

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous) Dundigal, Hyderabad - 500 043

### ELECTRICAL AND ELECTRONICS ENGINEERING

## DEFINITIONS AND TERMINOLOGY QUESTION BANK

| Course Name    | : | DIGITAL ELECTRONICS                    |
|----------------|---|----------------------------------------|
| Course Code    | : | AECB03                                 |
| Program        | : | B.Tech                                 |
| Semester       | : | III                                    |
| Branch         | : | Electrical and Electronics Engineering |
| Section        | : | A, B                                   |
| Academic Year  | : | 2019 - 2020                            |
| Course Faculty | : | Ms. V Bindusree, Assistant Professor   |
|                |   | Ms. J Sravana, Assistant Professor     |

#### **OBJECTIVES:**

| Ι  | Familiarize the basic concept of number systems, Boolean algebra principles and minimization  |
|----|-----------------------------------------------------------------------------------------------|
|    | techniques for Boolean algebra.                                                               |
| II | Analyze Combination logic circuit and sequential logic circuits such as multiplexers, adders, |
|    | decoders flip-flops and latches                                                               |
| Ш  | Understand about synchronous and asynchronous sequential logic circuits.                      |
| IV | Impart the basic understanding of memory organization, ROM, RAM, PLA and PAL.                 |

## DEFINITIONS AND TERMINOLOGY QUESTION BANK

| S.No | QUESTION        | ANSWER                                  | Blooms   | CO   | CLO    | CLO Code  |
|------|-----------------|-----------------------------------------|----------|------|--------|-----------|
|      | 0               |                                         | Level    | - 7  | - C    |           |
|      |                 | MODULE-I                                |          |      |        |           |
| 1    | What is binary? | Binary (or base-2) a numeric system     | Remember | CO 1 | CLO 1  | AECB03.01 |
|      | 0               | that only uses two digits $-0$ and 1.   | 7        |      | _      |           |
|      |                 | Computers operate in binary,            | 1        |      | Sec. 1 |           |
|      |                 | meaning they store data and perform     |          |      | 1.0    |           |
|      |                 | Calculations using only zeros and       |          |      | h      |           |
|      |                 | ones.                                   |          | 6.0  |        |           |
| 2    | Define number   | A number system is a collection of      | Remember | CO 1 | CLO 1  | AECB03.01 |
|      | system.         | various symbols which are called        | 1.1.4    |      |        |           |
|      |                 | digits. Different types of Number       | 1        |      |        |           |
|      |                 | System.                                 |          |      |        |           |
| 3    | Define Gray     | A Gray code is an encoding of           | Remember | CO 1 | CLO 1  | AECB03.01 |
|      | code.           | numbers so that adjacent numbers        |          |      |        |           |
|      |                 | have a single digit differing by 1.     |          |      |        |           |
|      |                 | The term Gray code is often used to     |          |      |        |           |
|      |                 | specifically still the binary reflected |          |      |        |           |
|      |                 | Grav code                               |          |      |        |           |
| 1    | Define Excess_3 | Excess-3 also called XS3 is a non-      | Remember | CO 1 | CLO 1  | AECB03.01 |
| -    | code            | weighted code is a self                 | Remember | 001  | CLUI   | ALCD05.01 |
|      | code.           | complementary Binary-coded              |          |      |        |           |
|      |                 | decimal (BCD) code and numeral          |          |      |        |           |
|      |                 | system. It is a self- complementing     |          |      |        |           |
|      |                 | code.                                   |          |      |        |           |
| 5    | What is self    | Self-Complementing Codes (Excess        | Remember | CO 1 | CLO 2  | AECB03.02 |

| S.No | QUESTION                              | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                           | Blooms<br>Level | СО   | CLO   | CLO Code  |
|------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------|-----------|
|      | complementing<br>code?                | 3, 84-2-1, 2*421) Such codes have<br>the property that the 9's complement<br>of a decimal number is obtained<br>directly by changing 1's to 0's and<br>0's to 1's                                                                                                                                                                                                                                                                                |                 |      |       |           |
| 6    | Define codes.                         | In the coding, when numbers or<br>letters are represented by a specific<br>group of symbols, it is said to be that<br>number or letter is being encoded.<br>The group of symbols is called as<br>code. The digital data is represented,<br>stored and transmitted as group of<br>bits. This group of bits is also called<br>as binary code.                                                                                                      | Understand      | CO 1 | CLO 1 | AECB03.01 |
| 7    | Define signed<br>numbers.             | Signed numbers contain both sign<br>and magnitude of the number.<br>Generally, the sign is placed in front<br>of number. So, we have to consider<br>the positive sign for positive<br>numbers and negative sign for<br>negative numbers.                                                                                                                                                                                                         | Understand      | CO 1 | CLO 1 | AECB03.01 |
| 8    | What is<br>unsigned<br>number system? | Unsigned numbers contain only<br>magnitude of the number. They<br>don't have any sign. That means all<br>unsigned binary numbers are<br>positive. As in decimal number<br>system, the placing of positive sign<br>in front of the number is optional for<br>representing positive numbers.<br>Therefore, all positive numbers<br>including zero can be treated as<br>unsigned numbers if positive sign is<br>not assigned in front of the number | Remember        | CO 1 | CLO 1 | AECB03.01 |
| 9    | Define sign<br>magnitude<br>form.     | The Most significant bit (MSB) is<br>used for representing sign of the<br>number and the remaining bits<br>represent the magnitude of the<br>number. So, just include sign bit at<br>the left most side of unsigned binary<br>number. This representation is<br>similar to the signed decimal<br>numbers representation.                                                                                                                         | Remember        | CO 1 | CLO 1 | AECB03.01 |
| 10   | What is<br>hamming code?              | Hamming code is useful for both<br>detection and correction of error<br>present in the received data. This<br>code uses multiple parity bits and<br>we have to place these parity bits in<br>the positions of powers of 2.The<br>minimum value of 'k' for which the<br>following relation is correct (valid)<br>is nothing but the required<br>number of parity bits.                                                                            | Remember        | CO 1 | CLO 1 | AECB03.01 |
| 11   | What is Duality<br>theorem?           | This theorem states that the dual of<br>the Boolean function is obtained by<br>interchanging the logical AND<br>operator with logical OR operator<br>and zeros with ones. For every                                                                                                                                                                                                                                                              | Remember        | CO 1 | CLO 1 | AECB03.01 |

