TARE NO. LINE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING
Course Code	:	AEEB04
Program	:	B.Tech
Semester	:	II
Branch	:	Mechanical Engineering
Section	:	A & B
Course Faculty	:	Ms. B. Manogna, Assistant Professor Ms. B. Navothna, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:					
I	Understand Kirchhoff laws and their application in series and parallel circuits.					
II	Discuss principle and operation of measuring instruments.					
III	Analyze the characteristics of alternating quantities, electrical machines.					
IV	Illustrate the V-I characteristics of various diodes and bi-polar junction transistor.					

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE	·I			
1	Define Inductance.	The property of a conductor by which a change in current flowing through it induces a voltage in both the conductor itself (self-inductance) and in any nearby conductors (mutual inductance). Measured in Henry (H).	Remember	CO 1	CLO 1	AEEB04.01
2	Define Capacitance.	The ability of a body to store an electrical charge. Measured in Farads as the ratio of the electric charge of the object (Q, measured in Coulombs) to the voltage across the object (V, measured in Volts).	Remember	CO 1	CLO 1	AEEB04.01
3	Define Ampere-Hour (Ah).	A unit of measure for battery capacity. It is obtained by multiplying the current (in amperes) by the time (in hours) during which current flows.	Remember	CO 1	CLO 1	AEEB04.01
4	What is Conductor?	Any material where electric current can flow freely. Conductive materials, such as	Remember	CO 1	CLO 1	AEEB04.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		metals, have a relatively low resistance. Copper and aluminum wire are the most common conductors.				
5	What is a Wattmeter?	The wattmeter is an instrument for measuring the electric power in Watts of any given circuit.	Remember	CO 1	CLO 1	AEEB04.01
6	What is an Inductor?	A coil of wire wrapped around an iron core. The inductance is directly proportional to the number of turns in the coil.	Remember	CO 1	CLO 1	AEEB04.01
7	Define Electromotive Force (EMF)	A difference in potential that tends to give rise to an electric current. Measured in Volts.	Remember	CO 1	CLO 1	AEEB04.01
8	What is a measuring instrument?	Devices that are used for measuring, indicating, controlling, and recording can be considered as an instrument.	Remember	CO 1	CLO 4	AEEB04.04
9	What is working principle Moving-Iron (MI) Instruments?	These are generally used to measure alternating voltages and currents. In moving-iron instruments the movable system consists of one or more pieces of specially-shaped soft iron, which are so pivoted as to be acted upon by the magnetic field produced by the current in coil.	Remember	CO 1	CLO 4	AEEB04.04
10	What is working principle Moving-Coil(MC) Instruments?	When a current carrying conductor is placed in a magnetic field, it experiences a force and tends to move in the direction as per Fleming's left-hand rule.	Remember	CO 1	CLO 4	AEEB04.04
11	Explain Fleming's left- hand rule.	If the first and the second finger and the thumb of the left hand are held so that they are at right angle to each other, then the thumb shows the direction of the force on the conductor, the first finger points towards the direction of the magnetic field and the second finger shows the direction of the current in the wire.	Remember	CO 1	CLO 4	AEEB04.04
12	What are advantages & disadvantages of MC instruments?	Advantages: i) The MC consumes less power and has great accuracy. ii) It has efficient damping characteristics and is not affected by stray magnetic field.	Understand	CO 1	CLO 4	AEEB04.04

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		Disadvantages: i) Moving coil instrument can only be used on DC supply as the reversal of current produces a reversal of torque on the coil. ii) It's costly as compared to moving iron instruments.				
13	What are advantages & disadvantages of MC instruments?	Advantages: i) The MC consumes less power and has great accuracy. ii) It has efficient damping characteristics and is not affected by stray magnetic field.	Remember	CO 1	CLO 4	AEEB04.04
		Disadvantages: i) Moving coil instrument can only be used on DC supply as the reversal of current produces a reversal of torque on the coil. ii) It's costly as compared to moving iron instruments.				
14	What are advantages & disadvantages of MI instruments?	Advantages: i)The moving iron instruments are cheap, robust and simple in construction. ii) These instruments can be used on both AC and DC. Disadvantages: i) The moving	Remember	CO 1	CLO 4	AEEB04.04
	E0.	iron instruments have non- uniform scale; crowded at the beginning, therefore, accurate readings are not possible at this end. ii) These instruments are not very sensitive.	2	3		110
15	Define electric current.	Electrical current is the flow of electrons from higher electric potential towards the lower electric potential.	Remember	CO 1	CLO 1	AEEB04.01
16	Define voltage.	The potential difference between two points in an electric circuit called voltage.	Remember	CO 1	CLO 1	AEEB04.01
17	Define power.	The rate of doing work by electrical energy per unit time is called the power.	Remember	CO 1	CLO 1	AEEB04.01
18	Define resistance.	Resistance is the property of a substance, which opposes the flow of electric current.	Remember	CO 1	CLO 1	AEEB04.01
19	State Kirchhoff's laws.	Kirchhoff's current law: The sum of currents flowing towards the junction is equal to the sum of the currents flowing away from it. Kirchhoff's voltage law: In a closed circuit, the sum of the potential drops is equal to the sum of the potential rises.	Understand	CO 1	CLO 1	AEEB04.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
20	Explain about the series and parallel circuits.	When the resistors connected in a circuit such that the current flowing through them is same is called as series circuit.	Understand	CO 1	CLO 2	AEEB04.02
		When resistors are connected across one another so that same voltage applied to each,				
		then they are said to be in parallel the circuit is called as parallel circuit.				
