

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

DEFINITIONS AND TERMINOLOGY

Course Name	:	CONTROL SYSTEMS
Course Code	:	AEEB16
Program	:	B. Tech
Semester	:	IV
Branch	:	Electrical and Electronics Engineering
Section	:	A,B
Course Faculty	:	Dr. M. Pala Prasad Reddy, Associate Professor

OBJECTIVES:

Ι	Organize modeling and analysis of electrical and mechanical systems.
II	Analyze control systems by block diagrams and signal flow graph technique.
III	Demonstrate the analytical and graphical techniques to study the stability.
IV	Illustrate the frequency domain and state space analysis.

DEFINITIONS AND TERMINOLOGY QUESTION BANK:

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code				
	UNIT - I INTRODUCTION AND MODELING OF PHYSICAL SYSTEMS									
1	What is a system?	A system consists of a number of components connected together to perform a specific function.	Understand	CO1	CLO1	AEEB16.01				
2	What is a control system?	When the output quantity is controlled by varying the input quantity then the system is called control system.	Understand	CO1	CLO1	AEEB16.01				
3	What are the two major types of control system	Open loop and closed loop system.	Understand	CO1	CLO1	AEEB16.01				
4	Define open loop control system	The control system in which the output quantity has no effect upon the input quantity are called open loop control system.	Remember	C01	CLO1	AEEB16.01				
4	What are the components of feedback control system?	The components of feedback control system are plant , feedback path elements, error detector and controller.	Understand	CO1	CLO1	AEEB16.01				

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
5	Define transfer	The T.F of a system is defined as	Remember	CO1	CLO2	AEEB16.02
	function.	the ratio of the Laplace transform of output to Laplace transform of input with zero initial conditions.				
6	What are the	Mass, spring and dashpot.	Understand	CO1	CLO3	AEEB16.03
	basic elements used for					
	modeling					
	mechanical					
	translational					
7	system? Write the force	F=Kx.	Remember	CO1	CLO3	AEEB16.03
/	balance	Γ - K X.	Kemember	COI	CLOS	ALEDI0.05
	equation of					
	ideal spring					
8	element What are the	Mass M- Inductance L.	Understand	CO1	CLO3	AEEB16.03
0	analogous	Mass M- Inductance L.	Understand	COI	CLUS	AEED10.05
	quantity for					
	Mass Element					
9	in F-V analogy What are the	Force –current	Understand	CO1	CLO3	AEEB16.03
2	analogous	Velocity-voltage.	Onderstand	COI	CLOJ	ALED10.05
	quantities for					
	Force and					
	Velocity in F-I analogy					
	analogy					
10	What are the	Force -Voltage	Understand	CO1	CLO3	AEEB16.03
	analogous	Velocity-Current.				
	quantities for Force and					
	Velocity in F-					
	V analogy					
11	XX71		Remember	CO1	CL 02	AEED16.02
11	What is servomotor?	The motors used in automatic control systems or in	Remember	COI	CL03	AEEB16.03
	ser volliotor.	servomechanism are called				
		servomotors. They are used to				
		convert electrical signal into				
12	Write the force	angular motion. F = M d2x / dt2	Understand	CO1	CLO3	AEEB16.03
	balance					
	equation of an					
13	What is	The servomechanism is a	Understand	CO1	CLO2	AEEB16.02
	servomechanis	feedback control system in which				
	m?	the output is mechanical position.				
14	Write the force	F = B dx / dt.	Understand	CO1	CLO3	AEEB16.03
	balance					
	ideal dashpot element					
	ideal mass element. What is servomechanis m? Write the force balance equation of	feedback control system in which the output is mechanical position.				

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
15	Why negative feedback is invariably preferred in closed loop system?	The negative feedback results in better stability in steady state and rejects any disturbance signals.	Understand	CO1	CLO1	AEEB16.01
16	What is Reference input?	It is the actual signal input to the control system.	Remember	CO1	CLO1	AEEB16.01
17	What is a system?	A system is a combination of components that act together to perform a specific goal.	Remember	CO1	CLO1	AEEB16.01
18	What is Controlled variable (output)?	The quantity that must be maintained at prescribed value.	Remember	CO1	CLO1	AEEB16.01
19	What is Disturbance?	An unwanted input signal that affects the output signal.	Remember	CO1	CLO1	AEEB16.01
20	What is Open- Loop control system?	A system in which the output has no effect on the input action. In other words, the output is neither measured nor fed back for comparison with the input. One practical example is a washing machine. Adv: 1) The open-loop control system is easier to build because system stability is not a major problem. 2) It is sensitive to external disturbances.	Remember	CO1	CLO1	AEEB16.01
21	Define Closed- Loop Control System?	A system in which the output has an effect on the input quantity in a way that can maintain the desired output value. An example is a room temperature control system. Adv: 1) The use of feedback makes the system response insensitive to external disturbances and internal variations in system parameters.	Remember	CO1	CLO1	AEEB16.01