| S.No | QUESTION                                 | ANSWER                                                                                                                                                                                                                                                                                                                                                                      | Blooms<br>Level | CO   | CLO   | CLO Code  |
|------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------|-----------|
|      |                                          | Boolean function, there will be a corresponding Dual function                                                                                                                                                                                                                                                                                                               |                 |      |       |           |
| 12   | What is 8421<br>code?                    | The weights of this code are 8, 4, 2<br>and 1. This code has all positive<br>weights. So, it is a positively<br>weighted code. This code is also<br>called as<br>natural BCD (Binary Coded<br>Decimal) code                                                                                                                                                                 | Understand      | CO 1 | CLO 1 | AECB03.01 |
| 13   | What is 2421<br>code?                    | This code has all positive weights.<br>So, it is a positively weighted code.<br>It is an unnatural BCD code. Sum of<br>weights of unnatural BCD codes is<br>equal to 9.It is a self-complementing<br>code. Self-complementing codes<br>provide the<br>9's complement of a decimal<br>number, just by interchanging 1's<br>and 0's in its equivalent 2421<br>representation. | Understand      | CO 1 | CLO 1 | AECB03.01 |
| 14   | Define Binary<br>Number.                 | The binary number system is a<br>numbering system that represents<br>numeric values using two unique<br>digits (0 and 1). Most computing<br>devices use binary numbering to<br>represent electronic circuit voltage<br>state, (i.e., on/offswitch), is the base-<br>2 number system.                                                                                        | Understand      | CO 1 | CLO 1 | AECB03.02 |
| 15   | Define Decimal<br>number system.         | A number is expressed in base 10 by<br>using one of the first nine integers or<br>0 in each place and letting each<br>place value be a power of 10.                                                                                                                                                                                                                         | Remember        | CO 1 | CLO 1 | AECB03.02 |
| 16   | Define sign<br>magnitude<br>form.        | The Most significant bit (MSB) is<br>used for representing sign of the<br>number and the remaining bits<br>represent the magnitude of the<br>number. So, just include sign bit at<br>the left most side of unsigned binary<br>number. This representation is<br>similar to the signed decimal<br>numbers representation.                                                    | Understand      | CO 1 | CLO 2 | AECB03.02 |
| 18   | Define Hexa<br>decimal number<br>system. | The hexadecimal numeral system,<br>also known as just hex, is a numeral<br>system made up of 16 symbols (base<br>16). The standard numeral system is<br>called decimal (base 10) and uses<br>ten symbols: 0,1,2,3,4,5,6,7,8,9.<br>Hexadecimal uses the decimal<br>numbers and includes six extra<br>symbols.                                                                | Remember        | CO 1 | CLO 1 | AECB03.01 |
| 19   | What is one's compliment?                | The ones' complement of a binary<br>number is defined as the value<br>obtained by inverting all the bits in<br>the binary representation of the<br>number.                                                                                                                                                                                                                  | Remember        | CO I | CLO2  | AECB03.02 |
| 20   | What is Two's compliment?                | The 2's complement of a binary<br>number is obtained by adding one to<br>the 1's complement of signed binary<br>number. So, 2's complement of                                                                                                                                                                                                                               | Remember        | CO 1 | CLO 2 | AECB03.02 |

