TARE TO LIBERTY

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	DISCRETE MATHEMATICAL STRUCTURES
Course Code	:	ACSB04
Program	:	B.Tech
Semester	•	III
Branch	:	Computer Science and Engineering
Section	:	A, B, C & D
Academic Year	:	2019- 2020
Course Faculty	:	Ms. K Mayuri, Assistant Professor Mr. N V Krishna Rao, Assistant Professor Ms. N M Deepika, Assistant Professor Ms. G Nishwitha, Assistant Professor Ms. B Dhanalaxmi, Assistant Professor Ms. B Pravallika, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:						
I	Describe the logical and mathematical foundations, and study abstract models of computation.						
II	Illustrate the limitations of predicate logic.						
III	Define modern algebra for constructing and writing mathematical proofs.						
IV	Solve the practical examples of sets, functions, relations and recurrence relations.						
V	Recognize the patterns that arise in graph problems and use this knowledge for constructing the trees and spanning trees.						

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE	:-I			
1	Define Proposition?	A proposition is a statement that is either true or false.	Remember	CO 1	CLO 2	ACSB04.02
2	Define connectives?	Any word or expression used to connect two or more statements is called as connectives	Remember	CO 1	CLO 1	ACSB04.01
3	What is implication?	Logical implication is a type of relationship between two statements or sentences. The relation translates verbally into "logically implies" or "if/then" and is symbolized by a double-lined arrow pointing toward the right (). If A and B represent statements, then A B means "A implies B"	Remember	CO 1	CLO 1	ACSB04.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		or "If A, then B."				
4	DefineTautology ?	A Tautology is a formula which is always true for every value of its propositional variables.	Remember	CO 1	CLO 2	ACSB04.02
5	Define contradiction?	A Contradiction is a formula which is always false for every value of its propositional variables.	Remember	CO 1	CLO 2	ACSB04.02
6	What is Contigency?	A proposition that is neither a tautology nor a contradiction is called a contingency.	Remember	CO 1	CLO 2	ACSB04.02
7	What are Connectives in Propositional Logic?	Propositional logic provides five different types of connectives - • OR (V) • AND (∧) • Negation/ NOT (¬) • Implication / if-then (→) • If and only if (⇔).	Remember	CO 1	CLO 1	ACSB04.01
8	What is negation?	The negation of a proposition A (written as ¬A) is false when A is true and is true when A is false.	Remember	CO 1	CLO 1	ACSB04.01
9	What is conjunction?	The conjunction of two statements (or propositions) p and q is the statement p \(\Lambda \) q which is read as p and q. The statement p \(\Lambda \) q has the truth value T whenever both p and q have the truth value T. Otherwise it has truth value F.	Remember	CO 1	CLO 1	ACSB04.01
10	What is disjunction?	The disjunction of two statements p and q is the statement p V q which is read as p or q. The statement p V q has the truth value F only when both p and q have the truth value F. Otherwise it has truth value T.	Remember	CO 1	CLO 1	ACSB04.01
11	Define quantifers?	Quantifiers are words that are refer to quantities such as 'some' or 'all'.	Remember	CO 1	CLO 3	ACSB04.03
12	What is Universal quantifer?	Universal quantifier states that the statements within its scope are true for every value of the specific variable. It is denoted by the symbol \forall .	Remember	CO 1	CLO 3	ACSB04.03
13	What is Existential quantifer?	Existential quantifier states that the statements within its scope are true for some values of the specific variable. It is denoted by the symbol \exists .	Remember	CO 1	CLO 3	ACSB04.03
14	What are nested quantifers?	If we use a quantifier that appears within the scope of another quantifier, it is called nested quantifier.	Understand	CO 1	CLO 3	ACSB04.03

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
15	What is	A product of the variables and	Understand	CO 1	CLO 4	ACSB04.04
	elementary	their negations in a formula is				
	product?	called elementary product?				
16	What is	A sum of the variables and their	Understand	CO 1	CLO 4	ACSB04.04
	elementary sum?	negations in a formula is called				
		a elementary sum.				
17	What is	Sum of elementary products is	Remember	CO 1	CLO 4	ACSB04.04
	disjunctive	called as disjunctive normal				
	normal form?	form of the given formula.				