21	State Ohm's law.	When temperature remains constant, current flowing through a circuit is directly	Understand	CO 1	CLO 1	AEEB04.01
	(proportional to potential deference across the conductor. V= I*R (Volts)				
22	Explain the Faraday's first law of electromagnetic induction.	Faraday's first Law of electromagnetic Induction state that whenever a conductor are placed in a varying magnetic field electromotive force(emf) are induced which is	Understand	CO 1	CLO 4	AEEB04.04
22		called induced electromotive force(emf), if the conductor circuit are closed current are also induced which is called induced current.		G0.1	GY O. 4	APPROACA
23	Explain the Faraday's second law of electromagnetic induction.	Faraday's second law of electromagnetic induction states that, the magnitude of induced electromotive force is equal to the rate of change of	Understand	CO 1	CLO 4	AEEB04.04
	0	flux linkages with the coil. The flux linkages is the product of number of turns and the flux associated with the coil.	1	3	0/	
24	Explain about measuring instruments.	A measuring instrument is a device for measuring a physical quantity. In the physical sciences, quality assurance, and engineering,	Understand	CO 1	CLO 4	AEEB04.04
		measurement is the activity of obtaining and comparing physical quantities of real- world objects and events	118	, "		
25	Mention the basic requirements of measurement.	The basic requirements of measurement are 1. The standard used for comparison purpose must be accurately defined and should be commonly accepted. 2. The apparatus used and the method adopted must be provable.	Understand	CO 1	CLO 4	AEEB04.04
26	Define calibration.	Calibration is defined as the process by which comparing the instrument with a standard to correct the accuracy.		CO 1	CLO 4	AEEB04.04

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
27	Why calibration of instrument is important?	The calibration of all instruments is important since it affords the opportunity to check the instrument against a known standard and subsequently to errors in accuracy.	Understand	CO 1	CLO 4	AEEB04.04
28	List the functional elements of the measurement systems.	The three main functional elements of the measurement systems are: 1. Primary sensing element 2. Variable conversion element 3. Data presentation element	Remember	CO 1	CLO 4	AEEB04.04
29	Mention the functions performed by the measurement system.	The functions performed by the measurement system are 1. Indicating function 2. Recording function 3. Controlling function	Understand	CO 1	CLO 4	AEEB04.04
		MODULE-	п			
1	What is a Generator?	A device which converts mechanical energy into electrical energy.	Remember	CO 2	CLO 5	AEEB04.05
2	Explain working principle of a DC generator	According to Farady's laws of electromagnetic induction, whenever a moving conductor is placed in a magnetic field, an EMF (electromotive force) gets induced in the conductor.	Understand	CO 2	CLO 5	AEEB04.05
3	What are the main parts of a D.C machine?	Main Parts of DC machine: i) Armature, consists of conductors ii) Field Circuit, provides magnetic field.	Remember	CO 2	CLO 6	AEEB04.06
4	What are types of D.C generator?	Types: i) Separately excited DC generator and ii) Self-excited DC generator.	Remember	CO 2	CLO 7	AEEB04.07
5	What is meant by EMF of a DC machine?	As the armature rotates, a voltage is generated in its coils. In the case of a generator, the EMF of rotation is called the Generated EMF or Armature EMF and is denoted as Er = Eg. In the case of a motor, the EMF of rotation is known as Back EMF or Counter EMF and represented as Er = Eb.	Remember	CO 2	CLO 8	AEEB04.08
6	What is motor and what is the working principle of a DC motor?	A motor is an electrical machine which converts electrical energy into mechanical energy. The principle of working of a DC motor is that "whenever a current carrying conductor is placed in a magnetic field, it experiences a mechanical force".	Remember	CO 2	CLO 5	AEEB04.05

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
7	Explain about	The torque equation of DC	Understand	CO 2	CLO 9	AEEB04.09
	torque equation	motor varies with only flux φ				
-	of a DC motor.	and armature current I _a .	D 1	GO 2	CT O 7	4 EED 0 4 07
8	Mention about the classification	Each DC machine can act as a		CO 2	CLO 7	AEEB04.07
	of DC machines.	generator or a motor. Hence, this classification is valid for both:				
	of DC machines.	DC generators and DC motors.				
		DC machines are usually				
		classified on the basis of their				
		field excitation method. This				
		makes two broad categories of dc				
		machines; i) Separately excited and ii) Self-excited.				