| S.No | QUESTION                           | ANSWER                                                                                                                                                                                                                                                                                                                        | Blooms<br>Level | CO   | CLO   | CLO Code  |
|------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------|-----------|
|      |                                    | positive number gives a negative<br>number. Similarly, 2's complement<br>of negative number gives a positive<br>number.                                                                                                                                                                                                       |                 |      |       |           |
| 21   | What is binary<br>coded decimal?   | Binary coded decimal (BCD) is a<br>system of writing numerals that<br>assigns a four-digit binary code to<br>each digit 0 through 9 in a decimal<br>(base-10) numeral. The four-bit<br>BCD code for any particular single<br>base-10 digit is it representation in<br>binary notation.                                        | Remember        | CO 1 | CLO 1 | AECB03.01 |
| 22   | Define Unit<br>distance code.      | An un weighted code that changes at<br>only one digit position when going<br>from one number to the next in a<br>consecutive sequence of numbers.<br>Use of one of the many unit-distance<br>codes can minimize errors at<br>symboltransition points when<br>converting analog quantities into<br>digital quantities.         | Remember        | CO 1 | CLO 1 | AECB03.01 |
| 23   | Define parity<br>bit.              | It is easy to include one parity bit<br>either to the left of Most significant<br>bit (MSB) or to the right of Least<br>significant bit (LSB) of original bit<br>stream. There are two types of parity<br>codes, namely even parity code and<br>odd parity code based on the type of<br>parity being chosen.                  | Remember        | CO 1 | CLO 3 | AECB03.03 |
| 24   | What is error<br>Detection?        | It is used to detect the error(s)<br>present in the received data (bit<br>stream). These codes contain some<br>bits, which are included to the<br>original bit stream. These codes<br>detect the error, if it is occurred<br>during transmission of the<br>original data (bit stream).Example –<br>Parity code, Hamming code, | Remember        | CO 1 | CLO 3 | AECB03.03 |
| 27   | Define logic<br>levels of<br>CMOS. | CMOS gate operating at a power<br>supply voltage of 5 volts, the<br>acceptable input signal voltages<br>range from 0 volts to 1.5 volts for a<br>"low" logic state, and 3.5 volts to 5<br>volts for a "high" logic state.                                                                                                     | Remember        | CO 1 | CLO 4 | AECB03.04 |
| 28   | Define totem<br>Pole Output.       | Totem-pole output, also known as a<br>push-pull output, is a type of<br>electronic circuit and usually<br>realized as a complementary pair of<br>transistors.                                                                                                                                                                 | Remember        | CO 1 | CLO 4 | AECB03.04 |
| 29   | Define fan in?                     | Fan in is the number of inputs<br>connected to the gate without any<br>degradation in the oltage level.                                                                                                                                                                                                                       | Remember        | CO 1 | CLO 4 | AECB03.04 |
|      |                                    | MODULE-II                                                                                                                                                                                                                                                                                                                     |                 |      |       |           |
| 1    | Define sop<br>form.                | Canonical Sop form means<br>Canonical Sum of Products form. In<br>this form, each product term<br>contains all literals. So, these<br>product terms are nothing but the<br>min terms. Hence, canonical Sop                                                                                                                    | Remember        | CO 2 | CLO 7 | AECB03.07 |

| S.No | QUESTION                         | ANSWER                                                                                                                                                                                                                                                                                            | Blooms<br>Level | СО   | CLO   | CLO Code  |
|------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------|-----------|
|      |                                  | form is also called as sum of minterms form.                                                                                                                                                                                                                                                      |                 |      |       |           |
| 2    | Define 5-<br>variable k-<br>map. | The number of cells in 5 variable K-<br>map is thirty-two, since the number<br>of variables is 5. The following<br>figure shows 5 variable K-Map. here<br>is only one possibility of grouping<br>32 adjacent min terms. There are<br>two                                                          | Remember        | CO 2 | CLO 5 | AECB03.05 |
|      |                                  | possibilities of grouping 16 adjacent<br>min terms. i.e., grouping of min<br>terms from m0 to m15 and m16 to<br>m31.                                                                                                                                                                              |                 | 0    |       |           |
| 3    | Define 4-<br>variable k-<br>map. | The number of cells in 4 variables<br>K-map is sixteen, since the number<br>of variables is four. There is only<br>one possibility of grouping 16<br>adjacent min terms.                                                                                                                          | Remember        | CO 2 | CLO 5 | AECB03.05 |
| 4    | Define 3-<br>variable k-<br>map. | The number of cells in 3 variable K-<br>map is eight, since the number of<br>variables is three. The following<br>figure shows 3 variable K-Map.<br>There is only one possibility of<br>grouping 8 adjacent min terms.                                                                            | Remember        | CO 2 | CLO 5 | AECB03.05 |
| 5    | What is select line?             | A multiplexer (or mux) is a device<br>that selects one of several analog or<br>digital input signals and forwards<br>the selected input into a single line.<br>Amultiplexer of 2 n inputs has n<br>select lines, which are used to select<br>which input line to send to the<br>output.           | Understand      | CO 2 | CLO 8 | AECB03.08 |
| 6    | Define data selector.            | Data Selector take one data input<br>and a number of selection inputs,<br>and they have several outputs. They<br>forward the data input to one of the<br>outputs depending on the values of<br>the selection inputs.                                                                              | Remember        | CO 2 | CLO 8 | AECB03.08 |
| 7    | Define<br>decoder.               | A decoder is a circuit that changes a code into a set of signals. It is called adecoder because it does the reverse of encoding, but we will begin our study of encoders and decoders with decoders because they are simpler to design.                                                           | Remember        | CO 2 | CLO 8 | AECB03.08 |
| 8    | Define an<br>encoder.            | The n output lines generate the<br>binary code for the possible 2n input<br>lines. Let us take an example of an<br>octal-to-binary encoder.                                                                                                                                                       | Remember        | CO 2 | CLO 8 | AECB03.08 |
| 9    | Define priority<br>encoder.      | Binary Encoders generally have a<br>number of inputs that must be<br>mutually exclusive, i.e. only one of<br>the inputs can be active at any one<br>time. The encoder then produces a<br>binary code on the output pins,<br>which changes in<br>response to the input that has been<br>activated. | Remember        | CO 2 | CLO 8 | AECB03.08 |