18	What is	Product of elementary sum is	Remember	CO 1	CLO 2	ACSB04.02
	conjunctive	called as conjunctive normal				
10	normal form?	form of the given formula.	D 1	CO 1	CI O A	A CCD 04 02
19	What is	A proposition involving the universal or the existential	Remember	CO 1	CLO 2	ACSB04.02
	quantified statement?	quantifier is called as quantified				
	statement:	statement.	\cup			
20	What is Duality	Duality principle states that for	Understand	CO 1	CLO 3	ACSB04.03
20	principle?	any true statement, the dual	Onderstand	CO 1	CLO 3	11C5B04.03
	principle:	statement obtained by				
		interchanging unions into				
		intersections (and vice versa)				
		and interchanging Universal set				
		into Null set (and vice versa) is				
		also true. If dual of any				
		statement is the statement itself,				
		it is said self-dual statement.				
21	Define Predicate?	A common part or factor in a	Remember	CO 1	CLO 2	ACSB04.02
		statement is called as predicate.	No.			
22	What is	A compound proposition	Understand	CO 1	CLO 2	ACSB04.02
	conditional	obtained by combining two				
	statement?	given propositions by using the				
		words 'if 'and 'then' at				
		appropriate places is called a conditional statement.		-a		
23	What is	A biconditional statement is a	Understand	CO 1	CLO 3	ACSB04.03
23	biconditional	combination of a conditional	Onderstand	CO 1	CLO 3	ACSB04.03
		statement and its converse				
	statement?	written in the if and only if		7	/	
		form.	139			
		A biconditional is true if and			100	
		only if both the conditionals are				
		true.		()		
		Bi-conditionals are represented		1. "		
		by the symbol \leftrightarrow or \Leftrightarrow .	1 1 1	J.		
		p↔q means				
24	Ting along the C	that $p \rightarrow q$ and $q \rightarrow p$.	D 1	CO 1	CI O 2	A CCD 04 02
24	List the types of	Types of Normal form	Remember	CO 1	CLO 3	ACSB04.03
	Normal Forms?	 Disjunctive Normal form Conjunctive normal form 				
25	Wile at 1 Del 1 1	, and the second	D or 1	CO 1	CI O 2	A CCD 04 02
25	What is Principle	For a given formula an equivalent formula consisting of	Remember	CO 1	CLO 3	ACSB04.03
	Disjunctive	a disjunction of minterms only				
	normal form?	is known as its principle				
		disjunction normal form. Such a				
		normal form is also said to be				
		the sum-product canonical				
1		1	ı			
		form.				1
26	What is Principle	form. The principle of conjunctive	Remember	CO 1	CLO 3	ACSB04.03
26	What is Principle Conjunctive		Remember	CO 1	CLO 3	ACSB04.03

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	normal form?	formula consists of only the				
		conjunction of the maxterms only.				
		the maxering only.				
		MODULE	-II			
1	Define a set?	Collection of elements is called set	Remember	CO 2	CLO 5	ACSB04 .05
2	Define a subset?	Give two set A and B if B contains some elements of A then B is called subset of A	Remember	CO 2	CLO 5	ACSB04 .05
3	Define null set?	A set with no elements is called null set.	Remember	CO 2	CLO 5	ACSB04 .05
4	Define equal sets?	Two sets A and B are said to equal if they have same elements	Remember	CO 2	CLO 9	ACSB04 .09
5	Define universal set?	A set which contains all sets as subsets is called universal set and it is denoted by U	Remember	CO 2	CLO 5	ACSB04 .05
6	Define power set?	For a given set A we construct a set consisting of all subsets of A that set is called power set of A.	Remember	CO 2	CLO 5	ACSB04 .05
7	What are the operation on sets?	The operation on sets are 1. Union 2. Intersection 3. Complement 4. Difference	Understand	CO 2	CLO 5	ACSB04 .05