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	-	2) More complicated and more expensive comparing with Open- Loop.				
22	Define Control unit (dynamic element)	The unit that reacts to an actuating signal to produce a desired output. This unit does the work of controlling the output and thus may be a power amplifier.	Remember	CO1	CL01	AEEB16.01
23	Define Feedback control system.	The unit that provides the means for feeding back the output quantity, or a function of the output, in order to compare it with the reference input.	Remember	CO1	CLO1	AEEB16.01
24	Define Actuating signal	The signal that is difference between the reference input and the feedback signal if actuates the control unit in order to maintain the output of the desired value.	Remember	CO1	CLO1	AEEB16.01
25	Define The sensor or measuring element	It is a device that converts the output variable into another suitable variable, such as a displacement, pressure, voltage, etc.	Remember	CO1	CLO1	AEEB16.01
26	Define the actuator	It is a power device that produces the input to the plant according to the control signal so that the output signal will approach the reference input signal.	Remember	CO1	CLO1	AEEB16.01
27	Define Automatic Controllers	An automatic controller compares the actual value of the plant output with the reference input (desired value), determines the deviation, and produces a control signal that will reduce the deviation to zero or to a small value.	Remember	CO1	CLO1	AEEB16.01
28	Define Transfer function	The function of a linear time invariant differential equation system is defined as the ratio of Laplace transform of the output(response function) to the Laplace transform of the input(drive function) under the assumption that all initial conditions are zero.	Remember	CO1	CLO2	AEEB16.02
29	What is Synchro?	A Synchro is a device used to convert an angular motion to an electrical signal or vice versa.	Remember	CO1	CLO3	AEEB16.03

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
30	What is servomotor?	The motors used in automatic control systems or in servomechanism are called servomotors. They are used to convert electrical signal into angular motion.	Remember	CO1	CLO3	AEEB16.03
	BLO	UNIT – CK DIAGRAM REDUCTION AN		ONSE A	ANALYSIS	
1	What are the basic elements in Block Diagram?	The basic elements of block diagram are blocks, branch point and summing point.	Understand	CO2	CLO4	AEEB16.04
2	What is a signal flow graph?	A signal flow graph is a diagram that represents a set of simultaneous algebraic equations	Understand	CO2	CLO4	AEEB16.04
3	Define non touching loop	The loops are said to be non touching if they do not have common nodes	Remember	CO2	CLO4	AEEB16.04
4	Define self loop	A feedback loop consisting of only one node is called self loop.	Remember	CO2	CLO4	AEEB16.04
5	What is transient response?	The transient response is the response of the system when the system	Understand	CO2	CLO5	AEEB16.04
6	What is an order of a system?	The order of a system is the order of the differential equation governing the system	Understand	CO2	CLO5	AEEB16.05
7	Define Damping ratio.	Damping ratio is defined as the ratio of actual damping to critical damping	Remember	CO2	CLO5	AEEB16.05
8	Define Rise time.	The time taken for response to raise from 0% to 100% for the very first time is rise time	Remember	CO2	CLO5	AEEB16.05
9	Define Settling time.	Settling time is defined as the time taken by the response to reach and stay within specified error.	Remember	CO2	CLO5	AEEB16.05
10	What is step signal?	The step signal is a signal whose value changes from zero to A at $t= 0$ and remains constant at A for t>0.	Understand	CO2	CLO5	AEEB16.05
11	Define Steady state error	The steady state error is defined as the value of error as time tends to infinity.	Remember	CO2	CLO6	AEEB16.06