| S.No | QUESTION                                                       | ANSWER                                                                                                                                                                                                                                                                                                        | Blooms<br>Level | СО   | CLO   | CLO Code  |
|------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------|-----------|
| 10   | What is Enable?                                                | Enable pin in multiplexers, de<br>multiplexer, decoder and encoder<br>ensures the functioning of the<br>hardware i.e. "enables" the function<br>of the logic circuit.                                                                                                                                         | Remember        | CO 2 | CLO 8 | AECB03.08 |
| 11   | Define k-map.                                                  | Karnaugh introduced a method for<br>simplification of Boolean functions<br>in an easy way. This method is<br>known as Karnaugh map method or<br>K-map method. It is a graphical<br>method, which consists of 2n cells<br>for 'n' variables.<br>The adjacent cells are differed only<br>in single bit position | Remember        | CO 2 | CLO 6 | AECB03.06 |
| 12   | Define Prime<br>implicant and<br>Essential prime<br>implicant. | Each grouping will give either a<br>literal or one product term. It is<br>known as prime implicant. The<br>prime implicant is said to be<br>essential prime implicant, if at least<br>single '1' is not covered with any<br>other groupings but only that<br>grouping covers.                                 | Remember        | CO 2 | CLO 6 | AECB03.06 |
| 13   | What is don't care condition?                                  | If outputs are not defined for some<br>combination of inputs, then those<br>output values will be represented<br>with don't care symbol 'x'. That<br>means, we can consider them as<br>either '0' or '1'.                                                                                                     | Understand      | CO 2 | CLO 6 | AECB03.06 |
| 14   | Define tabular<br>method.                                      | Quine-McClukey tabular method is<br>a tabular method based on the<br>concept of prime implicants. We<br>know that prime implicant is a<br>product (or sum) term, which can't<br>be further reduced by combining<br>with any other product<br>(or sum) terms of the given Boolean<br>function.                 | Remember        | CO 2 | CLO 6 | AECB03.06 |
| 15   | What is<br>universal gate?                                     | NAND & NOR gates are called as<br>universal gates. Because we can<br>implement any Boolean function,<br>which is in sum of products form by<br>using NAND gates alone. Similarly,<br>we can implement any Boolean<br>function, which is in product of sums<br>form by using NOR gates alone.                  | Understand      | CO 2 | CLO 6 | AECB03.06 |
| 16   | Define logic<br>gates?                                         | The basic digital electronic circuit<br>that has one or more inputs and<br>single output is known as Logic<br>gate. Hence, the Logic gates are the<br>building blocks of any digital<br>system. We can classify these Logic<br>gates into the following three<br>categories.                                  | Remember        | CO 2 | CLO 6 | AECB03.06 |
| 17   | Define<br>combinational<br>circuit.                            | Combinational circuits consist of<br>Logic gates. These circuits operate<br>with binary values. The output(s) of<br>combinational circuit depends on the<br>combination of present inputs.                                                                                                                    | Remember        | CO 2 | CLO6  | AECB03.04 |

| S.No | QUESTION                                | ANSWER                                                                                                                                                                                                                                                                                                           | Blooms<br>Level | СО   | CLO    | CLO Code  |
|------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|--------|-----------|
| 18   | Define half<br>adder.                   | Half adder is a combinational circuit, which performs the addition of two binary numbers A and B are of single bit. It produces two outputs sum, S &carry, C.                                                                                                                                                    | Remember        | CO 2 | CLO 5  | AECB03.05 |
| 19   | What is binary<br>adder?                | The most basic arithmetic operation<br>is addition. The circuit, which<br>performs the addition of two binary<br>numbers, is known as Binary adder.                                                                                                                                                              | Understand      | CO 2 | CLO 7  | AECB03.07 |
| 20   | Define full<br>adder.                   | Full adder is a combinational circuit,<br>which performs the addition of three<br>bits A, B and Cin. Where, A & B are<br>the two parallel significant bits and<br>Cin is the carry bit, which is<br>generated from previous stage.                                                                               | Understand      | CO 2 | CLO 7  | AECB03.07 |
| 21   | Define<br>multiplexer.                  | Multiplexer is a combinational<br>circuit that has maximum of 2n data<br>inputs, 'n' selection lines and single<br>output line. One of these data inputs<br>will be connected to the output<br>based on the values of selection<br>lines.                                                                        | Remember        | CO 2 | CLO 8  | AECB03.08 |
| 22   | Define<br>Demultiplexer                 | De-Multiplexer is a combinational<br>circuit that performs the reverse<br>operation of Multiplexer. It has<br>single input, 'n' selection lines and<br>maximum of 2n outputs. The input<br>will be connected to one of these<br>outputs based on the values of<br>selection lines.                               | Remember        | CO 2 | CLO 8  | AECB03.08 |
| 23   | Define<br>comparator.                   | Digital Comparator. A magnitude<br>digital comparator is combinational<br>circuit that compares two digital or<br>binary numbers (consider A and B)<br>and determines their relative<br>magnitudes in order to find out<br>whether one number is equal, less<br>than or greater than the other digital<br>number | Remember        | CO 2 | CLO 8  | AECB03.08 |
| 24   | What is code<br>converter?              | Codes and code converters Coding<br>is the process of translating the input<br>information which can be<br>understandable by the machine or a<br>particular device. Coding can be<br>used for security purpose to protect<br>the information<br>from steeling or interrupting.                                   | Understand      | CO 2 | CLO 8  | AECB03.08 |
| 1    | What is a                               | Counts those pulses which are                                                                                                                                                                                                                                                                                    | Understand      | CO 3 | CLO 12 | AECB03.12 |
|      | counter?                                | driven by a clock.                                                                                                                                                                                                                                                                                               | Chigoristund    |      | 22012  |           |
| 2    | What are the<br>categories<br>Counters? | (i) Asynchronous and Synchronous<br>counters. (ii) Single and multi mode<br>counters. (iii) Modulus counters.                                                                                                                                                                                                    | Understand      | CO 3 | CLO 6  | AECB03.06 |
| 3    | What is a<br>multimode<br>counter?      | If the same counter circuit can be<br>operated in both the UP and DOWN<br>modes, it is called a multimode<br>counters.                                                                                                                                                                                           | Understand      | CO 3 | CLO 12 | AECB03.12 |

