OINSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

DEFINITIONS AND TERMINOLOGY

Course Name		:	SEMICONDUCTOR PHYSICS
Course Code		:	AHSB13
Program		:	B.Tech
Semester		:	II
Branch	_	:	COMPUTER SCIENCE AND ENGINEERING
Section		:	D
Academic Year		:	2018 – 2019
Course Faculty		:	Mr. A Chandra Prakash. Assistant Professor.FE

OBJECTIVES:

I	To help students to consider in depth the terminology and nomenclature used in the syllabus.
II	To focus on the meaning of new words / terminology/nomenclature

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE - I				
1	What is quantum mechanics ?	Quantum mechanics is a theoretical science that deals with the study of the motions of the microscopic objects that have both observable wave-like and particle-like properties.	Remember	CO 1	CLO2	AHSB13.02
2	State Heisenber g's Uncertaint y Principle.	It is impossible to know both the exact position and exact momentum of an object at the same time.	Remember	CO 1	CLO2	AHSB13.02
3	State Planck's Law	Planck's law or Planck's radiation law states that energy is radiated in the form of wave-packets and this energy packet has both wave and particle character.	Remember	CO 1	CLO2	AHSB13.02
4	What is a black body?	A black body is one which absorbs all wavelengths of radiation at low temperatures and emits radiation at high temperatures.	Remember	CO 1	CLO2	AHSB13.02
5	Define photoelect ric effect	The emission of electrons from a metal plate when illuminated by light or any other radiation of suitable wavelength or frequency is called photoelectric effect.	Remember	CO 1	CLO2	AHSB13.02
6	Recall stopping potential.	The potential difference needed to just stop the photoelectric current is known as stopping potential.	Remember	CO 1	CLO2	AHSB13.02

7	Explain the meaning of work function	The minimum amount of energy required to overcome the binding energy of the constituents of the metal and hence to eject an electron from the surface of the metal is known as work	Understand	CO 1	CLO2	AHSB13.02
8	of a metal. Describe Compton wavelengt h.	function of the metal. The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is the same as the mass of that particle.	Understand	CO 1	CLO2	AHSB13.02
9	Define Compton effect.	Compton effect is the increase in wavelength of X-rays and other electromagnetic radiations that have been elastically scattered and it is a principal way in which radiant energy is absorbed in matter.	Remember	CO 1	CLO2	AHSB13.02
10	What are matter waves?	The waves associated with the particles of matter [e.g., electrons, protons etc.,] are known as matter waves or de Broglie waves.	Remember	CO 1	CLO3	AHSB13.03
11	Recall phase velocity.	The velocity with which each individual wave travels is called phase velocity.	Remember	CO 1	CLO3	AHSB13.03
12	Explain the term group velocity.	The velocity with which the wave packet which is formed due to the superposition of two or more waves of slighty different wavelengths is transmitted is known as group velocity.	Understand	CO 1	CLO3	AHSB13.03
13	What is quantizati on of energy?	Quantization is the concept where energy can have only discrete values or energy is radiated in the form of discrete packets known as photons.	Remember	CO 1	CLO3	AHSB13.03
14	State Bragg's law.	The Bragg's law states that when the x-ray is incident onto a crystal surface, its angle of incidence θ , will reflect back with a same angle of scattering θ and also when the path difference, d is equal to a whole number n, of wavelength, a constructive interference will occur.	Remember	CO 1	CLO3	AHSB13.03
15	What is the meaning of normalizat ion of wave function?	A normalized wave funtion means that the probability that the particle is found in the considered domain is equal to 1 and thus the integral of the square of the wave function in the domain is equal to 1.	Remember	CO 1	CLO4	AHSB13.04
16	Explain the concept of particle in a one dimension al potential box.	A particle in a 1-dimensional box is a fundamental quantum mechanical approximation describing the translational motion of a single particle confined inside an infinitely deep well from which it cannot escape.	Understand	CO 1	CLO4	AHSB13.04
17	Define a free particle.	A free particle is not subjected to any forces and its potential energy is constant.	Remember	CO 1	CLO4	AHSB13.04