8	Define Commutative laws?	Commutative laws are (1) $A \cup B = B \cup A$ (2) $A \cap B = B \cap A$	Remember	CO 2	CLO 5	ACSB04 .05
9	Define associative law?	Associative laws are (1) $A \cup (B \cup C) = (A \cup B)$ $\cup C$	Remember	CO 2	CLO 5	ACSB04 .05
		(2) $A \circ (B \circ C) = (A \circ B)$ $\circ C$. 4	_7		5
10	Define distributive laws?	Distributive laws are (1) $A \cap (B \cup C) = (A \cap B)$ $\cup (A \cap C)$ (3) $A \cup (B \cap C) = (A \cup B)$ $\cap (A \cup C)$	Remember	CO 2	CLO 5	ACSB04 .05
11	Define idempotent laws?	Idempotent Laws are (1) A ₀ A=A (2) A ₂ A=A	Remember	CO 2	CLO 5	ACSB04 .05
12	Define identity laws?	Identity laws are (1) $A \cup \emptyset = A$ (2) $A \cap U = A$	Remember	CO 2	CLO 5	ACSB04 .05
13	Define law of double complement law?	Double Complement law is $\tilde{A} = A$	Remember	CO 2	CLO 5	ACSB04 .05
14	Define inverse law?	Inverse law are (1) $A \cup \check{A} = U$ (2) $A \cap \check{A} = \infty$	Remember	CO 2	CLO 5	ACSB04 .05
15	Define DeMorgan law?	DeMorgan laws are (1) $(A \cup B)^c = A^c \cap B^c$ (2) $(A \cap B)^c = A^c \cup B^c$	Remember	CO 2	CLO 5	ACSB04 .05
16	Define domination law?	Domination laws are (1) $A \cup U = U$ (2) $A \cap \emptyset = \emptyset$	Remember	CO 2	CLO 5	ACSB04 .05

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
17	Define absorption	Absorption Laws	Remember	CO 2	CLO 5	ACSB04 .05
	law?	$(1) A \cup (A \cap B) = A$				
18	Define relation?	(2) $A \cap (A \cup B) = A$ Let A and B are two sets. Thus	Remember	CO 2	CLO 5	ACSB04 .05
10	Define relation:	if R is a relation from A to B	Remember	CO 2	CLO 3	71C5B0+ .03
		then R contains set of ordered				
		pairs(a,b) where a€A and				
		b€B.then R is said to be a				
10	XXII	relation from A to B.	XX 1 1	GO 2	CT O 5	4 CCD 04 05
19	What is matrix of relation?	Consider the sets $A=\{a_1,a_2,,a_m\}$ and	Understand	CO 2	CLO 5	ACSB04 .05
	iciation:	$B=\{b_1,b_2,,b_n\}$ of orders m and				
		n respectively.let R be a relation				
		from A to B.them _{ij} = (a_i,b_i) and		_		
		assign the values				
		1 if $(a_i,b_j) \in \mathbb{R}$ and		-		
20	D.C. 1. 1	0 if (a_i,b_i) \mathbb{C} R	Remember	CO 2	CI O C	A CCDOA OC
20	Define diagraph of a relation?	Let r be a relation on finite set R.there are vertices and	Remember	CO 2	CLO 6	ACSB04 .06
	or a relation.	nodes,draw an arrow called				
		edge,from vertex x to vertex y if				
		and only if $(x,y) \in R$, the resuling				
		pictorial representation of R is				
21	What are the	called a digraph of R.	II. I	CO 2	CLO 7	ACSB04 .07
21	operations of	Operations of relations are 1. Union and intersection	Understand	CO 2	CLO /	ACSB04.07
	relation?	of relations				
		2. Complement of a				
		relation				
22	XX 71	3. Converse of a relation	TT 1 . 1	GO 2	CI O 7	A CCD 04 07
22	What are the properties of	Properties of relations defined on a set	Understand	CO 2	CLO 7	ACSB04 .07
	relation?	1. Reflexive relation				700
		2. Irreflexive relation	- // '	\neg		
		3. Symmetric relation				
		4. Compatibility relation				
		5. Antisymmetric relation6. Transitive relation				
23	Define reflexive	A relation R on set A is	Remember	CO 2	CLO 7	ACSB04 .07
	relation?	reflexive whenever every				
		element a of A is related to itself		<		
	D.C	by R(i.e., aRa, for all a€A)	D .	00.5	Gr o =	1 GGT 0 1 0 7
24	Define irreflexive relation?	A relation on a set A is said to be irreflexive if (a,a)€R for	Remember	CO 2	CLO 7	ACSB04 .07
	iciation?	a€A.thatis,a relation R is				
		irreflexive if no element of A is				
		related to itself by R.				