9	What are the	Direct Current (DC) motors are	Remember	CO 2	CLO 5	AEEB04.05
	applications of	very commonly used as	Remember	662	CLOS	TILLEDO 1.05
	DC motors?	variable speed drives and in				
		applications where severe				
10	Why do we need	torque variations occur. Starters are used to protect DC	Understand	CO 2	CLO 6	AEEB04.06
10	starter to start a	motors from damage that can	Understand	CO 2	CLO 6	ALEDU4.00
	DC motor?	be caused by very high current				
		and torque during startup. They				
		do this by providing external				
		resistance to the				
		motor, which is connected in series to the motor's armature				
		winding and restricts the				
		current to an acceptable level.				
11	What is the main	In an AC generator the field is	Understand	CO 2	CLO 6	AEEB04.06
	difference	rotating and the armature is				
	between an AC	stationary whereas in DC				
	generator and DC generator?	generator the field is stationary and the armature is rotating.				to the same of
12	Define electric	An electrical machine, which	Remember	CO 2	CLO 5	AEEB04.05
	motor.	converts electrical energy into				
		mechanical energy, is				-
13	What is meant by	called as electric motor. It is the effect of armature	Understand	CO 2	CLO 6	AEEB04.06
13	armature reaction?	magnetic field on the	Understand	CO 2	CLO 0	AEEDU4.00
	urmature reaction.	distribution of flux under main			100	
	~	poles of a generator.		- 0		
		The armature magnetic field		4		
		has two effects	- 0			
		1. It demagnetizes or weakens the main flux	1 17	1		
		2. It cross-magnetizes or	1			
		distorts it.				
14	What is the use	A device is used in a DC	Understand	CO 2	CLO 6	AEEB04.06
	of commutator?	generator to convert the alternating electromotive				
		force(emf)				
		into unidirectional electromotive				
		force(emf) is called commutator.				
15	State that the	The rules states that outstretch	Understand	CO 2	CLO 5	AEEB04.05
	Fleming's left hand rule.	the three fingers of the left hand				
	nanu tuie.	namely the first finger, middle finger and thumb such that they				
		are mutually perpendicular to				
		each other. Now point the first				
		finger in the direction of				
		magnetic field and the middle				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		finger in the direction of the current then the thumb gives the				
		direction of the force				
		experienced by				
		the conductor				
16	Define Lenz's law.	Lenz's law states the direction of induced emf is always so as	Remember	CO 2	CLO 5	AEEB04.05
	iaw.	to oppose the cause				
		producing it				
17	Explain the	To restrict high starting	Understand	CO 2	CLO 6	AEEB04.06
	necessity of starter.	armature current, a variable resistance is connected in series				
	starter.	with the e armature at start. This				
		resistance is called starter			1	
18	What is meant by	Without actually loading the	Understand	CO ₂	CLO 7	AEEB04.07
	Swinburne's test?	motor the losses and hence efficiency at different loads	Name of Street		1	
		can be found out.				
19	What is meant	Practically though the generator	Understand	CO 2	CLO 5	AEEB04.05
	by residual	is not working, without any current through field				
	magnetism?	winding, the field poles				
		posses some magnetic				
		flux. This is called as				
20	Explain the back	residual magnetism. When the armature of a DC	Understand	CO 2	CLO 8	AEEB04.08
20	emf or counter	motor rotates under the	Officerstand	CO 2	CLO 8	ALLED04.08
	emf.	influence of the driving torque,				
		the armature conductors move				
		through the magnetic field and hence e.m.f. is induced in them				
		as in a generator. The induced				
		e.m.f. acts in opposite direction				-
	644	to the applied	- 31 -			
	0	voltage V (Lenz's law) and in known as back or counter emf				5
		(E_b) . It is always less than the				
		applied voltage V, although this			4	
	0	difference is small when the				
	-9	motor is running under normal conditions.			1	
21	Why series	Series motor cannot be started	Remember	CO 2	CLO 6	AEEB04.06
	motor cannot be	without load because of high		×.		:
	started on no-	starting torque. Series motor are				
22	load? Which type of	used in Trains, Crane DC series motor is used in the	Remember	CO 2	CLO 6	AEEB04.06
22	motor is used in	trains to get high starting torque	Kemember	CO 2	CLU	ALLDU4.00
	trains?	while starting of the trains.				
23	How can you	We can reverse the direction of	Remember	CO 2	CLO 5	AEEB04.05
	reverse the direction of	rotation of a DC motor by either reversing the field current or				
	rotation of a DC	armature current. If both the				
	Motor?	currents are reversed the motor				
24	E-mlain di	will run in original direction.	TIm down 1	CO 2	CI O Z	AEED04.07
24	Explain the different tests	1. Brake test2. Swinburne's test or No-load	Understand	CO 2	CLO 7	AEEB04.07
	conducted on DC	test				
	Machines.	3. Regeneration test or				
		Hopkinson's test				
		4. Retardation or Running down test				
		1001	1		l	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code			
25	Mention the	Star delta starter Auto	Remember	CO 2	CLO 13	AEEB04.13			
	methods for	transformer starter Resistance							
	starting an	starter Series reactor starter							
	induction motor?	Direct online starter (DOL)							
	MODULE-III								
1	What is an	An electric current that reverses	Remember	CO 3	CLO 10	AEEB04.10			
	Alternating	its direction many times a second							
	Current	at regular intervals.							