18	What is degeneracy?	Degeneracy is the property of different quantum states having the same energy level.	Remember	CO 1	CLO4	AHSB13.04
		MODULE -	- П			
1	State Block's theorem.	Bloch's theorem states that the wavefunction of an electron within a perfectly periodic potential may be written as where has same periodicity as potential of an electron and is called modulating function.	Remember	C0 2	CLO 6	AHSB13.06
2	Describe Fermi level.	Fermi level energy is the energy level above which probability of finding an electron is 0 at 0k. i.e all the electrons have energy less than the Fermi level energy at 0k. No electron exist above Fermi level at 0k.	Understand	C0 2	CLO 6	AHSB13.06
3	Recall Hall effect	The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current.	Remember	C0 2	CLO 6	AHSB13.06
4	Define Hall coefficient.	The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field	Remember	C0 2	CLO 6	AHSB13.06
5	What is an energy band?	A large number of closely spaced energy levels which are formed by merging of discrete energy levels of the individual atoms in solids is called an energy band.	Remember	C0 2	CLO 5	AHSB13.05
6	What is a valence band?	The lower band which is partially or completely filled by valence electrons at T=0K is called the valence band.	Remember	C0 2	CLO 5	AHSB13.05
7	Define conduction band	The lowest filled higher permitted band in which electrons move freely is called conduction band.	Remember	C0 2	CLO 5	AHSB13.05
8	Recall forbidden energy gap	The energy required to transfer an electron from valence band to conduction band is called forbidden energy gap.	Remember	C0 2	CLO 5	AHSB13.05
9	Explain the	Metals are conductors. There is no band gap between their valence and conduction bands, since they overlap. There is a continuous availability of electrons in these closely spaced orbitals.	Understand	C0 2	CLO 5	AHSB13.05
10	What do you understand by an insulator?	In insulators, the band gap between the valence band the conduction band is so large that electrons cannot make the energy jump from the valence band to the conduction band.	Remember	C0 2	CLO 5	AHSB13.05
11	Describe a semiconduct or.	Semiconductors have a small energy gap between the valence band and the conduction band. Electrons can make the jump up to the conduction band, but not with the same ease as they do in conductors.	Understand	C0 2	CLO 5	AHSB13.05

	or?	charge. The electric charge of hole is equal to electric charge of electron but have opposite polarity.				
14	Describe an extrinsic semiconduct	opposite polarity. The semiconductor in which impurities are doped to increase the electrical conductivity is called extrinsic	Understand	C0 2	CLO 6	AHSB13.06
	or	semiconductor.				
15	What are N- type semiconduct ors?	When pentavalent or donor impurity is added to an intrinsic or pure semiconductor (silicon or germanium), then it is said to be an n-type semiconductor. In n-type semiconductor, free electrons are called majority carriers and holes are called minority carriers	Remember	C0 2	CLO 6	AHSB13.06
16	What are P- type semiconduct ors?	When trivalent or acceptor impurity is added to an intrinsic or pure semiconductor (silicon or germanium), then it is said to be an p-type semiconductor. In p-type semiconductor, holes are called majority carriers and free electrons are called minority carriers.	Remember	C0 2	CLO6	AHSB13.06
17	What do you understa nd by generati on of an electronhole pair?	Carrier generation is a process where electron-hole pairs are created by exciting an electron from the valence band of the semiconductor to the conduction band, thereby creating a hole in the valence band.	Remember	C0 2	CLO6	AHSB13.06
18	Explain the meaning of recombi nation of an electron- hole	Recombination is the reverse process where electrons and holes from the conduction respectively valence band recombine and are annihilated	Understand	C0 2	CLO6	AHSB13.06
19	pair. Define a potential barrier.	A region in which particles are decelerated or stopped by a repulsive force is called potential barrier.	Remember	C0 2	CLO5	AHSB13.05
19	-	decelerated or stopped by a repulsive	ш			