25	Define symmetric	A relation R on a set is said to	Remember	CO 2	CLO 7	ACSB04 .07
	relation?	be symmetric if(b,a)€R				
26	Define	whenever(a,b)€R for all a,b€A. A relation R on a set A which is	Remember	CO 2	CLO 7	ACSB04 .07
20	compatibility	both reflexive and symmetric is	Kemember	CO 2	CLO /	ACDU4.07
	relation?	called a compatibility relation				
		on A.				
27	Define anti	A relation R on a set A is said to	Remember	CO 2	CLO 7	ACSB04 .07
	symmetric relation?	be antisymmetric if whenever				
28	Define transitive	(a,b) €R and (b,a)€R then a=b. A relation R on a set A is said to	Remember	CO 2	CLO 7	ACSB04 .07
20	relation?	be transitive if whenever(a,b)	Remember		CLOT	7100007.07
		\in Rand(b,c) \in Rthen(a,c) \in R,for all				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		a,b,c €A.				
29	Define equivalence relation?	A relation between elements of a set which is reflexive, symmetric, and transitive and	Remember	CO 2	CLO 7	ACSB04 .07
	Totation:	which defines exclusive classes whose members bear the				
		relation to each other and not to those in other classes				
30	Define partial order relation?	A relation that is reflexive, antisymmetric, and transitive is	Remember	CO 2	CLO 7	ACSB04 .07
	order relation:	called a partial order . Two fundamental partial order				
		relations are the "less than or equal" relation on a set of real				
		numbers and the "subset" relation on a set of sets.	U			
31	Define maximal	An element a € A is called	Remember	CO 2	CLO 8	ACSB04 .08
	element?	minimal element of A if there exists no element $x!=a$ in A such that $aRx.in$ other words, $a \in A$ is a				
		minimal element of A if whenever there is $x \in A$ such				
22	D. Caraniai and	that aRx then x=a.	Demonstra	CO 2	CI O 0	A CCDO4 00
32	Define minimal element?	An element a € A is minimal element of A if there exists no	Remember	CO 2	CLO 8	ACSB04 .08
		element x!=a in A such that xRa.in other words,a is a				
		minimal element of A if whenever there is $x \in A$ such that xRa , then $x=a$.				
33	Define greatest element?	An element a € A is called a greatest element of A if xRa for	Remember	CO 2	CLO 8	ACSB04 .08
		all x € A.	- /	$\neg \circ$		
34	Define least	An element a € A is called a leat	Remember	CO 2	CLO 8	ACSB04 .08
25	element?	element of A if aRx for all x € A.		GO 4	GY 0 11	1 GGD 0 1 11
35	Define least upper	The least upper bound of A is also called the supremum of A.	Remember	CO 2	CLO 11	ACSB04 .11
	bound(LUB)?	It can be written sup(A) or lub (A). Sets with no upper				
		bound have no least upper bound , of course. The set of all		1		
		numbers is an example. The empty set has no least upper	1.1.			
		bound , because every number is an upper bound for the empty set.				
36	Define greatest	The infimum of a subset S of a	Remember	CO 2	CLO 11	ACSB04 .11
	lower bound (GLB)?	partially ordered set T is the greatest element in T that is less than or equal to all elements				
		of S, if such an element exists. Consequently, the				
		term greatest lower bound (abbreviated as GLB) is				
	D. C. 1	also commonly used			GY C 11	- Capa
37	Define lattice?	Let(A,R) be a poset.thisposet is called lattice if every two-	Remember	CO 2	CLO 11	ACSB04 .11
		element subset of A has a least				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		upper bound and a Greatest				
20	Define sub	lowe bound in A. Let (l,r)be a lattice and M be a	Remember	CO 2	CLO 11	ACSB04 .11
38	lattice?	subset of L.then M is called a	Remember	CO 2	CLOTI	ACSB04.11
	Tuttice.	sublattice of L if a V b € M and				
		a ^ b € M whenever a € M and b				
		€ M.				
