the				
		retaining wall; Weight of soil				
		above heel slab. Acting				
		upwards: Force due to soil				
		pressure underneath the base				
		slab.				
7	What is	In retaining wall. A counterfort	Remember	CO 3	CLO 15	ACE016.15
	Counterfort	retaining wall is a cantilever				
	retaining wall?	wall with counterforts, or				
		buttresses, attached to the inside				700
		face of the wall to further resist				
	0	lateral thrust. Some common)
		materials used for retaining				
		walls are treated lumber,			4	
		concrete block systems, poured				
		concrete, stone, and brick.		~~	GT 0 10	
8	What is active	Active earth pressure is the one	Understand	CO 3	CLO 13	ACE016.13
	earth pressure?	that is exerted by the soil that				
		tends to overturn or slide the		V.		
	What is stability	retaining wall.	Damambaa	CO 2	CI O 12	ACE016 12
9	What is stability	The safety factor of wall	Remember	CO 3	CLO 13	ACE016.13
	of retaining wall?	stability against overturning is defined as the ratio between the	The same of			
		sum of resisting moments and				
		the sum of overturning				
		moments.				
10	What is a water	A water tank is a container for	Remember	CO 3	CLO 13	ACE016.13
10	tank?	storing water. Water tanks are	Remember	203		7101010.13
		used to provide storage of water				
		for use in many applications,				
		drinking water, irrigation				
		agriculture, fire suppression,				
		agricultural farming, both for				
		plants and livestock, chemical				
			1		1	
1		manufacturing, food preparation				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	What is the IS	The Elevated tanks are	Remember	CO 3	CLO 13	ACE016.13
	code for water	supported by properly designed				
	tank design?	staging. The codes that are used				
		for water tank design is IS:				
		3370. The different parts of the				
		code is mentioned along with				
12	What is RCC	the respective sections dealt. Reinforced concrete water tanks	Remember	CO 3	CLO 13	ACE016.13
12	what is RCC water tank?	are constructed for storing	Remember	CO 3	CLO 13	ACE016.13
	water talk!	water. The design of reinforced				
		concrete water tank is based on				
		IS 3370: 2009 (Parts I – IV)				
13	What is the best	Plastic tanks. The most common	Remember	CO 3	CLO 15	ACE016.15
	material for a	plastic tanks are made of				
	water tank?	polyethylene, often just called				
		'poly'				
		Aquaplate and galvanised steel.				
		Stainless steel.				
		Concrete.				
		Fiberglass.				
14	What is meant by	Surcharge refers to the vertical	Remember	CO 3	CLO 15	ACE016.15
	surcharge in civil	pressure or any load that acts				
	engineering?	over the ground surface. It is				
		called as surcharge load.		~~~	GT 0 10	
15	What is	While the passive pressure will	Remember	CO 3	CLO 13	ACE016.13
	difference	not 'respond', until it is 'attacked'				
	between active	by wall pushed by active				
	and passive earth	pressure. Active earth pressure				
	pressure?	is the one that is exerted by the soil that tends to overturn or				
		slide the retaining wall.				
		Passive earth pressure is the one				
	-57	exerted from the other side and			1	700
	1.1	that tends to stabilize it.	- 78 -			
		UNIT-IV				
1	How to astimate	In limit state method	Damamhan	CO 4	CI O 16	ACE016 16
1	How to estimate the design loads	In limit state method, Design loads = Characteristic	Remember	CO 4	CLO 16	ACE016.16
	inlimit state	loads multiplied by the partial			100	
	method?	safety factor for loads				
2	How to estimate	In working stress method,	Remember	CO 4	CLO 16	ACE016.16
	the design loads	Design loads = Characteristic	110111001		223 13	1102010.10
	inworking stress	loads.	1. 1. 1. 1.			
	method?	W FAC	1 1 1			
3	Write a short note	The acceptable limit for safety	Remember	CO 4	CLO 16	ACE016.16
	on limit state of	and serviceability requirements				
	durability.	before failure occurs is called a				
		limit state. The aim of design is				
		to achieve acceptable				
		probabilities that the structure				
		will not become unfit for the use				
		for which it is intended, that is,				
		that it will not reach a limit				
		state.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	What is partial	Factors of safety (FoS), also	Remember	CO 4	CLO 16	ACE016.16
	safety factor?	known as (and used				
		interchangeably with) safety				
		factor (SF), is a term describing				
		the load carrying capacity of a				
		system beyond the expected or actual loads. Essentially, the				
		factor of safety is how much				
		stronger the system is than it				
		usually needs to be for an				
		intended load.				