	1			1		
1	Wha t do you und ersta nd by gene ratio n of an elect ron- hole pair?	Carrier generation is a process where electron-hole pairs are created by exciting an electron from the valence band of the semiconductor to the conduction band, thereby creating a hole in the valence band	Remember	CO 3	CLO 7	AHSB13.07
2	What is diode?	a semiconductor device with two terminals, typically allowing the flow of current in one direction only.	Remember	CO 3	CLO 7	AHSB13.07
3	Explain the meaning of reco mbi nati on of an elec tron - hole pair	Recombination is the reverse process where electrons and holes from the conduction respectively valence band recombine and are annihilated	Remember	CO 3	CLO 7	AHSB13.07
4	What is Photo diode?	A photodiode is a semiconductor device that converts light into an electrical current. The current is generated when photons are absorbed in the photodiode	Remember	CO 3	CLO 8	AHSB13.08
5	Define LED	A light-emitting diode (LED) is a semiconductor device that emits visible light when an electric current passes through it.	Remember	~		AHSB13.08
6	What is photo detector?	A photo detector has a p-n junction that converts light photons into current.	Understand	CO 3	CLO 9	AHSB13.08
7	What is photo voltaic effect?	is a process that generates voltage or electric current in a photovoltaic cell when it is exposed to sunlight.	Remember	CO 3	CLO 8	AHSB13.08
8	Describe Solar Cell	A solar cell, or photovoltaic cell, is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.	Remember	CO 3	CLO 7	AHSB13.07

9	What is the mean ing of biasi ng diode	Biasing of diode means applying dc Voltage across the terminals of diode. When voltage is applied across a diode in such a way that the diode prohibits current, the	Remember	CO 3	CLO 9	AHSB13.08
10	State the ohm's law	Ohm's law stating that electric current is proportional to voltage and inversely proportional to resistance.	Understand	CO 3	CLO 9	AHSB13.09
11	What are direct bandgap semicond uctors?	A semiconductor in which the bottom of the conduction band and the top of the valence band occur at the momentum k=0, also energy is released I the form of radiation during band-to-band electron recombination with a hole is called direct bandgap semiconductor.	Understand	CO 3	CLO 9	AHSB13.09
12	Wha t is mea nt by thres hold volt age?	a threshold voltage refers to the voltage at which certain result occurs. Usually, it is the minimum voltage required for conduction to occur but not exclusively used to mean that.	Understand	CO 3	CLO 9	AHSB13.09
13	What is the biasing in a light emitting diode	Light emitting diode is connected in forward biasing, to produce light	Understand	CO 3	CLO 7	AHSB13.07
14	What is the principle behind light emitting diode.	The electron from n side recombines with the hole on p side .light is emitted due to recombination.	Understand	CO 3	CLO 7	AHSB13.07
15	Explain the term diffusion in a semicond uctor.	The flow of charge carriers from high density to low density is called diffusion.	Remember	CO 3	CLO 7	AHSB13.07
16	Des crib e reco mbi nati on phe nom ena.	The combination of an electron from conduction band to valence band is called recombination.	Understand	CO 3	CLO 7	AHSB13.07