| S.No | QUESTION                                                                  | ANSWER                                                                                                                                                                                                                                                                                                                        | Blooms<br>Level | CO   | CLO    | CLO Code  |
|------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|--------|-----------|
| 4    | What is a<br>asynchronous<br>Counters?                                    | Each flip flop is triggered by the previous flip flop.                                                                                                                                                                                                                                                                        | Understand      | CO 3 | CLO 14 | AECB03.14 |
| 5    | What is ripple<br>Counter?                                                | A ripple counter is an asynchronous<br>counter where only the first flip-flop<br>is clocked by an external clock                                                                                                                                                                                                              | Understand      | CO 3 | CLO 12 | AECB03.12 |
| 6    | Where the<br>ripple counter is<br>used explain?                           | It can also be used for Frequency<br>divider, time measurement,<br>frequency<br>Measurement, distance measurement<br>and also for generating square<br>waveforms.                                                                                                                                                             | Remember        | CO 3 | CLO 12 | AECB03.12 |
| 7    | What is the<br>difference<br>between ripple<br>counter and<br>Synchronous | In a synchronous counter however,<br>the external event is used to produce<br>a pulse that is synchronized with the<br>internal clock.                                                                                                                                                                                        | Remember        | CO 3 | CLO 14 | AECB03.14 |
|      | counter?                                                                  |                                                                                                                                                                                                                                                                                                                               |                 |      |        |           |
| 8    | What is the<br>major<br>Disadvantage of<br>asynchronous<br>counters?      | Disadvantages of Asynchronous<br>Counters: An extra "re-<br>synchronizing" output flip-flop may<br>be required.                                                                                                                                                                                                               | Remember        | CO 3 | CLO 14 | AECB03.14 |
| 9    | What is a<br>Johnson<br>counter?                                          | A Johnson counter is a modified<br>ring counter, where the inverted<br>output from the last flip flop is<br>connected to the input to the first.<br>The register cycles through a<br>sequence of bit-patterns.                                                                                                                | Understand      | CO 3 | CLO 13 | AECB03.13 |
| 10   | What is a ring<br>counter?                                                | A ring counter is a type of counter<br>composed of flip-flops connected<br>into a shift register, with the output<br>of the last flip-flop fed to the input<br>of the first, making a "circular" or<br>"ring" structure.                                                                                                      | Remember        | CO 3 | CLO 13 | AECB03.13 |
| 11   | What is the<br>purpose of a<br>shift register?                            | When a bit is input on the right, all<br>the bits move one place to the left,<br>and the leftmost bit disappears. Shift<br>registers are commonly used in<br>converters that translate parallel data<br>to serial data, or vice-versa. Shift<br>registers can also function as delay<br>circuits and digital pulse extenders. | Remember        | CO 3 | CLO 11 | AECB03.11 |
| 12   | What are<br>universal shift<br>registers?                                 | A Universal shift register is a<br>register which has both the right<br>shift and left<br>shift with parallel load capabilities.<br>Universal shift registers are used as<br>memory elements in computers.                                                                                                                    | Understand      | CO 3 | CLO 11 | AECB03.11 |
| 14   | What is the<br>difference<br>between register<br>and shift<br>register?   | Both shift registers and counters are<br>made of flip-flops. A shift register is<br>simply a chain of FFs where the Q<br>output of one FF connects to the D<br>input of the next. A shift register<br>will transfer data from one FF to the<br>next on each<br>clock event                                                    | Remember        | CO 3 | CLO 11 | AECB03.11 |
| 15   | What is bidirectional                                                     | A bidirectional shift register is one<br>in which the data can be shifted                                                                                                                                                                                                                                                     | Understand      | CO 3 | CLO 11 | AECB03.11 |

| S.No | QUESTION                                                               | ANSWER                                                                                                                                                                                                                                                                                                                                               | Blooms<br>Level | CO       | CLO     | CLO Code  |
|------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|---------|-----------|
|      | shift register?                                                        | either left or right. It can be<br>implemented by using gate logic that<br>enables the                                                                                                                                                                                                                                                               |                 |          |         |           |
| 16   | What is<br>adynamic shift<br>register?                                 | A dynamic shift register circuit<br>comprises an input terminal and an<br>output terminal. The logic circuit is<br>made operative by an output signal<br>of the signal follower circuit and<br>produces an inverter function at the<br>output terminal, in response to an<br>output signal of the second transfer<br>gate circuit.                   | Remember        | CO 3     | CLO 11  | AECB03.11 |
| 17   | Define<br>Sequential<br>circuits.                                      | Sequential circuit has memory so<br>output can vary based on input. This<br>type of circuits uses previous input,<br>output, clock and a memory<br>element.                                                                                                                                                                                          | Remember        | CO 3     | CLO 11  | AECB03.11 |
| 18   | Define flip-flop.                                                      | A flip-flop is a circuit that has two<br>stable states and can be used to store<br>state information. The circuit can be<br>made to change state by signals<br>applied to one or more control<br>inputs and will have one or two<br>outputs. It is the basic storage<br>element in sequential logic. flip flop<br>has a clock signal,                | Remember        | CO 3     | CLO 10  | AECB03.10 |
| 19   | Define latch.                                                          | The output of the latch depends on<br>its input. It continuously checks its<br>inputs and changes its output<br>correspondingly.<br>It is not depending on clock.                                                                                                                                                                                    | Remember        | CO 3     | CLO 10  | AECB03.10 |
| 20   | What is jk flip-<br>flop?                                              | The JK Flip Flop is basically a gated<br>RS flip flop with the addition of the<br>clock input circuitry. When both the<br>inputs S and R are equal to logic<br>"1", the invalid condition takes<br>place. Thus to prevent this invalid<br>condition, a                                                                                               | Understand      | CO 3     | CLO 10  | AECB03.10 |
| 21   | What is master<br>slave jk flip-<br>flop?                              | Master slave JK FF is a cascade of<br>two S-R FF with feedback from the<br>output of second to input of first.<br>Master is a positive level triggered.<br>But due to the presence of the<br>inverter in the clock line, the slave<br>will respond to<br>the negative level. Master-slave flip<br>flop is designed using two separate<br>flip flops. | Understand      | CO 3     | CLO 10  | AECB03.10 |
| 1    | TT                                                                     | MODULE-IV                                                                                                                                                                                                                                                                                                                                            |                 | <u> </u> | CL 0 15 | AECD02.15 |
|      | How many<br>types of Data<br>converters are<br>there what are<br>they? | There are two types of data<br>converters<br>Analog to Digital Converter<br>Digital to Analog Converter                                                                                                                                                                                                                                              | Remember        | CO 4     | CLO 15  | AECB03.15 |
| 2    | Define Analog<br>converter?                                            | To connect the output of an analog<br>circuit as an input of a digital circuit,<br>then we have to place an interfacing<br>circuit between them.                                                                                                                                                                                                     | Remember        | CO 4     | CLO 15  | AECB03.15 |