5	Write any two	The following are the	Remember	CO 4	CLO 16	ACE016.16
	assumptions are	assumptions made in working				
	made in elastic	stress method:				
	theory methods.	a) At any cross-section, plane				
		sections before bending remain				
		plain after bending b) All tensile stresses are taken				
		up by reinforcement and none				
		by concrete, except as otherwise				
		specifically permitted				
6	What is the	The minimum thickness of slab	Remember	CO 4	CLO 16	ACE016.16
	minimum	used in RCC construction				
	thickness of slab?	is 150mm . But it varies				
		depending upon the type of slab				
	XX71 1 1	to be used.	D 1	GO 4	CI O 16	A CE016 16
7	What is slab	A slab is a structural element,	Remember	CO 4	CLO 16	ACE016.16
	structure?	usually made up of reinforced concrete. They help in				
		transferring the loads further to				
		beams.				
8	What is the value	Minimum reinforcement is	Remember	CO 4	CLO 16	ACE016.16
	of minimum	0.12% for HYSD bars and				700
	reinforcement in	0.15% for mild steel bars. The	- 41 -			
	a slab?	diameter of bar generally used)
		in slabs are: 6 mm, 8 mm, 10				
		mm, 12mm and 16mm. The			4	
		maximum diameter of bar used in slab should not exceed 1/8 of				
		the total thickness of slab.			100	
9	Why slabs are	Shear reinforcement is	Remember	CO 4	CLO 16	ACE016.16
	not designed for	usually not required		4		
	shear?	in slabs supported on beams or		1		
		walls because the depth is small	1 1 1			
		and the span therefore fairly	1 1 1			
		slender so bending and				
		deflection will nearly always				
10	What is a two	govern the design. When a reinforced concrete	Remember	CO 4	CLO 17	ACE016.17
10	what is a two way concrete	slab is supported by beams on	Kemember	CO 4	CLU I/	ACEUIU.I/
	slab?	all the four sides and the loads				
		are carried to the supports along				
		both directions, it is known				
		as two way slab. In two way				
		slab the ratio of longer span (l)				
4.5	TTT	to shorter span (b) is less than 2.	, i	go :	OT O 11	AGENTAL
11	What type of	A concrete mix of 1 part cement	Remember	CO 4	CLO 16	ACE016.16
	concrete is used	: 2 parts sand : 4 parts coarse				
	for slabs?	aggregate should be used for a concrete slab.				
		CONCIETE SIAU.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
12	What is the use of crank bar in slab? What is negative	Bent-up bars or known as Crank bars. Which we provide in the ends on the top of the slab or also in the top of the mid supports (if any type of mid-support is present) to counter the negative moment called (Hogging) which produce at that sections of the slabs and beams. Positive slabs are usually	Remember	CO 4	CLO 17	ACE016.17
13	bar in slab?	provided on the lower side of the slab and negative on the upper. We should know that, positive oment bars (lower bars) resist maximum moment in between the to adjacent columns, so the lap between the two steel barsshould never be provided at that point that is mid.		0		
14	Where is isolated footing used?	Pad/Isolated Footing. Isolated footings (also known as Pad or Spread footings) are commonly used for shallow foundations in order to carry and spread concentrated loads, caused for example by columns or pillars. Isolated footings can consist either of reinforced or non-reinforced material.	Remember	CO 4	CLO 16	ACE016.16
15	What is eccentric footing?	An eccentric footing is moreeconomical than a combined footing when the allowable soil pressureis relatively high and distance between the columnsis large. A spread or wall footing that also must resist a momentin addition to the axial column.	Remember	CO 4	CLO 17	ACE016.17
		UNIT-V				
1	How to estimate the design loads inworking stress method?	In working stress method, Design loads = Characteristic loads.	Remember	CO 5	CLO 19	ACE016.19
2	Write a short note on limit state of durability.	The acceptable limit for safety and serviceability requirements before failure occurs is called a limit state. The aim of design is to achieve acceptable probabilities that the structure will not become unfit for the use for which it is intended, that is, that it will not reach a limit state.	Remember	CO 5	CLO20	ACE016.20

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
3	What is partial	Factors of safety (FoS), also	Remember	CO 5	CLO 19	ACE016.19
	safety factor?	known as (and used				
		interchangeably with) safety				
		factor (SF), is a term describing				
		the load carrying capacity of a system beyond the expected or				
		actual loads. Essentially, the				
		factor of safety is how much				
		stronger the system is than it				
		usually needs to be for an				
		intended load.				