2	(AC)?	The ratio of the actual electrical	Remember	CO 3	CLO 10	AEEB04.10			
2	Define Power	power dissipated by an AC	Remember	CO 3	CLO 10	ALLDO4.10			
	Factor.	circuit to the product of the							
		r.m.s. values of current and							
	D. C.	voltage.	-	GO 4	GI O 10	A EEE DO 4 10			
3	Define Average value	The average value is defined as "the average of all instantaneous	Remember	CO 3	CLO 10	AEEB04.10			
	of an AC	values during one alternation".							
	signal.	That is, the ratio of the sum of							
	<u> </u>	all considered instantaneous							
		values to the							
		number of instantaneous							
		values in one alternation period. Whereas the average							
		value for the entire cycle of							
		alternating quantity is zero.							
4	Define RMS	The Root Mean Square	Remember	CO 3	CLO 10	AEEB04.10			
	value of an	(RMS) value is "the square							
	AC signal.	root of the sum of squares of							
		means of an alternating quantity".							
		It can also express as "the							
		effect that produced by a							
		certain input of AC quantity	4						
		which is equivalent to an			· 1	2			
		effect produced by the equal							
5	Define a	input of D.C quantity". A transformer consists of two	Remember	CO 3	CLO 14	AEEB04.14			
	Transformer.	electrically isolated coils and	Remember	CO 3	CLO 14	ALLDO4.14			
	-427	operates on Faraday's principal			18.				
		of "electromagnetic mutual			*				
		induction", in which an EMF is		V.					
		induced in the transformers							
		secondary coil by the magnetic flux generated by the voltages	1 11						
		and currents flowing in the							
		primary coil winding.							
6	How an EMF is	Actually in electrical power	Remember	CO 3	CLO 14	AEEB04.14			
	induced in a	transformer, one alternating							
	transformer?	electrical source is applied to the							
		primary winding and due to this, magnetizing current flowing							
		through the primary winding							
		which produces alternating flux							
		in the core of transformer. This							
		flux links with both primary and							
		secondary windings. As this							
		flux is alternating in nature, there must							
		be a rate of change of flux.							
		or thange of flux.	ı		ı				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		According to Faraday's law of				
		electromagnetic induction if any				
		coil or conductor links with any				
		changing flux, there must be an induced EMF in it.				
7	What are the	In any electrical machine, 'loss'	Remember	CO 3	CLO 14	AEEB04.014
,	losses in a	can be defined as the difference	Kemember	CO 3	CLO 14	ALED04.014
	transformer?	between input power and				
		output power. An electrical				
		transformer is a static device,				
		hence mechanical losses (like				
		windage or friction losses) are				
		absent in it. A transformer only				
		consists of				
		electrical losses (iron losses and				
0	Elain abant	copper losses).	TT. 1	CO 2	OI O 12	AEED04 012
8	Explain about working	In a D.C motor, supply is needed to be given for the	Understand	CO 3	CLO 13	AEEB04.013
	principle of	stator winding as well as the				
	three-phase	rotor winding. But in an				
	Induction motor.	induction motor only the stator				
		winding is fed with an AC				
		supply.				
		Alternating flux is produced				
		around the stator winding				
		due to AC supply. This				
		alternating flux revolves with				
		synchronous speed. The revolving flux is called as				
		"Rotating Magnetic Field"				
		(RMF).				
		The relative speed between				
		stator RMF and rotor				700
		conductors causes an induced	- //			
		EMF in the rotor conductors,	. 10			
		according to the Faraday's law				
		of electromagnetic induction.			4	
		The rotor conductors are short circuited, and hence rotor				
		current is produced due to			700	
		induced EMF. That is why such				
		motors are called as induction				
		motors. (This action is same as		1		
		that occurs in transformers,	1. 1. 1.			
		hence induction motors can be				
0	What a == 41-	called as rotating transformers.)	Doggo1	CO 2	CI O 12	AEEDO4 12
9	What are the applications of	Three-phase A.C induction motors are widely used in	Remember	CO 3	CLO 13	AEEB04.13
	three-phase AC	industrial and commercial				
	induction motor?	applications. These are of two				
		types, squirrel cage and slip				
		ring motors. Squirrel cage				
		motors are widely used due to				
		their rugged construction and				
		simple design. Slip ring motors				
		require external resistors to				
10	What is working	have high starting torque. The machine which produces 3	Remember	CO 3	CLO 12	AEEB04.12
10	principle of	phase power from mechanical	Remember	CO 3	CLO 12	ALEDU4.12
	Alternator?	power is called an alternator or				
		Format is carried an antennator of	ı		1	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		synchronous generator. The working of an alternator is based on the principle that when the flux linking a conductor changes, an emf is induced in the conductor.				