| S.No | QUESTION                                                             | ANSWER                                                                                                                                                                                                                                                                                          | Blooms<br>Level | CO   | CLO    | CLO Code  |
|------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|--------|-----------|
| 3    | Define Digital<br>converter?                                         | To connect the output of a digital<br>circuit as an input of an analog<br>circuit, then we have to place an<br>interfacing circuit between them.                                                                                                                                                | Understand      | CO 4 | CLO 15 | AECB03.15 |
| 4    | Define<br>Resolution?                                                | Resolution is the minimum amount<br>of change needed in an analog input<br>voltage for it to be represented in<br>binary (digital) output.                                                                                                                                                      | Understand      | CO 4 | CLO 15 | AECB03.15 |
| 5    | Define<br>Conversion<br>time?                                        | The amount of time required for a data converter in order to convert the data (information) of one form into its equivalent data in other form is called as conversion time                                                                                                                     | Remember        | CO 4 | CLO 15 | AECB03.5  |
| 6    | What do you<br>mean by analog<br>to digital<br>conversation<br>time? | The amount of time required for an<br>Analog to Digital Converter (ADC)<br>to convert the analog input voltage<br>into its equivalent binary (digital)<br>output is called as Analog to Digital<br>conversion time. It depends on the<br>number of bits that are used in the<br>digital output. | Understand      | CO 4 | CLO 18 | AECB03.18 |
| 7    | What do you<br>mean by digital<br>to analog<br>conversation<br>time? | The amount of time required for a<br>Digital to Analog Converter (DAC)<br>to convert the binary (digital) input<br>into its equivalent analog output<br>voltage is called as Digital to<br>Analog conversion time.                                                                              | Remember        | CO 4 | CLO18  | AECB03.18 |
| 8    | How many<br>types of DACs<br>are available?                          | There are two types of DACs<br>Weighted Resistor DAC<br>R-2R Ladder DAC                                                                                                                                                                                                                         | Understand      | CO 4 | CLO 15 | AECB03.15 |
| 9    | What is<br>weighted<br>resistor DAC?                                 | A weighted resistor DAC produces<br>an analog output, which is almost<br>equal to the digital (binary) input by<br>using binary weighted resistors in<br>the inverting adder circuit. In short,<br>a binary weighted resistor DAC is<br>called as weighted resistor DAC.                        | Remember        | CO 4 | CLO 16 | AECB03.16 |
| 10   | What do you<br>mean by virtual<br>short concept?                     | The voltage at the inverting input<br>terminal of opamp is same as that of<br>the voltage present at its non-<br>inverting input terminal. So, the<br>voltage at the inverting input<br>terminal's node will be zero volts.                                                                     | Understand      | CO 4 | CLO 10 | AECB03.10 |
| 11   | What is R-2R<br>ladder?                                              | The R-2R Ladder DAC overcomes<br>the disadvantages of a binary<br>weighted resistor DAC. As the name<br>suggests, R-2R Ladder DAC<br>produces an analog output, which is<br>almost equal to the digital (binary)<br>input by using a R-2R ladder<br>network in the inverting adder<br>circuit.  | Remember        | CO 4 | CLO 16 | AECB03.16 |
| 12   | How many<br>types of ADC<br>are there what<br>are they?              | There are two types of ADCs:<br>Direct type ADCs<br>Indirect type ADC                                                                                                                                                                                                                           | Understand      | CO 4 | CLO 15 | AECB03.15 |

