

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	AEROSPACE STRUCTURAL DYNAMICS
Course Code	:	AAE015
Program	:	B.Tech
Semester	•••	VII
Branch	:	Aeronautical Engineering
Section	:	A&B
Academic Year	:	2019 – 2020
Course Faculty	:	Dr. Y B Sudhir Sastry, Professor Mr. T. Mahesh Kumar, Assistant Professor

OBJECTIVES:

Ι	To help students to consider in depth the terminology and nomenclature used in the syllabus.
Π	To focus on the meaning of new words / terminology/nomenclature

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
		UNIT-I				
1	Amplitude	The maximum displacement of a vibrating body from its equilibrium position is called the amplitude of vibration.	Remember	CO 1	CLO 1	AAE015.01
2	Displacement	Amount of movement from one point to another. E.g. I just walked 100 meters.	Remember	CO 1	CLO 1	AAE015.01
3	Velocity	The rate of movement, E.g. I moved the 100 meters in 10 seconds	Remember	CO 1	CLO 1	AAE015.01
4	Acceleration	The rate of change of velocity. E.g. The car has the capability to go from 0 mph to 100 mph in 8 Seconds.	Remember	CO 1	CLO 1	AAE015.01
5	Frequency:	Denoting how often something occurs, the same thing applies in vibration too. This denotes how frequently something occurs. For example, made to appear at regular intervals based on their relative motion.	Remember	CO 1	CLO 2	AAE015.02
6	What is Hertz	The Hz denotes Hertz, the unit for frequency	Remember	CO 1	CLO 2	AAE015.02

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
7	Time Domain	To say in a graph with Time in the X –	Remember	CO 1	CLO2	AAE015.02
		Axis and Amplitude in the Y – Axis.				
		You can assume the amplitude to be				
		for example the amount of height a				
		body jumps due to vibration				
8	Cycle.	The movement of a vibrating body	Remember	CO 1	CLO 2	AAE015.02
		from its undisturbed or equilibrium				
		position to its extreme position in one				
		direction, then to the equilibrium				
		position, then to its extreme position in				
		the other direction, and back to				
		equilibrium position is called a cycle				
		of vibration.				
9	Period of oscillation.	The time taken to complete one cycle	Understand	CO 1	CLO 3	AAE015.03
		of motion is known as the period of				
		oscillation $\tau = 2 \pi / \omega$				
		Time period and is denoted by τ				
		Rotate through an angle of 2π				
		The circular frequency ω				
10	Frequency of	The number of cycles per unit time is	Understand	CO 1	CLO 3	AAE015.03
	oscillation.	called the frequency of oscillation				
11	synchronous	Consider two vibratory motions	Understand	CO 1	CLO 3	AAE015.03
		denoted by $x1 = A1 \sin \omega t$				
		$x2 = A2 \sin(\omega t + \varphi)$		-		
		The two harmonic motions given by				
		above Eqs. are called synchronous	_			
12	Phase angle	Consider two vibratory motions	Remember	CO 1	CLO 4	AAE015.04
	6	denoted by $x1 = A1 \sin \omega t$			-	
		$x2 = A2 \sin(\omega t + \varphi)$				
	C 1	The two harmonic motions given by		1.00		
		above Eqs. are called synchronous		~		
		Because they have the same frequency	1	1		
		or angular velocity, Two synchronous		Sec. 1		
		oscillations need not have the same	10			
		amplitude, and they need not attain	L			
		their maximum values at the same				
		time, the second vector leads the first				
		one by an angle known as the phase				
		angle.				
13	Natural frequency.	If a system, after an initial disturbance,	Remember	CO 1	CLO 4	AAE015.04
		is left to vibrate on its own, the				
		frequency with which it oscillates				
		without external forces is known as its				
		natural frequency.				