11	What do you understand by ω?	Each cycle of a sinusoidal wave spans 2π radians. Hence, if this quantity is divided by the time period, angular velocity of the sinusoidal wave is obtained. It is denoted by ω and is expressed in radians per second	Understand	CO 3	CLO 10	AEEB04.010
12	Why the RMS value of an alternating current or voltage is used to denote its amplitude?	RMS value of an alternating current or voltage is used to denote its amplitude because it is related to the power developed in a resistance by the alternating current or voltage.	Understand	CO 3	CLO 10	AEEB04.010
13	Define effective value of an sinusoidal wave.	The effective value of an alternating current is given by that steady current which when flows through a given resistance for a given time produces the same amount of heat as when the alternating current is flowing through the same resistance for the same time	Remember	CO 3	CLO 10	AEEB04.010
		duration.	- 11 -			
14	Explain the significance of form factor.	Form factor is a mean of relating the mean value with the effective value of alternating quantity and it is useful in determination of effective values of the alternating quantities whose mean or average values over half a period can be determined conveniently.	Understand	CO 3	CLO 10	AEEB04.010
15	Explain the significance of peak factor.	Peak factor of an alternating voltage is very essential in connection with determining the dielectric strength since the dielectric stress developed in an insulting material is proportional to the peak value of the voltage applied to it.	Understand	CO 3	CLO 11	AEEB04.011
16	Define phase and phase difference.	The phase of an alternating quantity (voltage or current) at any instant is defined as the fractional part of a cycle through which the quantity has advanced while the phase	Remember	CO 3	CLO 10	AEEB04.10

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		difference may be defined as the angular displacement between the maximum				
		positive values of the two				
		phasor's representation the				
		two quantities having the same frequency.				
17	Why are	Copper losses (I ² R) depend on	Understand	CO 2	CLO 14	AEEB04.14
	transformers	current which passing through				
	rated in KVA?	transformer winding while				
		Iron losses or core losses or Insulation losses depend on				
		Voltage. That's why the				
		transformer rating may be				
		expressed in VA or kVA, not in W or kW.			,	
18	Explain if DC	If DC supply is given to the	Understand	CO 3	CLO 14	AEEB04.14
	supply is app <mark>lied</mark>	primary of Transformer then				
	to the	DC current flows through				
	transformer.	primary winding which is constant(time invariant). For				
		production of emf in any				
		winding the current flowing				
		through that must be sinusoidal since				
		$e=L^*(dI/dt)$.So in the given				
		case ie, for DC input, no emf				
10	XX H	produced in primary winding.	XX 1 1	GO 2	CV 0 12	A EEED 0.4.1.2
19	Why an induction motor	An induction motor is sometimes called a rotating	Understand	CO 3	CLO 13	AEEB04.13
	sometimes called	transformer because the stator				
	rotating	(stationary part) is essentially				
	transformer?	the primary side of the transformer and the rotor	. 11 -			
	0	(rotating part) is the secondary	-		-	
		side.			_	
20	Define slip.	This difference between the	Remember	CO 3	CLO 11	AEEB04.11
20	Define stip.	speed of the rotor and speed of	Kemember	CO 3	CLO 11	ALLED04.11
	-0	the rotating magnetic field in			1	
		the stator is called slip. It is unit less and is the ratio between the				
		relative speed of the		~.		
		magnetic field as seen by the	11			
		rotor to the speed of the	1			
		rotating field. Due to this an induction motor is sometimes				
		referred to as an asynchronous				
		machine.				
21	What is a	Cogging torque of electrical	Understand	CO 3	CLO 12	AEEB04.12
21	cogging torque?	motors is the torque due to the interaction between the	Chacistana		CDO 12	1111104.12
		permanent magnets of the rotor				
		and the stator slots of a Permanent Magnet (PM)				
		machine. Also termed as detent				
		or 'no-current' torque, it is an				
		undesirable component for the operation of such a motor. It is				
		operation of such a motor. It is			<u> </u>	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		especially prominent at lower				
		speeds, with the symptom of jerkiness.				
22	Explain the	The damper winding is useful in	Understand	CO 3	CLO 12	AEEB04.12
	advantages of	preventing the hunting				
	providing	(momentary speed fluctuations)				
	damper winding.	in generators.				
		The damper winding also used				
		to maintain balanced 3 phase voltage under unbalanced load				
		conditions.				
23	Define turbo	High speed alternators are	Remember	CO 3	CLO 12	AEEB04.12
	alternators.	called as Turbo alternators.				
		As it runs at very high speed,				
		salient pole rotors are not used.				
		Smooth cylindrical type rotor is suitable for turbo alternators.				