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
12	What are the		Understand	CO2	CLO6	AEEB16.06
	three constants	i i. Positional error				
	associated with	constant				
	a steady state	ii ii. Velocity error				
	error?	constant iii iii. Acceleration error				
		constant				
		constant				
13	What is the	The controller is provided to	Understand	CO2	CLO6	AEEB16.06
	need for a	modify the error signal for better				
	controller?	control action.				
14	What is	It is a device that produces a	Understand	CO2	CLO6	AEEB16.06
	Proportional	control signal which is				
	controller?	proportional to the input error				
15	Define hoursh	signal.	Demension	CO2	CL O4	AEEB16.04
15	Define branch point	A branch point is a point from which the signal from a block	Remember	CO2	CLO4	AEEB16.04
	point	goes concurrently to other blocks				
		or summing points.				
16	Define	A circle with a cross is the	Remember	CO2	CLO4	AEEB16.04
	summing point	symbol that indicates a summing				
		operation. The plus or minus sign				
		at each arrowhead indicates				
		whether that signal is to be added				
17	Define block	or subtracted	Remember	CO2	CLO4	AEEB16.04
17	diagram	A block diagram of a system is a pictorial representation of the	Kennennber	02	CL04	AEED10.04
	ulagrafii	functions performed by each				
		component and of the flow of				
		signals.				
18	Define open	The ratio of the feedback signal	Remember	CO2	CLO4	AEEB16.05
	loop transfer	B(s) to the actuating error signal				
	function	E(s) is called the open-loop				
10	Will at in a	transfer function.	Demension	CO2	CL OF	AEED16.05
19	What is a signal flow	A signal flow graph is a diagram that represents a set of	Remember	CO2	CLO5	AEEB16.05
	graph?	simultaneous algebraic equations				
	grupii.	.By taking L.T the time domain				
		differential equations governing a				
		control system can be transferred				
		to a set of algebraic equations in				
	XX71 . *	s-domain.		005	CT OF	
20	What is	The transmittance is the gain	Remember	CO2	CLO5	AEEB16.05
	transmittance?	acquired by the signal when it travels from one node to another				
		node in signal flow graph				
21	What is sink	Source is the input node in the	Remember	CO2	CLO5	AEEB16.05
	and source?	signal flow graph and it has only		202	-200	
		outgoing branches. Sink is a				
		output node in the signal flow				
		graph and it has only incoming				
22	Define	branches.	Demo 1	000	CLOS	AEED16.05
22	Define non	The loops are said to be non touching if they do not have	Remember	CO2	CLO5	AEEB16.05
	touching loop.	touching if they do not have common nodes.				
				~ -		
23	Define Masons	Masons Gain formula states that	Remember	CO2	CLO5	AEEB16.05
	Gain formula.	the overall gain of the system is T = $1/Ak$ Pk k No of forward paths				
		= $1/\Delta k$ Pk k-No.of forward paths in the signal flow graph. Pk-				
L		in the signal now graph. I K-	1			

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
24	What is	Forward path gain of kth forward path $\Delta k = 1$ -[sum of individual loop gains] +[sum of gain products of all possible combinations of two non touching loops]-[sum of gain products of all possible combinations of three non touching loops]+ k - for that part of the graph which is not touching kth forward path. The servomechanism is a	Remember	CO2	CLO3	AEEB16.03
	servomechanis m?	feedback control system in which the output is mechanical position (or time derivatives of position velocity and acceleration)				
25	Define transient response?	The transient response is the response of the system when the system changes from one state to another.	Remember	CO2	CLO6	AEEB16.06
26	Define steady state response?	The steady state response is the response of the system when it approaches infinity.	Remember	CO2	CLO6	AEEB16.06
27	What is an order of a system?	The order of a system is the order of the differential equation governing the system. The order of the system can be obtained from the transfer function of the given system	Remember	CO2	CLO6	AEEB16.06
28	Define Damping ratio.	Damping ratio is defined as the ratio of actual damping to critical damping.	Remember	CO2	CLO6	AEEB16.06
29	Define Delay time.	The time taken for response to reach 50% of final value for the very first time is delay time.	Remember	CO2	CLO6	AEEB16.06
30	Define peak overshoot.	Peak overshoot is defined as the ratio of maximum peak value measured from the maximum value to final value	Remember	CO2	CLO6	AEEB16.06
31	Define Settling time.	Settling time is defined as the time taken by the response to reach and stay within specified error.	Remember	CO2	CLO6	AEEB16.06
32	Define Steady state error.	The steady state error is defined as the value of error as time tends to infinity	Remember	CO2	CLO6	AEEB16.06
33	What is step signal?	The step signal is a signal whose value changes from zero to A at $t=0$ and remains constant at A for $t>0$.	Remember	CO2	CLO6	AEEB16.06
34	What is ramp signal?	The ramp signal is a signal whose value increases linearly with time from an initial value of zero at t=0.the ramp signal resembles a constant velocity.	Remember	CO2	CLO6	AEEB16.06
35	What is Proportional controller?	It is a device that produces a control signal which is proportional to the input error	Remember	CO2	CLO9	AEEB16.09