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
14	Octave	When the maximum value of a range of frequency is twice its minimum value it is known as an octave hand	Remember	CO 1	CLO 4	AAE015.04
15	Decibel	The various quantities encountered in the field of vibration and sound (such as displacement, velocity, acceleration, pressure, and power) are often represented using the notation of decibel.	Remember	CO 1	CLO 4	AAE015.04
		UNIT - II				
1	Resonance	Whenever the natural frequency of vibration of a machine or structure coincides with the frequency of the external excitation, there occurs a phenomenon known as resonance	Remember	CO 2	CLO 5	AAE015.05
2	vibration or oscillation	Any motion that repeats itself after an interval of time is called vibration or oscillation	Remember	CO 2	CLO 5	AAE015.05
3	generalized coordinates	The coordinates necessary to describe the motion of a system constitute a set of generalized coordinates. These are usually denoted as and may represent Cartesian and/or non-Cartesian coordinates	Remember	CO 2	CLO 5	AAE015.05
4	discrete or lumped parameter systems	Systems with a finite number of degrees of freedom are called discrete or lumped parameter systems	Remember	CO 2	CLO 5	AAE015.05
5	continuous or distributed systems	Systems with a finite number of degrees of freedom are called discrete or lumped parameter systems, and those with an infinite number of degrees of freedom are called continuous or distributed systems	Remember	CO 2	CLO 6	AAE015.06
6	Free Vibration.	If a system, after an initial disturbance, is left to vibrate on its own, the ensuing vibration is known as free vibration. No external force acts on the system. The oscillation of a simple pendulum is an example of free vibration.	Remember	CO 2	CLO 6	AAE015.06
7	Forced Vibration.	If a system is subjected to an external force (often, a repeating type of force), the resulting vibration is known as forced vibration.	Remember	CO 2	CLO 6	AAE015.06
8	When resonance will occur	If the frequency of the external force coincides with one of the natural	Remember	CO 2	CLO 6	AAE015.06

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
		frequencies of the system, a condition				
		known as resonance occurs.				
9	undamped vibration	If no energy is lost or dissipated in	Understand	CO 2	CLO 6	AAE015.06
		friction or other resistance during				
		oscillation, the vibration is known as				
		undamped vibration.				
10	Damped vibration.	If any energy is lost in this way,	Remember	CO 2	CLO 7	AAE015.07
		however, it is called damped vibration.				
11	linear vibration	If all the basic components of a	Remember	CO 2	CLO 7	AAE015.07
		vibratory system the spring, the mass,		-		
		and the damper behave linearly, the				
		resulting vibration is known as linear				
		vibration.				
12	nonlinear vibration	. If, however, any of the basic	Understand	CO 2	CLO 7	AAE015.07
		components behave nonlinearly, the				
		vibration is called nonlinear vibration.				
13	deterministic	If the value or magnitude of the	Understand	CO 2	CLO 7	AAE015.07
		excitation (force or motion) acting on				
		a vibratory system is known at any				
		given time, the excitation is called				
		deterministic.				
14	deterministic	If the value or magnitude of the	Remember	CO 2	CLO 8	AAE015.08
	vibration	excitation (force or motion) acting on				
		a vibratory system is known at any				
	100	given time, the excitation is called			-	
	-	deterministic. The resulting vibration			_	
	0	is known as deterministic vibration.			0	
15	random vibration	If the excitation is random, the	Understand	CO 2	CLO 8	AAE015.08
	0	resulting vibration is called random	11			
		vibration		1.0		
		UNIT - III				
1	Spring constant or	A spring is said to be linear if the	Remember	CO 3	CLO 9	AAE015.09
	spring stiffness or	elongation or reduction in length x is	1.0			
	spring rate.	related to the applied force F as $F = kx$	1.1			
		Where k is a constant, known as the				
		spring constant or spring stiffness or				
		spring rate.				
2	Damping	The mechanism by which the	Remember	CO 3	CLO 9	AAE015.09
		vibrational energy is gradually				
		converted into heat or sound is known				
		as damping.				
3	Viscous damping	In viscous damping, the damping force	Remember	CO 3	CLO 9	AAE015.09
		is proportional to the velocity of the				
		vibrating body.				