24	How is a direct-	The armature of the exciter is	Understand	CO 3	CLO 14	AEEB04.14
-	connected	mounted on the shaft of the	Charletand	233	22311	
	exciter arranged	alternator close to the spider				
	in an alternator?	hub. In some cases, it is				
		mounted at a distance sufficient to permit a pedestal				
		and bearing to be placed				
		between the exciter and the				
		hub				
		MODULE-1	TV			
		WODGED-I				
1	What is a diode?	A semiconductor device	Remember	CO 4	CLO 15	AEEB04.15
		with two terminals, typically				
		allowing the flow of current in one direction only. Diodes				200
		allow current to flow when	4		-	
		the anode is positive in				2.
		relation			. ~	
2	What is meant by	to the cathode. A solid substance that has	Remember	CO 4	CLO 15	AEEB04.15
	semiconductor	conductivity between that of an	Kemember	CO 4	CLO 13	TILLEDO4.13
		insulator and that of most				
		metals. Devices made of semiconductors, notably				
		semiconductors, notably silicon, are essential	- 0	1		
		components of most electronic	. 17			
		circuits.			GT 0 4 4	
3	What is a Rectifier?	An electrical device that converts an alternating current	Remember	CO 4	CLO 16	AEEB04.16
	Rectifier?	into a direct one by allowing a				
		current to flow through it in				
	***	one direction only.		~~ :	GY C :	
4	What is half- wave rectifier?	The half wave rectifier is a	Remember	CO 4	CLO 16	AEEB04.16
	wave recurrer?	type of rectifier which converts half of the AC input				
		signal (positive half cycle)				
		into pulsating DC output				
		signal and the remaining half				
		signal (negative half cycle) is blocked or lost. In half wave				
		rectifier circuit, we use only a				
		single diode.				
				_		

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
5	What is full - wave rectifier?	The full wave rectifier is a type of rectifier which converts the full AC input signal (positive half cycle and negative half cycle) to pulsating DC output signal. Unlike the half wave rectifier, the input	Remember	CO 4	CLO 16	AEEB04.16
		signal is not wasted in full wave rectifier. The efficiency of full wave rectifier is high as compared to the half wave rectifier.				
6	What is full- wave Bridge rectifier?	Another, more popular full-wave rectifier design exists, and it is built around a four-diode bridge configuration. For obvious reasons, this design is called a 'full-wave bridge'.	Remember	CO 4	CLO 16	AEEB04.16
7	What is ripple voltage?	The amount of AC voltage mixed with the rectifier's DC output is called 'ripple voltage'. In most cases, since "pure" DC is the desired goal, ripple voltage is undesirable.	Remember	CO 4	CLO 16	AEEB04.16
8	Define Filter.	A filter is a circuit capable of passing (or amplifying) certain frequencies while attenuating other frequencies. Thus, a filter can extract important frequencies from signals that also contain undesirable or irrelevant	Remember	CO 4	CLO 17	AEEB04.17
9	Define Waveform.	frequencies. A graphical representation of electrical cycles which shows the amount of variation in amplitude over some period of	Remember	CO 4	CLO 15	AEEB04.15
10	Explain about Diode as a Switch.	time. Diode is a two terminal p-n junction that can be used in various applications. One of such applications is an electrical switch. The p-n junction, when forward biased acts as close circuited and when reverse biased acts as open circuited. Hence the change of forward and reverse biased states makes the diode work as a switch, the forward being ON and the reverse being OFF state.	Understand	CO 4	CLO 17	AEEB04.17
11	What is a zener diode?	A zener diode is a special type of device designed to operate in the zener breakdown region. Zener diodes acts like normal p-n	Remember	CO 4	CLO 15	AEEB04.15

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		junction diodes under forward biased condition. When forward biased voltage is applied to the zener diode it allows large amount of electric current and blocks only a small amount of electric current.				
12	Explain about zener diode as a voltage regulator.	Zener diode is a silicon semiconductor with a p-n junction diode which operates under reverse biased condition. It is used as a voltage regulator in DC circuit. The primary objective of the zener diode as a voltage regulator is to maintain a constant voltage.	Understand	CO 4	CLO 15	AEEB04.15
13	Define what a p-n junction.	The contact surface between the layers of p-type and n-type semiconductor pieces	Remember	CO 4	CLO 15	AEEB04.15
14	Explain space region called the depletion region.	The region around the junction is completely ionized on formation of p-n junction. As a result, there are neither free electrons on the n-side nor the holes on the p-side. Since the region around the junction is depleted of mobile charges, it is called the depletion region	Understand	CO 4	CLO 15	AEEB04.15
15	Define cut-in voltage of a p-n junction diode.	The forward voltage, at which the current through the p-n junction starts increasing rapidly, is called the cut-in	Remember	CO 4	CLO 15	AEEB04.15
16	Define peak inverse voltage.	voltage Peak inverse voltage is the maximum voltage that can be applied to the p-n junction without damaging the junction. If the reverse voltage across the junction exceeds its peak inverse voltage (PIV), the junction may get destroyed owing to excessive heat.	Remember	CO 4	CLO 15	AEEB04.15
17	Define breakdown voltage.	Breakdown voltage is defined as the reverse voltage at which p-n junction breaks down with sudden rise with reverse current	Remember	CO 4	CLO 15	AEEB04.15
18	Explain about the constant voltage regulator.	Constant voltage regulator is a p-n junction diode specially designed for operation in the breakdown region in reverse bias condition.	Understand	CO 4	CLO 15	AEEB04.15
19	What is the working principle of	Principle behind zener diode working. As stated above the basic principle behind the	Understand	CO 4	CLO 15	AEEB04.15

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	zener diode?	working of a zener diode lies in				
		the cause of breakdown for a				
		diode in reverse biased				
		condition. Normally there are two types of breakdown- zener				
		and avalanche. This type of				
		breakdown occurs for a reverse				
		bias voltage between 2 to 8v.				