| S.No | QUESTION                                          | ANSWER                                                                                                                                                                                                                                                                                    | Blooms<br>Level | CO   | CLO    | CLO Code  |
|------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|--------|-----------|
| 13   | Define Direct<br>type ADC?                        | If the ADC performs the analog to<br>digital conversion directly by<br>utilizing the internally generated<br>equivalent digital (binary) code for<br>comparing with the analog input,<br>then it is called as Direct type ADC.                                                            | Understand      | CO 4 | CLO 15 | AECB03.15 |
| 14   | What are the<br>examples of<br>Direct type<br>ADC | Counter type ADC<br>Successive Approximation ADC<br>Flash type ADC                                                                                                                                                                                                                        | Remember        | CO 4 | CLO 15 | AECB03.15 |
| 15   | What is counter<br>type ADC                       | A counter type ADC produces a digital output, which is approximately equal to the analog input by using counter operation internally.                                                                                                                                                     | Remember        | CO 4 | CLO 16 | AECB03.16 |
| 16   | What is<br>successive<br>approximation<br>ADC     | A successive approximation type<br>ADC produces a digital output,<br>which is approximately equal to the<br>analog input by using successive<br>approximation technique internally.                                                                                                       | Understand      | CO 4 | CLO 17 | AECB03.17 |
| 18   | What is voltage<br>divider network                | A reference voltage VR is applied<br>across that entire network with<br>respect to the ground. The voltage<br>drop across each resistor from<br>bottom to top with respect to ground<br>will be the integer multiples (from 1<br>to 8) of VR/8.                                           | Understand      | CO 4 | CLO 18 | AECB03.18 |
| 19   | What is Indirect<br>type ADC                      | If an ADC performs the analog to<br>digital conversion by an indirect<br>method, then it is called an Indirect<br>type ADC. In general, first it<br>converts the analog input into a<br>linear function of time (or<br>frequency) and then it will produce<br>the digital (binary) output | Remember        | CO 4 | CLO 15 | AECB03.15 |
| 20   | What is dual<br>slope ADC                         | A dual slope ADC produces an<br>equivalent digital output for a<br>corresponding analog input by using<br>two (dual) slope technique.                                                                                                                                                     | Remember        | CO 4 | CLO 17 | AECB03.17 |
| 21   | What the<br>linearity of A/D<br>or D/A?           | The linearity of an A/D or D/A converter is a important measure of its accuracy and tells us how close the converter output is its ideal transfer characteristics.                                                                                                                        | Remember        | CO 4 | CLO 15 | AECB03.15 |
| 22   | Define<br>differential non<br>linearity?          | An ADC and DAC Differential<br>Non-Linearity (DNL) When that<br>happens, the ADC's linearity is<br>severely impacted. Therefore, DNL<br>is defined as the maximum deviation<br>from one LSB between two<br>consecutive levels, over the entire<br>transfer function                       | Understand      | CO 4 | CLO 15 | AECB03.15 |
| 23   | Define<br>accuracy?                               | Accuracy can be defined as the<br>amount of uncertainty in a<br>measurement with respect to an<br>absolute standard. Accuracy<br>specifications usually contain the<br>effect of errors due to gain and<br>offset parameters.                                                             | Remember        | CO 4 | CLO 15 | AECB03.15 |

| S.No | QUESTION                                                              | ANSWER                                                                                                                                                                                                                                                                                                               | Blooms<br>Level | СО   | CLO    | CLO Code  |
|------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|--------|-----------|
| 24   | Define<br>monotonicity?                                               | Monotonicity is a property of certain<br>types of digital-to-analog converter (<br>DAC) circuits. In a monotonic<br>DAC, the analog output always<br>increases or remains constant as the<br>digital input increases.                                                                                                | Remember        | CO 4 | CLO 15 | AECB03.15 |
| 25   | Define settling<br>time?                                              | Settling Time is a very important<br>parameter for every DAC and is<br>defined as the time until the output<br>voltage reaches and don't leaves<br>again a defined voltage tolerance<br>band.                                                                                                                        | Remember        | CO 4 | CLO 15 | AECB03.15 |
| 26   | Define<br>Stability?                                                  | The ability of a DAC to produce a<br>stable output all the time is called as<br>Stability. The performance of a<br>converter changes with drift in<br>temperature, aging and power<br>supply variations.                                                                                                             | Remember        | CO 4 | CLO 15 | AECB03.15 |
| 27   | Name essential parts of DAC?                                          | Audio Signal Processing.<br>Basic Digital to Analog Converter.<br>Binary Weighted Resistors DAC.<br>R-2R Ladder Digital to Analog<br>Converter (DAC) Motor Control<br>Application.                                                                                                                                   | Understand      | CO 4 | CLO 16 | AECB03.16 |
| 28   | Which is the<br>fastest ADC and<br>why                                | The most common types of ADCs<br>are flash, successive approximation,<br>and sigma-delta. The flash ADC is<br>the fastest type available. A flash<br>ADC uses comparators, one per<br>voltage step, and a string of<br>resistors. A 4-bit ADC will have 16<br>comparators, an 8-bit ADC will<br>have 256 comparators | Understand      | CO 4 | CLO 17 | AECB03.17 |
| 29   | Define the<br>formula of<br>resolution in the<br>value of LSB?        | resolution = VFS /2n-1 = 1LSB<br>increment                                                                                                                                                                                                                                                                           | Understand      | CO 4 | CLO 15 | AECB03.15 |
| 30   | Write the<br>formula for<br>calculating time<br>period (T1) in<br>ADC | T1 =t2-t1<br>=2n counts/clock rate                                                                                                                                                                                                                                                                                   | Understand      | CO 4 | CLO 15 | AECB03.15 |
| 31   | What do mean<br>by staircase<br>signal                                | The excitation signals include a DC<br>bias potential increasing cyclically<br>by a potential step to form a<br>potential staircase signal sweeping<br>across a potential domain, and a<br>number of pulse trains either of<br>opposite polarity or shifted in<br>potential per potential step.                      | Understand      | CO 4 | CLO 17 | AECB03.17 |
| 32   | What do you<br>mean by<br>smoothing<br>signal                         | In smoothing, the data points of a signal are modified so individual points (presumably because of noise) are reduced, and points that are lower than the adjacent points are increased leading to a smoother signal.                                                                                                | Understand      | CO 4 | CLO 16 | AECB03.16 |