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
4	Coulomb or Dry-	The damping force is constant in	Remember	CO 3	CLO 10	AAE015.10
	Friction Damping.	magnitude but opposite in direction to				
		that of the motion of the vibrating				
		body. It is caused by friction between				
		rubbing surfaces that either are dry or				
		have insufficient lubrication.				
5	Material or Solid or	When a material is deformed, energy	Remember	CO 3	CLO 10	AAE015.10
	Hysteretic Damping.	is absorbed and dissipated by the				
		material. The effect is due to friction				
		between the internal planes, which slip				
		or slide as the deformations take place.				
6	Periodic motion.	Oscillatory motion may repeat itself	Remember	CO 3	CLO 10	AAE015.10
		regularly, as in the case of a simple			-	
		pendulum, or it may display				
		considerable irregularity, as in the case				
		of ground motion during an				
		earthquake. If the motion is repeated				
		after equal intervals of time, it is called				
		periodic motion.				
7	Harmonic motion	The simplest type of periodic motion	Remember	CO 3	CLO 10	AAE015.10
		is harmonic motion.				
8	Simple harmonic	It can be seen that the acceleration is	Remember	CO 3	CLO 10	AAE015.10
	motion	directly proportional to the				
		displacement. Such a vibration, with				
		the acceleration proportional to the		1.1		
		displacement and directed toward the	_		-	
	0	mean position, is known as simple	_	V	0	
	6	harmonic motion.				
9	Torsional vibration	If a rigid body oscillates about a	Remember	CO 3	CLO 11	AAE015.11
		specific reference axis, the resulting		1.00		
		motion is called torsional vibration.		~	1	
10	Orthogonality	As the number of degrees of freedom	Remember	CO 3	CLO 11	AAE015.11
		increases, the solution of the	- 0	100		
		characteristic equation becomes more	10			
		complex. The mode shapes exhibit a	L			
		property known as orthogonality.				
11	Proportional	The solution of forced-vibration	Remember	CO 3	CLO 11	AAE015.11
	damping.	problems associated with viscously				
		damped systems can also be found				
		conveniently by using a concept called				
		proportional damping.				
12	lumped-parameter	The lumped masses are assumed to be	Remember	CO 3	CLO 12	AAE015.12
	or lumped-mass or	connected by massless elastic and				
	discrete-mass	damping members. Linear (or angular)				
	systems	coordinates are used to describe the				
		motion of the lumped masses (or rigid				

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
		bodies). Such models are called				
		lumped-parameter or lumped-mass or				
		discrete-mass systems				
13	Finite element	Method of approximating a	Remember	CO 3	CLO 12	AAE015.12
	method	continuous system as a multi degree-				
		of freedom system involves replacing				
		the geometry of the system by a large				
		number of small elements. By				
		assuming a simple solution within				
		each element, the principles of				
		compatibility and equilibrium are used				
		to find an approximate solution to the				
		original system. This method, known				
		as the finite element method.				
14	Influence	The equations of motion of a	Remember	CO 3	CLO 12	AAE015.12
	coefficients	multidegree-of-freedom system can				
		also be written in terms of influence	1			
		coefficients, which are extensively				
		used in structural engineering.				
		Basically, one set of influence				
		coefficients can be associated with				
		each of the matrices involved in the				
		equations of motion.				
15	Flexibility influence	The influence coefficients	Remember	CO 3	CLO 12	AAE015.12
	coefficients	corresponding to the inverse stiffness				
		matrix are called the flexibility	_			
	0	influence coefficients.		7	0	
		UNIT - IV				
1	Nodes	The points at which w _n =0for all times	Remember	CO 4	CLO 13	AAE015.13
		are called nodes.				
2	Euler-Bernoulli or	From the elementary theory of	Remember	CO 4	CLO 13	AAE015.13
	thin beam theory	bending of beams.		6		
3	Thick beam theory	If the cross-sectional dimensions are	Remember	CO 4	CLO 13	AAE015.13
	or Timoshenko	not small compared to the length of the	1.1			
	beam theory	beam, we need to consider the effects				
		of rotary inertia and shear				
		deformation. Is known as the thick				
		beam theory or Timoshenko beam				
		theory.				
4	Timoshenko s shear	Where G denotes the modulus of	Remember	CO 4	CLO 13	AAE015.13
	coefficient	rigidity of the material of the beam and				
		k is a constant, also known as				
		Timoshenko s shear coefficient.				
5	Rayleigh-Ritz	Based on Rayleigh s quotient, for	Remember	CO 4	CLO 13	AAE015.13
	method	finding the approximate fundamental				