17	Wha t is drift velo city of an elect	The velocity gained by an electron when an electric field is applied, is called drift velocity.	Understand	CO 3	CLO 7	AHSB13.07
18	ron? State the ohm's law	Ohm's law stating that electric current is proportional to voltage and inversely proportional to resistance.	Understand	CO 3	CLO 9	AHSB13.09
		MODULE -	IV			
1	Define an electric dipole.	Two equal and opposite charges separated by a distance 'r' constitute a dipole.	Remember	CO 4	CLO 9	AHSB13.09
2	Describe dipole moment.	The product of charge and distance between two charges is called electric dipole moment. $\mu = q \times r$.	Remember	CO 4	CLO 9	AHSB13.09
3	What is a polar dielectric?	The dielectrics in which center of gravity of negative charge distribution does not coincide with the center of positive charge distribution are called polar dielectrics.	Remember	CO 4	CLO 9	AHSB13.09
4	What is a nonpolar dielectric?	The dielectrics in which center of gravity of negative charge distribution coincide with the center of positive charge distribution are called polar dielectrics.	Understand	CO 4	CLO 9	AHSB13.09
5	Define Dielectric constant (or) Relative permittivit y of the medium.	Dielectric constant is the ratio between the permittivity of the medium and the permittivity of free space. It is denoted by Cr.	Remember	CO 4	CLO 9	AHSB13.09
6	What is electric polarizatio n?	When a dielectric substance is placed in an electric field, then positive and negative charges are displaced in opposite direction. This phenomena is called electric polarization.	Remember	CO 4	CLO 9	AHSB13.09
7	Define the term Polarizabil ity.	The ratio of dipole moment to that of electric field applied is called Polarizability.	Remember	CO 4	CLO 9	AHSB13.09
8	Describe Polarizatio n Vector.	Polarization Vector is defined as the average dipole moment per MODULE volume of a dielectric. If 'N' molecules are present per MODULE volume.	Understand	CO 4	CLO 9	AHSB13.09
9	Recall Electric Susceptibi lity.	The electric susceptibility ' χ ' is defined as the ratio of polarization vector to the applied electric field 'E'. $\chi = P/E$	Remember	CO 4	CLO 9	AHSB13.09
10	Describe the electronic Polarizatio	When an electric field is applied on a dielectric material then all the positive nuclei of atoms move in the field direction and all the negative electron cloud of atoms move in opposite directions, hence dipoles are formed to	Understand	CO 4	CLO 9	AHSB13.09

		produce dipole moment.				
11	Define a Magnetic dipole.	Two equal and opposite poles separated by a distance 'r' constitute a dipole.	Remember	CO 4	CLO10	AHSB13.10
12	What is Magnetic flux	It is defined as the amount of magnetic lines of forces passing perpendicularly through MODULE area of a given material. It is denoted by 'Φ'	Remember	CO 4	CLO10	AHSB13.10
13	Recall the term Intensity of Magnetiza tion.	The magnetic moment per MODULE volume is called Intensity of magnetization.	Remember	CO 4	CLO10	AHSB13.10
14	Define Magnetic Induction	Magnetic induction at a point is defined as the force experienced by a MODULE North Pole Placed at that point. It is denoted by 'B'	Remember	CO 4	CLO10	AHSB13.10
15	What is Permeabili ty?	Permeability is the ability of the medium to pass magnetic lines of forces through it.	Remember	CO 4	CLO10	AHSB13.10
16	Define Magnetic susceptibil ity.	Magnetic susceptibility is defined as ratio of intensity of magnetization and applied magnetic field.	Remember	CO 4	CLO10	AHSB13.10
17	Define relative Permeabili ty.	relative Permeability is defined as the ratio of Permeability of medium and Permeability of free space.	Remember	CO 4	CLO10	AHSB13.10
		MODULE	-V			
1	Define LASER.	LASER stands for Light Amplification by Stimulated Emission of Radiation.	Remember	CO 5	CLO7	AHSB13.07
2	Explain the phenomen on of absorption	If a photon of energy hv=E ₂ -E ₁ collides with an atom present in the ground state of energy E ₁ then the atom completely absorbs the incident photon and makes transition to excited state E ₂ . This process is known as absorption.	Understand	CO 5	CLO7	AHSB13.07
3	What do you mean by spontaneo us emission?	An atom initially present in the excited state makes transition voluntarily on its own to the ground state, without any aid of external stimulus agency. This process is known as spontaneous emission.	Remember	CO 5	CLO7	AHSB13.07
4	Describe stimulated emission.	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission.	Understand	CO 5	CLO7	AHSB13.07
5	What are the characteris tics of a laser?	Characteristics of a laser are directionality, coherence, monochromatic and high intensity.	Remember	CO 5	CLO7	AHSB13.07
6	What are	Einstein coefficients are mathematical	Remember	CO 5	CLO7	AHSB13.07
7	Einstein coefficient s? Define	quantities which are a measure of the probability of absorption or emission of light by an atom or molecule. The excited state having long life time	Remember	CO 5	CLO7	AHSB13.07