| 33 | What is the output equation of DAC?                        | Vo=KVFS(d12-1+ d22-2++<br>dn2-n)                                                                                                                                                                                                                                                                                                                       | Remember   | CO 4 | CLO 17 | AECB03.17 |
|----|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|--------|-----------|
| 34 | List out some<br>integrated type<br>converters.            | Charge balanced ADC<br>Dual slope ADC                                                                                                                                                                                                                                                                                                                  | Remember   | CO 4 | CLO 17 | AECB03.17 |
| 35 | What is<br>integrating type<br>converter?                  | An ADC converter that perform<br>conversion in an indirect manner by<br>first changing the analg I/P signal to<br>a linear function of time or<br>frequency and then to a digital code<br>is known as integrating type A/D<br>converter.                                                                                                               | Remember   | CO 4 | CLO 17 | AECB03.17 |
| 36 | Where the<br>successive<br>approximation<br>type ADC used? | The successive approximation<br>ADCs are used in applications such<br>as data loggers & instrumentation<br>where conversion speed is<br>important.                                                                                                                                                                                                     | Remember   | CO 4 | CLO 16 | AECB03.16 |
| 37 | What is<br>multiplying<br>DAC?                             | A digital to analog converter which<br>uses a varying reference voltage<br>VR is called a multiplying<br>DAC(MDAC). If the reference<br>voltage of a DAC, VR is a sine wave<br>give by<br>V(t)=VinCos 2f t<br>Then, Vo(t)=VomCos(2 ft + 180)                                                                                                           | Remember   | CO 4 | CLO 16 | AECB03.16 |
| 38 | State the<br>advantage of<br>dual slope<br>ADC?            | It provides excellent noise reject of<br>ac signal whose periods are integral<br>multiples of the integration time                                                                                                                                                                                                                                     | Remember   | CO 4 | CLO 17 | AECB03.17 |
| 39 | Define relative<br>accuracy?                               | It is the maximum deviation after<br>gain & offset errors have been<br>removed. The accuracy of a<br>converter is also specified in form of<br>LSB increments or % of full scale<br>voltage                                                                                                                                                            | Understand | CO 4 | CLO 15 | AECB03.15 |
| 40 | Define<br>resolution of a<br>data converter.               | It is defined as the total time<br>required converting an analog signal<br>into its digital output. It depends on<br>the conversion technique used & the<br>propagation delay of circuit<br>components. The conversion time of<br>a successive approximation type<br>ADC is given byT(n+1)<br>where Tclock period; Tc<br>conversion time; nno. of bits | Understand | CO 4 | CLO 18 | AECB03.18 |
|    | MODULE-V                                                   |                                                                                                                                                                                                                                                                                                                                                        |            |      |        |           |
| 1  | What Is<br>Memory?                                         | A memory is used to store data and<br>instruction. Computer memory is the<br>storage space in computer where<br>data is to be processed and<br>instructions required for processing<br>are stored.                                                                                                                                                     | Understand | CO 5 | CLO19  | AECB03.19 |
| 2  | Define ROM?                                                | Read-only memory (ROM) is a type<br>of non-volatile memory used in<br>computers and other electronic<br>devices. Data stored in ROM cannot<br>be electronically modified after the<br>manufacture of the memory device.                                                                                                                                | Remember   | CO 5 | CLO19  | AECB03.19 |

| 3  | Define RAM?      | Random access memory (RAM) is a<br>type of data storage. This type of<br>memory is volatile and all<br>information that was stored in RAM<br>is lost when the computer is turned<br>off.                                                                                                                            | Remember   | CO 5 | CLO19 | AECB03.19 |
|----|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-------|-----------|
| 4  | What is PLA?     | A programmable logic array is a<br>kind of programmable logic device<br>used to implement combinational<br>logic circuits. The PLA has a set of<br>programmable AND gate planes,<br>which link to a set of programmable<br>OR gate planes, which can then be<br>conditionally complemented to<br>produce an output. | Understand | CO 5 | CLO20 | AECB03.20 |
| 5  | What is PAL?     | Programmable Array Logic is a type<br>of Programmable Logic Device<br>(PLD) used to realize a particular<br>logical function. PALs comprise of<br>an AND gate array followed by an<br>OR gate array.                                                                                                                | Understand | CO 5 | CLO20 | AECB03.20 |
| 6  | Define FPGA?     | Field Programmable Gate Arrays<br>(FPGAs) are semiconductor devices<br>that are based around a matrix of<br>configurable logic blocks (CLBs)<br>connected via programmable<br>interconnects. FPGAs can be<br>reprogrammed to desired application<br>or functionality requirements after<br>manufacturing            | Remember   | CO 5 | CLO21 | AECB03.21 |
| 7  | Define CAM?      | Computer-aided manufacturing<br>(CAM) is an application technology<br>that uses computer software and<br>machinery to facilitate and automate<br>manufacturing processes.                                                                                                                                           | Understand | CO 5 | CLO21 | AECB03.21 |
| 8  | Define CPLD?     | A complex programmable logic<br>device is a programmable logic<br>device with complexity between that<br>of PALs and FPGAs, and<br>architectural features of both. The<br>main building block of the CPLD is<br>a macrocell.                                                                                        | Remember   | CO 5 | CLO20 | AECB03.20 |
| 9  | What Is PLD?     | A programmable logic device is an electronic component used to build reconfigurable digital circuits. Unlike integrated circuits (IC) which consist of logic gates and have a fixed function, a PLD has an undefined function at the time of manufacture.                                                           | Understand | CO 5 | CLO20 | AECB03.20 |
| 10 | What Is<br>PROM? | Programmable read-only memory<br>(PROM) is read-only memory that<br>can be modified once by a user.<br>PROM is a way of allowing a user<br>to tailor a microcode program using<br>a special machine called a PROM<br>programmer                                                                                     | Understand | CO 5 | CLO19 | AECB03.19 |

## Signature of the Faculty

Signature of HOD