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		signal.				
36	What is PI controller?	It is a device that produces a control signal consisting of two terms - one proportional to error signal and the other proportional to the integral of error signal.	Remember	CO2	CLO9	AEEB16.09
37	What is PD controller?	PD controller is a proportional plus derivative controller which produces an output signal consisting of two time - one proportional to error signal and other proportional to the derivative of the signal.	Remember	CO2	CLO9	AEEB16.09
	C	UNIT – CONCEPT OF STABILITY AND I		TECHN	IOUE	
1	Define stability.	A system is said to be stabile if every bounded input results in a bounded output.	Understand	CO3	CLO7	AEEB16.07
2	What is Routh stability criterion?	Routh criterion states that the necessary and sufficient condition for stability is that all of the elements in the first column of the routh array is positive	Remember	CO3	CLO7	AEEB16.07
3	What is characteristic equation?	The denominator polynomial of $C(S)/R(S)$ is the characteristic equation of the system	Remember	CO3	CLO7	AEEB16.07
4	What is auxiliary polynomial?	The auxiliary polynomial is the equation corresponding to the row just above the row of all zeros.	Remember	CO3	CL07	AEEB16.07
5	What is the time constant of the system indicate	Time constant of the system indicate, how fast the system reaches the final value	Remember	CO3	CLO7	AEEB16.07
6	Define Relative stability	Relative stability is the degree of closeness of the system, it is an indication of strength or degree of stability	Remember	CO3	CLO7	AEEB16.07
7	What are root loci?	The path taken by the roots of the open loop transfer function when the loop gain is varied from 0 to 1 are called root loci.	Remember	CO3	CLO8	AEEB16.08
8	What is a dominant pole?	The dominant pole is a complex conjugate pair which decides the transient response of the system.	Remember	CO3	CLO8	AEEB16.08

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
9	What are break	At break away point the root	Understand	CO3	CLO8	AEEB16.08
	away and break in points?	locus breaks from the real axis to enter into the complex plane. At break in point the root locus enters the real axis from the complex plane.				
10	What are asymptotes?	Asymptotes are the straight lines which are parallel to root locus going to infinity and meet the root locus at infinity.	Understand	CO3	CLO8	AEEB16.08
11	What is centroid?	The meeting point of the asymptotes with the real axis is called centroid	Understand	CO3	CLO8	AEEB16.08
12	What are the effects of adding a zero to a system?	Adding a zero to a system increases peak overshoot appreciably	Understand	CO3	CLO9	AEE009.09
13	How to find the crossing point of root locus in imaginary axis?	By Routh Hurwitz criterion	Understand	CO3	CLO9	AEE009.09
14	What is impulse response?	The impulse response of a system is the inverse Laplace transforms of the system transfer function.	Understand	CO3	CLO8	AEEB16.08
15	Define stability.	A linear relaxed system is said to have BIBIO stability if every bounded input results in a bounded output.	Remember	CO3	CLO7	AEEB16.07
16	What is Routh stability criterion?	Routh criterion states that the necessary and sufficient condition for stability is that all of the elements in the first column of the routh array is positive. If this condition is not met, the system is unstable and the number of sign changes in the elements of the first column of routh array corresponds to the number of roots of characteristic equation in the right half of the S- plane.	Remember	CO3	CLO7	AEEB16.07
17	What is magnitude criterion?	The magnitude criterion states that s=sa will be a point on root locus if for that value of S, magnitude of G(S)H(S) is equal to 1. $ G(S)H(S) = K(\text{product of} \text{ length of vectors from open loop}$ zeros to the point s=sa)/ (product of length of vectors from open loop poles to the point s=sa) = 1.	Remember	CO3	CLO7	AEEB16.07

