Question Paper Code: AHS003

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

MODEL QUESTION PAPER - II

Four Year B.Tech I Semester End Examinations, December – 2016

Regulation: R16

COMPUTATIONAL MATHEMATICS AND INTEGRAL CALCULUS

(Common to CSE, IT, ECE and EEE)

Time: 3 Hours Max Marks: 70

Answer any ONE question from each Unit All questions carry equal marks All parts of the question must be answered in one place only

Unit - I

1. (a) Find the real root of the equation $e^x = 3x$ by Bisection method up to 3 decimal places. [7M]

(b) Fit the polynomial to the data given below using Newton Forward Interpolation formula. [7M]

X	1	3	5	7	9
У	3	14	1921	23	28

2. (a) Find by Newton-Raphson method correct to 4 places of decimals of the equation $x^4 - 11x + 8 = 0$. [7M]

(b) Find f(1.30) by Lagrange's interpolation formulae to the following data.

 x
 0
 1.2
 2.4
 3.7

 y
 3.41
 2.68
 1.37
 -1.18

Unit - II

3. (a) Derive the Normal Equations of the straight line y = ax + b by the method of least squares. [7M]

(b) Solve y' = xy, given y(1) = 0 to find y(0.4) by Euler's method.

4. (a) Using the principle of least squares fit an equation of the form $y = ab^x$ to the following data. [7M]

X	2	3	4	5	6
у	144	172.8	207.4	248.8	298.5

(b) Find y(0.2), given that $\frac{dy}{dx} = x + y$, y(0) = 1 by Runge - Kutta method.

Unit – III

- 5. (a) Evaluate $\int \int_R xy \, dx \, dy$, where R is the region bounded by the line x+2y=2, lying in first quadrant [7M]
 - (b) Find the area of the loop of the curve $r = a(1 + \cos \theta)$ and outside the circle r = a. [7M]

[7M]

[7M]

[7M]

- 6. (a) By changing the order of integration, evaluate $\int_0^a \int_{x^2/a}^{2a-x} xy^2 dy dx$. [7M]
 - (b) Find the volume bounded by the cylinders $x^2 + y^2 = 4$, y + z = 4 and z = 0. [7M]

Unit - IV

7. (a) Prove that $curl\ grad\ \phi = 0$.

[7M]

- (b) Evaluate $\int \overline{F} \cdot \overline{n} \, ds$ where $\overline{F} = yz\overline{i} + 2y^2\overline{j} + xz^2\overline{k}$ and S is the surface of the cylinder $x^2 + y^2 = 9$ contained in the first octant between z = 0 and z = 2. [7M]
- 8. (a) Show that the vector $\overline{F} = (x^2 yz)\overline{i} + (y^2 zx)\overline{j} + (z^2 xy)\overline{k}$ is irrational. Also find the scalar potential ϕ .
 - (b) Verify Stokes theorem for $\overline{F}=(y-z+2)\,\bar{i}+(yz+4)\,\bar{j}-xz\bar{k}$ where S is the surface of the cube $x=0,\ y=0,\ z=0,\ x=2,\ y=2,\ z=2$ above the xy-plane. [7M]

Unit - V

- 9. (a) Evaluate [7M]
 - i. $\int_{0}^{\infty} x^6 e^{-4x^2} dx$
 - ii. $\int_{0}^{\infty} x^8 e^{-2x} dx$
 - (b) Prove the relation $x J'_n(x) = -n J_n(x) + x J_{n-1}(x)$. [7M]
- 10. (a) Solve in series the equation $\frac{d^2y}{dx^2} + xy = 0$ about x = 0. [7M]
 - (b) State and Prove orthogonality of Bessel's functions. [7M]