8	Define population inversion.	When the population of higher excited state is more than the population of lower state, it is called population	Remember	CO 5	CLO7	AHSB13.07
	miversion.	inversion.				
9	Describe pumping.	The process of supplying suitable form of energy to a system to achieve population inversion is known as pumping.	Understand	CO 5	CLO7	AHSB13.07
10	Explain optical resonator in a laser system.	Optical laser is a part of a laser, consisting of two mirrors, one highly reflective and one partially reflective, placed on either side of a laser pump and between which light bounces back and forth, enhancing stimulated emission within the pump. Light is emitted from the optical resonator through the partly reflective mirror.	Understand	CO 5	CLO7	AHSB13.07
11	What do you understand by active medium?	The active medium is a collection of atoms or molecules, which can be excited into a population inversion situation, and can have electromagnetic radiation extracted out of it by stimulated emission.	Remember	CO 5	CLO7	AHSB13.07
12	What are direct bandgap semicondu ctors?	A semiconductor in which the bottom of the conduction band and the top of the valence band occur at the momentum k=0, also energy is released I the form of radiation during band-to-band electron recombination with a hole is called direct bandgap semiconductor. Examples are GaAs, InP, etc.	Remember	CO 5	CLO7	AHSB13.07
13	Define fiber optics.	Fiber optics, or optical fiber, refers to the medium and the technology associated with the transmission of information as light pulses along a glass or plastic strand or fiber.	Remember	CO 5	CLO8	AHSB13.08
14	Explain the principle of working of an optical fiber.	Light launched into the optical fiber at one end gets propagated to the other end by total internal reflection at corecladding interface.	Understand	CO 5	CLO8	AHSB13.08
15	Recall critical angle.	Critical angle is defined as the the angle of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected.	Remember	CO 5	CLO8	AHSB13.08
16	Define acceptance angle.	Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection.	Remember	CO 5	CLO8	AHSB13.08
17	What do you mean by numerical aperture?	Numerical Aperture is the light gathering capacity of an optical fiber and it is given by sine of acceptance angle.	Remember	CO 5	CLO8	AHSB13.08
18	What are step index fibers?	For an optical fiber, a step-index profile is a refractive index profile characterized by a uniform refractive index within the	Understand	CO 5	CLO8	AHSB13.08

		core and a sharp decrease in refractive				
		index at the core-cladding interface so				
		that the cladding is of a lower refractive				
		index.				
19	Explain	Acceptance cone is the cone in which	Understand	CO 5	CLO8	AHSB13.08
	acceptance	the light incident at acceptance angle or				
	cone.	less than the acceptance angle and then				
		the light can propagate through the fiber				
		after total internal reflection.				
20	Explain	In fiber optics, a graded index is an	Understand	CO 5	CLO8	AHSB13.08
	the	optical fiber whose core has a refractive				
	meaning	index that decreases with increasing				
	of graded	radial distance from the optical axis of				
	index	the fiber.				
	fibers.		~ /			
21	Define	LASER stands for Light Amplification	Remember	CO 5	CLO7	AHSB13.07
	LASER.	by Stimulated Emission of Radiation.				
22	Explain	If a photon of energy hv=E ₂ -E ₁ collides	Understand	CO 5	CLO7	AHSB13.07
	the	with an atom present in the ground state				
	phenomen	of energy E ₁ then the atom completely				
	on of	absorbs the incident photon and makes				
	absorption	transition to excited state E ₂ . This				
		process is known as absorption.				

Signature of the Faculty

Signature of HOD