20	Explain how	Zener diode has the property of	Understand	CO 4	CLO 15	AEEB04.15
	zener diode	behaving like a dc battery in				
	maintains	'on' state. If the zener diode is				
	constant voltage	shunted across the load RL and the voltage across zener diode				
	across the load.	is more than the zener voltage	general particular par			
		VZ then zener diode is on 'on'				
		state, and any variation in				
		voltage across the zener diode				
		due to variations either in				
		supply voltage or in load				
		resistance is not able to change the output voltage.				
		Thus zener diode maintains				
		voltage constant across the				
		load				
21	Define AC to	A rectifier is a device which	Remember	CO 4	CLO 17	AEEB04.17
	DC power	converts alternating current				
	converter.	(or) voltage into unidirectional				
22	Define why	current (or) voltage. The type of supply available	Remember	CO 4	CLO 16	AEEB04.16
	half-wave	from half-wave rectifier is not	Remember	CO 4	CLO 10	71LLD04.10
	rectifiers	satisfactory for general power				
	are generally	supply. That is defining why it				
	not used in dc	is generally not used in dc	100			
20	power supply.	power supply.	** 1	GO 4	GY 0 16	1 TED 0 1 1 5
23	What is	Transformer utilization factor is	Understand	CO 4	CLO 16	AEEB04.16
	transformer utilization	defined as the ratio of power delivered to the load and ac			-	
	factor?	rating of secondary of supply			1	
	1400011	power transformer.				
24	Which device	Filter is a device that converts	Understand	CO 4	CLO 16	AEEB04.16
	used to remove	pulsating output of rectifier into				
	the harmonics of	a steady dc level.		4		
25	DC signal?	In conscitor input filter the 1	Understand	CO 4	CLO 16	AEEB04.16
25	Why capacitor input filter is	In capacitor input filter, the dc output is much larger and	Understand	CO 4	CLU 10	AEEDU4.10
	preferred to	ripples are less in comparison to	1			
	choke input	those in choke input filter. So,				
	filter?	capacitor input filter is preferred				
		to choke input filter.				
26	Explain π -filters	Voltage regulation in case of π -	Understand	CO 4	CLO 16	AEEB04.16
	are not suitable	filters is very poor and,				
	for varying loads.	therefore, π -filters are not suitable for varying loads.				
27	Why series	Series inductor and L-section	Understand	CO 4	CLO 16	AEEB04.16
	inductor and 1-	filters cannot be used with half-	2 Hacistana	20 4	02010	
	section filters	wave rectifiers because				
	cannot be used	operation of series inductor				
	with half- wave	depends upon the current				
	rectifiers?	through it and needs a				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		minimum current to flow at all				
		times.				
		MODULE-	\mathbf{v}			
		1102022				
1	Define Bipolar	A semiconductor device with	Remember	CO 5	CLO 20	AEEB04.020
	Junction	three connections, capable of				
	Transistor (BJT).	amplification in addition to rectification. The fusion of two				
		diodes produces a three layer,				
		two junctions, three				
		terminal device forming the				
		basis of a Bipolar Junction				
2		Transistor, or BJT for short. Electronic (integrated) circuits	Remember	CO 5	CLO 20	AEEB04.20
	What is Solid	which utilize semiconductor	Remember	003	CLO 20	71EEB0 1.20
	State Circuit?	devices such as transistors,				
		diodes and silicon controlled				
3		rectifiers. Bipolar transistors have the	Understand	CO 5	CLO 20	AEEB04.020
		ability to operate within three	Onderstand	CO 3	CLO 20	ALLD04.020
	T 1 1 1	different regions:				
	Explain shortly	Active Region – the transistor				
	about operation of BJT?	operates as an amplifier and I _c				
	01 231 .	$= \beta^* I_b$ Saturation – the transistor is				
		"Fully-ON" operating as a				
		switch and $I_c = I(saturation)$				
		Cut-off – the transistor is				
		"Fully-OFF" operating as a				
4		switch and $I_c = 0$ In the Common Base or	Remember	CO 5	CLO 20	AEEB04.020
	What is	grounded base configuration,	Remember	603	CLO 20	71EEB0 1.020
	Common Base	the base connection is common	. 11 -			
	(CB)	to both the input signal and the	-			
	configuration?	output signal. The input signal is applied between the				e.
		transistors base and the emitter			4	
		terminals, while the				
		corresponding output signal is			100	
		taken				
		from between the base and the collector terminals				
5	***	CB bipolar transistor	Remember	CO 5	CLO 20	AEEB04.020
	What is the main feature of CB	configuration has a high ratio of	110111001		220 20	111111111111111111111111111111111111111
	configuration?	output to input resistance or				
	comiguration.	more importantly "load"				
		resistance (RL) to "input"				
		resistance (Rin) giving it a value of "Resistance Gain".				