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
18	How to find the crossing point of root locus in imaginary axis?	By Routh Hurwitz criterion	Understand	CO3	CLO9	AEEB16.09
19	What is impulse response?	The impulse response of a system is the inverse Laplace transforms of the system transfer function.	Understand	CO3	CLO8	AEEB16.08
20	Define stability.	A linear relaxed system is said to have BIBIO stability if every bounded input results in a bounded output.	Remember	CO3	CLO7	AEEB16.07
21	What is Routh stability criterion?	Routh criterion states that the necessary and sufficient condition for stability is that all of the elements in the first column of the routh array is positive. If this condition is not met, the system is unstable and the number of sign changes in the elements of the first column of routh array corresponds to the number of roots of characteristic equation in the right half of the S- plane.	Remember	CO3	CLO7	AEEB16.07
22	What is magnitude criterion?	The magnitude criterion states that s=sa will be a point on root locus if for that value of S, magnitude of G(S)H(S) is equal to 1. $ G(S)H(S) = K(\text{product of} \text{ength of vectors from open loop}$ zeros to the point s=sa)/ (product of length of vectors from open loop poles to the point s=sa) = 1.	Remember	CO3	CLO7	AEEB16.07
23	What are the effects of adding a zero to a system?	Adding a zero to a system results in pronounced early peak to system response thereby the peak overshoot increases appreciably.	Remember	CO3	CLO8	AEEB16.08
24	What is a dominant pole?	The dominant pole is a pair of complex conjugate pair which decides the transient response of the system.	Remember	CO3	CLO8	AEEB16.08
25	What are root loci?	The path taken by the roots of the open loop transfer function when the loop gain is varied from 0 to 1 are called root loci.	Remember	CO3	CLO8	AEEB16.08
26	What is limitedly stable system?	For a bounded input signal if the output has constant amplitude oscillations, then the system may be stable or unstable under some limited constraints such a system is called limitedly stable system.	Remember	CO3	CLO7	AEEB16.07
27	What is a principle of argument?	The principles of arguments states that let F(S) are analytic function and if an arbitrary closed contour in a clockwise direction is chosen in the S-plane so that F(S) is analytic at every point of the contour. Then the	Remember	CO3	CLO8	AEEB16.08

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	<u> </u>	corresponding F(S) plane contour			-	
		mapped in the F(S) plane will				
		encircle the origin N times in the				
		anti clockwise direction, where N				
		is the difference between number $\int E(S) dt$				
		of poles and zeros of $F(S)$ that are				
		encircled by the chosen closed contour in the S-plane.				
28	What are break	At break away point the root	Remember	CO3	CLO8	AEEB16.08
	away and	locus breaks from the real axis to		000	0200	TILLD 10.00
	break in	enter into the complex plane. At				
1	points?	break in point the root locus				
		enters the real axis from the				
		complex plane. To find the break				
		away or break in points, form a equation for K from the				
		characteristic equation and				
		differentiate the equation of K				
		with respect to s. Then find the				
		roots of the equation $dK/dS = 0$.				
		The roots of $dK/dS = 0$ are break				
		away or break in points provided				
		for this value of root the gain K				
29	What is	should be positive and real. The meeting point of the	Remember	CO3	CLO8	AEEB16.07
	centroid?	asymptotes with the real axis is	Remember	005	CLOU	ALLBI0.07
		called centroid. The centroid is				
		given by Centroid = (sum of				
		poles – sum of zeros) / (n-m)				
		n-number of poles, m-number of				
30	What is	Zeros.	Remember	CO2	CLO7	
	limitedly	For a bounded input signal if the output has constant amplitude	Kemember	CO3	CL07	AEEB16.07
	stable system?	oscillations, then the system may				
	studie system.	be stable or unstable under some				
		limited constraints such a system				
		is called limitedly stable system.				
	What is a	The principles of arguments	Remember	CO3	CLO8	AEEB16.08
	principle of	states that let F(S) are analytic				
	argument?	function and if an arbitrary closed contour in a clockwise direction				
		is chosen in the S-plane so that				
		F(S) is analytic at every point of				
		the contour. Then the				
		corresponding $F(S)$ plane contour				
		mapped in the F(S) plane will				
		encircle the origin N times in the				
		anti clockwise direction, where N is the difference between number				
		of poles and zeros of $F(S)$ that are				
		encircled by the chosen closed				
		contour in the S-plane.				
			D 1	002		A = E = D + C + O Q
	What is angle	The angle criterion states that	Remember	CO3	CLO8	AEEB16.08
	What is angle criterion?	s=sa will be the point on the root	Remember	03	CLO8	AEEB10.08
		s=sa will be the point on the root locus if for that value of S the	Remember	03	CLU8	AEEB10.08
		s=sa will be the point on the root locus if for that value of S the argument or phase of $G(S)H(S)$ is	Kemember	03	CL08	AEEB10.08
		s=sa will be the point on the root locus if for that value of S the argument or phase of $G(S)H(S)$ is equal to an odd multiple of 180° .	Kemember	03	CL08	AEEB10.08
		s=sa will be the point on the root locus if for that value of S the argument or phase of $G(S)H(S)$ is	Kemember	03	CLU8	AEEB10.08