4	Write any two	 Hence the design by limit 	Remember	CO 5	CLO20	ACE016.20
	advantages of	state method is found to be				
	limit state over other methods.	more economical.	-			
	other methods.	• In the limit state method of				
		analysis, the principles of both elastic as well as				
		plastic theoriesused and				
		hence suitable for concrete				
		structures				
5	What is meant by	When the maximum stress in	Understand	CO 5	CLO 19	ACE016.19
	balanced section?	steel and concrete				
		simultaneously reach their				
		allowable values, the section is				
		said to be balanced section. In				
		this section the actual neutral				
		axis depth is equal to the critical neutral axis.				
6	what is chimney	A chimney is an architectural	Understand	CO 5	CLO20	ACE016.20
	what is chilling	ventilation structure made of	Charlana	000	CECEO	1102010.20
		masonry, clay or metal that				
		isolates hot toxic exhaust gases				
	640	or smoke produced by a boiler,	. 10			
		stove, furnace, incinerator or	4		-	
		fireplace from human living			1)
7	What is the	areas. Think of a chimney and the flue	Understand	CO 5	CLO20	ACE016.20
'	purpose of a	within it as a structure built to	Oliderstalid	CO 3	CLO20	ACE010.20
	chimney?	protect you. That is an important				
		function of all chimneys no			7	
	7	matter what kind of appliance or			No. 1	
		fireplace they serve.		6		
8	What are the	Self-supporting steel chimneys	Understand	CO 5	CLO 19	ACE016.19
	types of Steel	Guyed steel chimneys.				
	Chimney Structure	- FOR				
9	What are the	Cost effectiveness	Understand	CO 5	CLO 19	ACE016.19
7	factors	Number of units, equipment	Onder Stand	CO 3	CLO 19	ACEUIU.19
	considered for	type, and fuel type to be used.				
	selection of steel	If chimney used for boilers,				
	chimney?	consider surface area, output				
		efficiency, draft requirements.				
		Equipment operation mode				
		flue gas temperature before				
		entering the chimney and its				
		variation. Specific weight, dust quantity,				
		and data about flue gas				
		aggressiveness.				
			<u> </u>			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
10	What are	Bunkers are Shallow structures	Remember	CO 5	CLO 19	ACE016.19
	bunkers in	in which the plane of rupture of				
	structure?	the stored material meets the top				
		horizontal surface of the				
		material before meeting the				
		opposite sides of the structure.				
11	Difference	Silos are structures built for	Remember	CO 5	CLO 19	ACE016.19
	Between Bunker	storing different materials. On				
	and Silo?	the other hand, Bunkers are				
		underground dwellings,				
		normally used in war.				
		Bunkers are shallow structures.				
		Silos are tall structures.				
12	What are	Trench bunkers are small	Remember	CO 5	CLO 19	ACE016.19
	bunkers made	concrete structures, partly dug				
	of?	into the ground. Many artillery	Name of Street			
		installations, especially for				
		coastal artillery, have				
		historically been protected by				
		extensive bunker systems.				
13	With what	The bunkers and silos made of	Remember	CO 5	CLO 19	ACE016.19
	material silos	reinforced concrete have almost				
	and bunkers are	replaced the steel storage				
	made up of?	structures. Concrete bins possess				
		less maintenance and other				
		architectural qualities greater				
		than steel storage tanks.				
14	What are the	Vertical walls	Remember	CO 5	CLO 19	ACE016.19
	main structural	Hopper Bottom				
	elements that	Edge Beam (At the top level)				
	constitutes a	Supporting Columns				
	bunker					
15	What is angle of	The angle of rupture of the	Remember	CO 5	CLO 19	ACE016.19
	rupture of	material in case of bunkers, will	400			
	material in	meet the horizontal surface at)
	buker?	the top of the bin, before it				
		touches the opposite side walls			4	
		of the structure				

ON FO

Signature of the Faculty

HOD,CE