6	Whatia	In the common emitter or	Remember	CO 5	CLO 20	AEEB04.020
	What is Common	grounded emitter				
	Emitter (CE)	configuration, the input signal				
	configuration?	is applied between the base and the				
		emitter, while the output is				
		taken from between the				
		collector and the emitter. This				
		type of configuration is the most commonly used circuit				
		for transistor based amplifiers				
\Box	i	aminimor	L		l	<u> </u>

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		and which represents the "normal" method of bipolar transistor connection.				
7	What is the main feature of CE configuration?	The CE amplifier configuration produces the highest current and power gain of all the three bipolar transistor configurations. This is mainly because the input impedance is low as it is connected to a forward biased PN-junction, while the output impedance is high as it is taken from a reverse biased PN-junction.	Remember	CO 5	CLO 20	AEEB04.020
8	What is Common Collector (CC) configuration?	In the common collector or grounded collector configuration, the collector is now common through the supply. The input signal is connected directly to the base, while the output is taken from the emitter. This type of configuration is commonly known as The Common Collector or	Remember	CO 5	CLO 20	AEEB04.020 AEEB04.020
9	feature of CC configuration?	emitter follower configuration is very useful for impedance matching applications because of the very high input impedance, in the region of hundreds of thousands of Ohms while having relatively low	Remember	cos	CLO 20	AEEB04.020
	[2]	output impedance.	. 1			
10	What is meant by the word transistor as an amplifier'?	The transistor raises the strength of a weak signal and hence acts an amplifier	Remember	CO 5	CLO 21	AEEB04.021
11	Why is transistor called current controlled device	The output voltage, current or power is controlled by the input current in a transistor. So it is called the current controlled device.	Remember	CO 5	CLO 21	AEEB04.021
12	Why silicon types are more used than germanium type transistor.	Silicon transistor has smaller cut-off current ICBO, small variations in ICBO due to variations in temperature and high operating temperature as compared to those in case of germanium type.	Remember	CO 5	CLO 20	AEEB04.020
13	Why collector is made larger that base and emitter?	Collector is made physically larger than emitter and base because collector is to dissipate much power.	Remember	CO 5	CLO 20	AEEB04.020
14	How α and β are related to each other	α and β are related as below: $\alpha = \beta/(1+\beta)$ or $\beta = \alpha/(1-\alpha)$ Q14. Define beta of a transistor. The β factor transistor is the common emitter current gain of that transistor and is defined as	Understand	CO 5	CLO 21	AEEB04.021

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		the ratio of collector current to the base current : $B = IC/IB \label{eq:B}$				
15	Why CE configuration more popular in amplifier circuits?	CE configuration is mainly used because its current, voltage and power gains are quite high and the ratio of output impedance and input impedance are quite moderate.	Understand	CO 5	CLO 21	AEEB04.021
16	What is collector reverse saturation?	When input current (IE in case of CB configuration and IB in case of CE configuration) is zero, collector current IC is not zero although it is very small. In fact this is the reverse leakage current or collector reverse saturation current (ICBO or simply ICO in CB configuration and ICEO in CE configuration).	Understand	CO 5	CLO 20	AEEB04.020
17	What is operating point?	Quiescent point is a point on the <i>dc</i> load line which represents VCE and IC in the absence of ac signal and variations in VCE and IC take place around this point when ac signal is applied.	Understand	CO 5	CLO 22	AEEB04.022
18	How is BJT used as amplifier	A transistor operates as an amplifier by transfer of the current from low impedance loop to high impedance loop.	Understand	CO 5	CLO 21	AEEB04.021
19	Why ICEO >> ICBO	The collector cut-off current denoted by ICBO is much larger than ICBO. ICEO is given as: ICEO = ICBO/(1- α) Because α is nearly equal to unity (slightly less than unity), ICEO >> ICBO	Understand	CO 5	CLO 22	AEEB04.022
20	Why is there a maximum limit of collector supply voltage to transistor	Although collector current is practically independent of collector supply voltage over the transistor operating range, but if VCB is increase beyond a certain vale collector current IC is eventually increases rapidly and possibly destroys the device.	Understand	CO 5	CLO 20	AEEB04.020
21	Why is ordinary junction transistor called bipolar?	Because the transistor operation is carried out by two types of charge carriers (majority and minority carriers), an ordinary transistor is called bipolar.	Understand	CO 5	CLO 23	AEEB04.023

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
22	Can a transistor	No. Because in case of two	Understand	CO 5	CLO 23	AEEB04.023
	be formed by	discrete back-to-back connected				
	connecting two	diodes there are four doped				
	diodes back to	regions instead of three and				
	back?	there is nothing that resembles a				
		thin base region between an				
		emitter and a collector.				

Signature of the Faculty

HOD, ME