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		from poles to the point $s=sa$) =				
33	How will you find the root locus on real axis?	$\pm 180^{\circ}(2q + 1)$ To find the root loci on real axis, choose the test point on real axis. If the total number of poles and zeros on the real axis to the right of this test point is odd number then the test point lie on the root locus. If it is even then the test point does not lie on the root locus.	Remember	CO3	CLO8	AEEB16.08
		FREQUENCY DOM		5		
1	What is frequency response?	A frequency response is the steady state response of a system when the input to the system is a sinusoidal signal.	Understand	CO4	CLO10	AEEB16.10
2	List out the different frequency domain specifications	Resonant peak, Resonant Frequency Bandwidth	Understand	CO4	CLO10	AEEB16.10
3	Define Resonant frequency (fr)	The frequency at which resonant peak occurs is called resonant frequency	Remember	CO4	CLO10	AEEB16.10
4	What is Bandwidth?	The Bandwidth is the range of frequencies for which the system gain is more than 3 dB.	Remember	CO4	CLO10	AEEB16.10
5	Define Cut off rate.	The slope of the log-magnitude curve near the cut-off is called cut-off rate. The cut off rate indicates the ability to distinguish the signal from noise.	Remember	CO4	CLO10	AEEB16.10
6	Define Gain Margin	The Gain Margin,kg is defined as the reciprocal of the magnitude of the open loop transfer function at phase cross over frequency	Remember	CO4	CLO10	AEEB16.10
7	Define Phase cross over.	The frequency at which, the phase of open loop transfer functions is called phase cross over frequency Δpc .	Remember	CO4	CLO10	AEEB16.10
8	What is Phase margin?	The Phase margin is the amount of phase lag at the gain cross over frequency required to bring system to the verge of instability	Remember	CO4	CLO10	AEEB16.10
9	What is Bode plot?	The Bode plot is the frequency response plot of the transfer function of a system	Understand	CO4	CLO10	AEEB16.10
10	Define Corner frequency.	The frequency at which the two asymptotic meet in a magnitude plot is called Corner frequency	Remember	CO4	CLO10	AEEB16.10
11	What is Nyquist contour?	The contour that encloses entire right half of S plane is called Nyquist contour.	Remember	CO4	CLO11	AEEB16.09

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
12	What are the	A simple method for sketching an	Understand	CO4	CLO12	AEEB16.12
	main	approximate log curve is				
	advantages of	available.				
	Bode plot?					
13	Define Gain	The Gain cross over frequency	Understand	CO4	CLO12	AEEB16.12
	cross over	Δ gc is the frequency at which the				
	frequency	magnitude of the open loop				
	7.1.1.2	transfer function is unity.			GT 0 1 0	
14	If the gain of	Not effected as the gain of the	Understand	CO4	CLO12	AEEB16.12
	the open loop	system is not dependent on the				
	system is doubled, the	overall gain of the system.				
	gain of the					
	system is:					
15	What is the	For Nyquist contour, the size of	Understand	CO4	CLO12	AEEB16.12
15	size of radius	radius is ∞ .	Onderstand	0.04	CL012	ALLD10.12
	in Nyquist					
	contour?					
16	What is	A frequency response is the	Remember	CO4	CLO10	AEEB16.10
	frequency	steady state response of a system				
	response?	when the input to the system is a				
		sinusoidal signal				
17	Define	The maximum value of the	Remember	CO4	CLO 10	AEEB16.10
	Resonant Peak	magnitude of closed loop transfer				
10	(Δr)	function is called Resonant Peak.			01.0.10	
18	Define	The frequency at which resonant	Remember	CO4	CLO 10	AEEB16.10
	Resonant	peak occurs is called resonant				
19	frequency (Δf) What is	frequency.	Remember	CO4	CLO10	AEED1C 10
19	What is Bandwidth?	The Bandwidth is the range of frequencies for which the system	Kemember	04	CLUIU	AEEB16.10
		gain is more than 3 dB. The				
		bandwidth is a measure of the				
		ability of a feedback system to				
		reproduce the input signal noise				
		rejection characteristics and rise				
		time.				
20	Define Cut off	The slope of the log-magnitude	Remember	CO4	CLO 10	AEEB16.10
	rate.	curve near the cut-off is called				
		cut-off rate. The cut off rate				
		indicates the ability to distinguish				
21	Define Cala	the signal from noise.	Demenyity	CO 4	CL 0 10	
21	Define Gain	The Gain Margin, kg is defined	Remember	CO4	CLO 12	AEEB16.12
	Margin.	as the reciprocal of the magnitude of the open loop transfer function				
		at phase cross over frequency.				
22	Define Phase	The frequency at which, the	Remember	CO4	CLO 12	AEEB16.12
	cross over	phase of open loop transfer	remember			1122010.12
	frequency.	functions is called phase cross				
	1 J '	over frequency Δpc .				
23	What is Phase	The Phase margin is the amount	Remember	CO4	CLO 12	AEEB16.12
	margin?	of phase lag at the gain cross over				
		frequency required to bring				
		system to the verge of instability				
24	Define Gain	The Gain cross over frequency	Remember	CO4	CLO 12	AEEB16.12
	cross over	Δgc is the frequency at which the				
	frequency.	magnitude of the open loop				
25	What in D = 1	transfer function is unity.	Domesti	COA	CL 0 11	
25	What is Bode	The Bode plot is the frequency	Remember	CO4	CLO 11	AEEB16.11
	plot?	response plot of the transfer function of a system. A Bode plot				
		runction of a system. A boue plot		l		