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code	
		frequencies of continuous systems is outlined. The extension of the method, known as the Rayleigh-Ritz method.					
6	Distributed or	Systems where mass, damping, and	Remember	CO 4	CLO 13	AAE015.13	
	continuous systems	elasticity were assumed to be present					
		only at certain discrete points in the					
		system. In many cases, known as					
		distributed or continuous systems.					
7	System of infinite	A continuous system is also called a	Remember	CO 4	CLO 14	AAE015.14	
	degrees of freedom	system of infinite degrees of freedom.		-			
8	Wave equation	$a^2 \frac{\partial^2 w}{\partial x^2} = \frac{\partial^2 w}{\partial x^2}$	Remember	CO 4	CLO 14	AAE015.14	
	-	The Equation $\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial t^2}$ is also					
		known as the wave equation.					
9	Frequency or	$\sin\frac{\omega l}{\omega} = 0$	Remember	CO 4	CLO 14	AAE015.14	
	characteristic	Equation c is called the					
10	equation	frequency of characteristic equation.	D	GO -			
10	Eigenvalues	Equation $\sin \frac{\omega_i}{c} = 0$ is called the	Remember	CO 4	CLO 15	AAE015.15	
		frequency or characteristic equation					
		and is satisfied by several values of ω					
		The values of ω are called the					
		eigenvalues (or natural frequencies or	-				
		characteristic values) of the problem					
11	Fundamental mode	The mode corresponding to $n = 1$ is	Remember	COA	CLO 15	A A E 015 15	
11	i undamentar mode	The mode corresponding to $n = 1$ is called the fundamental mode	Remember	04	CLO 15	AAL015.15	
12	Fundamental	The mode corresponding to $n = 1$ is	Pomombor	COA	CLO 16	A AE015 16	
12	frequency	The mode corresponding to $n = 1$ is	Kemember	004	CLO IO	AAL015.10	
	nequency.	caned the fundamental mode, and ω_1	_		0		
12	Moda superposition	The colution given by Eq.	Pamambar	COA	CLO 17	A AE015 17	
15	method	The solution given by Eq. ∞	Kemenneen	004		AAE015.17	
	method	$w(x, t) = \sum_{n=1}^{\infty} w_n(x, t)$					
		∞ nav[noat noat]					
		$=\sum_{n=1}^{\infty}\sin\frac{n\pi x}{l}\left[C_n\cos\frac{n\pi n}{l}+D_n\sin\frac{n\pi n}{l}\right]$		Q			
		can be identified as the mode		1.00			
		superposition method.		1 C			
14	Torsional stiffness	Where G is the shear modulus and	Remember	CO 4	CLO 17	AAE015.17	
		GJ(x) is the torsional stiffness.					
				ļ			
	UNIT - V						
1	Aeroelasticity	The term used to denote the field of study	Remember	CO 5	CLO 19	AAE015.19	
		concerned with the interaction between the					
		deformation of an elastic structure in an					
		force					
2	Classical	The theory provide a prediction of the	Remember	COF	CL O 10	A AF015 10	
2	aerodynamic theory	forces acting on a body of a given shape	Kentenittei		CLU 19	MAL013.17	
3	Elasticity in	Provides a prediction of the shape of an	Remember	CO 5	CLO 19	AAE015.19	
-	Aeroelasticity	elastic body under a given load.					

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
4	Dynamics in Aeroelasticity	Introduces the effects of inertial forces	Remember	CO 5	CLO 19	AAE015.19
5	Structural dynamics deals with	Between elasticity and dynamics	Remember	CO 5	CLO 19	AAE015.19
6	Static aeroelasticity deals with	Between aerodynamics and elasticity	Understand	CO 5	CLO 19	AAE015.19
7	Dynamic aeroelasticity deals with	Among elasticity, dynamics and aerodynamics	Remember	CO 5	CLO 19	AAE015.19
8	Torsional divergence phenomena	A major factor in the predominance of the biplane design until the early 1930s when "stressed skin" metallic structural configurations were introduced to provide adequate torsional stiffness for monoplanes	Remember	CO 5	CLO 19	AAE015.19
9	Structural dynamics	To describe the dynamic behavior of conventional aircraft.	Understand	CO 5	CLO 20	AAE015.20
10	Aeroelastic flutter	Which is associated with dynamic aeroelastic instabilities due to the mutual interaction of aerodynamic, elastic and inertial forces.	Remember	CO 5	CLO 20	AAE015.20

LIBER

Signature of the Fa<mark>culty</mark>

CATION F

Signature of HOD