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		consists of two graphs. One is the plot of magnitude of sinusoidal transfer function versus log Δ . The other is a plot of the phase angle of a sinusoidal function versus log Δ .				
26	Define Corner frequency.	The frequency at which the two asymptotic meet in a magnitude plot is called Corner frequency.	Remember	CO4	CLO 11	AEEB16.11
27	State Nyquist stability criterion.	If the Nyquist plot of the open loop transfer function $G(s)$ corresponding to the Nyquist control in the S-plane encircles the critical point $-1+j0$ in the	Remember	CO4	CLO 11	AEEB16.12
28	What is Nyquist contour?	The contour that encloses entire right half of S plane is called Nyquist contour.	Remember	CO4	CLO 11	AEEB16.12
29	Define Relative stability.	Relative stability is the degree of closeness of the system, it is an indication of strength or degree of stability.	Remember	CO4	CLO 11	AEEB16.12
30	Define polar plot?	The Polar plot is a plot, which can be drawn between the magnitude and the phase angle of $G(j\omega)H(j\omega)$ by varying ω from zero to ∞ .	Remember	CO4	CLO 11	AEEB16.12
		UNIT – STATE SPACE ANALYSIS A		SATOR	S	
1	What are the advantages of state space analysis?	It can be applied to non-linear as well as time varying systems. It can be applied for MIMO systems also. The state variables selected need not necessarily be the physical quantities of the system.	Understand	CO5	CLO13	AEEB16.13
2	What are phase variables?	system variables and its derivatives are called phase variables	Understand	CO5	CLO13	AEEB16.13
3	Define state variable	The minimal set of variables which can describe the system status are known as state variables	Remember	CO5	CLO13	AEEB16.13
4	Is the state model unique for a given transfer function?	State model is not unique	Understand	CO5	CLO13	AEEB16.13
5	What is controllability?	A system is said to be completely state controllable if it is possible to transfer the system state from any initial state $X(t0)$ at any other desired state $X(t)$, in specified finite time by a control vector U(t).	Understand	CO5	CLO14	AEEB16.14

S. No		ANSWER	Blooms Level	CO	CLO	CLO Code
6	What is observability?	A system is said to be completely observable if every state X(t) can be completely identified by measurements of the output Y(t) over a finite time interval.	Understand	CO5	CLO14	AEEB16.14
7	Define state	Status of the system is called state.	Remember	CO5	CLO13	AEEB16.13
8	What is the state model	State equation and output equation is called state model	Understand	CO5	CLO13	AEEB16.13
9	What is similarity transformation ?	The process of transforming a square matrix A to another similar matrix B by a transformation P-1AP = B is called similarity transformation. The matrix P is called transformation matrix.	Understand	CO5	CLO14	AEEB16.14
10	What is meant by diagonalizatio n?	The process of converting the system matrix A into a diagonal matrix by a similarity transformation using the modal matrix M is called diagonalization.	Understand	CO5	CLO14	AEEB16.14
11	What is modal matrix?	The modal matrix is a matrix used to diagonalize the system matrix	Understand	CO5	CLO14	AEEB16.14
12	What are the three types of Compensators ?	i. Lag compensator, lead compensator and Lag-Lead compensator	Understand	CO5	CLO15	AEEB16.15
13	What is the use of lag compensator?	Improve the steady state behavior of a system, while nearly preserving its transient response.	Understand	CO5	CLO15	AEEB16.15
14	What is a compensator?	A device inserted into the system for the purpose of satisfying the specifications is called as a compensator.	Understand	CO5	CLO15	AEEB16.15
15	When lag lead compensator is required?	The lag lead compensator is required when both the transient and steady state response of a system has to be improved.	Understand	CO5	CLO15	AEEB16.15
16	State sampling theorem.	A continuous time signal can be completely represented in its samples and recovered back if the sampling frequency Fs≥2Fmax where Fs is the sampling frequency and Fmax is the maximum frequency present in the signal.	Remember	CO5	CLO13	AEEB16.13
17	What is periodic sampling?	Sampling of a signal at uniform equal intervals is called periodic sampling.	Remember	CO5	CLO13	AEEB16.13

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
18	What are	The phase variables are defined	Remember	CO5	CLO13	AEEB16.13
	phase variables?	as the state variables which are obtained from one of the system variables and its derivatives.				
19	Define state variable.	The state of a dynamical system is a minimal set of variables (known as state variables) such that the knowledge of these variables at t-t0 together with the knowledge of the inputs for $t > t0$, completely determines the behavior of the system for $t > t0$.	Remember	CO5	CLO14	AEEB16.14
20	What is controllability?	A system is said to be completely state controllable if it is possible to transfer the system state from any initial state X(t0) at any other desired state X(t), in specified finite time by a control vector U(t).	Remember	CO5	CLO15	AEEB16.15
21	What is observability?	A system is said to be completely observable if every state X(t) can be completely identified by measurements of the output Y(t) over a finite time interval.	Remember	CO5	CLO15	AEEB16.15
22	What is Nyquist rate?	The Sampling frequency equal to twice the highest frequency of the signal is called as Nyquist rate. fs=2fm.	Remember	CO5	CLO13	AEEB16.13
23	What is similarity transformation ?	The process of transforming a square matrix A to another similar matrix B by a transformation P-1 AP = B is called similarity transformation. The matrix P is called transformation matrix.	Remember	CO5	CLO14	AEEB16.14
24	What is meant by diagonalizatio n?	The process of converting the system matrix A into a diagonal matrix by a similarity transformation using the modal matrix M is called diagonalization.	Remember	CO5	CLO14	AEEB16.14
25	What is modal matrix?	The modal matrix is a matrix used to diagonalize the system matrix. It is also called diagonalization matrix. If A = system matrix. M = Modal matrix And M-1 =inverse of modal matrix. Then M-1 AM will be a diagonalized system matrix.	Remember	CO5	CLO14	AEEB16.14
26	What is a compensator?	A device inserted into the system for the purpose of satisfying the specifications is called as a compensator.	Remember	CO5	CLO15	AEEB16.15
27	Define Phase lag and phase lead.	A negative phase angle is called phase lag. A positive phase angle is called phase lead.	Remember	CO5	CLO15	AEEB16.15

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
28	Define phase lead compensator?	A system which has one pole and one dominating zero (the zero which is closer to the origin than all over zeros is known as dominating zero.) is known as lead network. If we want to add a dominating zero for compensation in control system then we have to select lead compensation network.	Remember	CO5	CLO15	AEEB16.15
29	Define phase lag Compensator?	A system which has one zero and one dominating pole (the pole which is closer to origin that all other poles is known as dominating pole) is known as lag network. If we want to add a dominating pole for compensation in control system then, we have to select a lag compensation network.	Remember	CO5	CLO15	AEEB16.15
30	Define phase lag-lead compensator?	With single lag or lead compensation may not satisfy design specifications. For an unstable uncompensated system, lead compensation provides fast response but does not provide enough phase margins whereas lag compensation stabilize the system but does not provide enough bandwidth. So we need multiple compensators in cascade.	Remember	CO5	CLO15	AEEB16.15

Signature of the Faculty

Signature of HOD