39	Define properties of lattices?	Properties of lattices are	Remember	CO 2	CLO 12	ACSB04 .12
	of fattices?	 Idempotent properties Commutative 				
		properties				
		3. Associative properties				
		4. Absorption properties.				
40	Define bounded	A lattice (L,R) is said to be	Remember	CO 2	CLO 12	ACSB04 .12
	lattice?	bounded if it has a greatest element and a least element in	\cup			
		bounded lattice, a greatest				
		element is denoted by I and least				
		element by 0.				
41	Define	A lattice(L,R) is said to be	Remember	CO 2	CLO 12	ACSB04 .12
	distributive lattice?	distributive if, for any a,b,c € L. 1. a^(bVc)=(a^b)v(a^c)				
	rattice?	$\begin{array}{cccc} 1. & a^{*}(b^{*}v^{c}) = (a^{*}b)^{*}v(a^{*}v^{c}) \\ 2. & a^{*}(b^{*}c) = (a^{*}b)^{*}(a^{*}v^{c}) \end{array}$				
42	Define	Let L be a bounded lattice with	Remember	CO 2	CLO 12	ACSB04 .12
	complemented	greatest element I and least				
	lattice?	element 0.for a choosen element				
		of a of L, if there exists an				
		element a' € L such that a V a' =I and a ^ a'= 0,then a' is called				
		complement of a in L.				
43	Define function?	Let A and B be two non-empty	Remember	CO 2	CLO 9	ACSB04 .09
		sets. then a function f from A to				
		B is a relation from A to B such that for each a in A there is a	- 10 -			
		unique b in B such that(a,b)€f. A				
		function from A to B is denoted				6.
	C	by f:A—>B.				
44	Define identify	A function f:A—>A such that	Remember	CO 2	CLO 9	ACSB04 .09
	function?	$f(a) = a$ for every $a \in A$ is called			100	
45	Define constant	identity function on A. A function f:A—>B such that	Remember	CO 2	CLO 9	ACSB04 .09
43	function?	$f(a)=c$ for every $a \in A$, where c is	Remember	CO 2	CLO	ACSBO4.09
		a fixed element of B,is called		1		
		constant function.		9		
46	Define onto	A function f:A—>B is said to be	Remember	CO 2	CLO 9	ACSB04 .09
	function?	onto function if every element of B has a preimage in A,under				
		f.				
47	Define one to one	If f:A—>B is a one -to-one	Remember	CO 2	CLO 9	ACSB04 .09
	function?	function,then every element of				
		A has a unique image in B and				
		every element of f(A) has a unique preimage in A.				
48	Define bijective	A function which is both one –	Remember	CO 2	CLO 9	ACSB04 .09
.0	function?	to-one and onto is called		232	220 /	
		bijective.				
49	Define recursive	We can also define functions	Remember	CO 2	CLO 10	ACSB04 .10
	function?	recursively: in terms of the same function of a smaller				
		variable. In this way,				
			ı		l	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		a recursive function "builds"				
		on itself. A recursive definition has				
		parts: Definition of the smallest				
		argument (usually f (0) or f				
		(1)). Definition of f (n), given f				
50	Define Invertible	There is a symmetry between	Remember	CO 2	CLO 9	ACSB04 .09
30	function?	There is a symmetry between a function and its inverse.	Kemember	CO 2	CLO 9	ACSB04 .09
		Specifically, if f is an invertible				
		function with domain X and				
		range Y, then its inverse f ⁻¹ has domain Y and range X, and the				
		inverse of f^{-1} is the		_		
		original function f. In symbols,				
		for functions $f: X \to Y$ and $f^{-1}: Y$	Name of Street			
		\rightarrow X, and.				
		MODULE-	Ш			
1	Define Algebraic	A non empty set S is called an	Understand	CO 3	CLO13	ACSBO4.13
	Structure?	algebraic structure w.r.t binary				
	•	operation (*) if it follows following axioms:				
		Closure:(a*b) belongs to S for				
		all $a,b \in S$.				
2	DefineSemi	A non-empty set S, (S,*) is	Remember	CO 3	CLO13	ACSBO4.13
	Group	called a semigroup if it follows				
		the following axiom:				
		Closure:($a*b$) belongs to S for all $a,b \in S$.				
		Associativity: $a*(b*c) = (a*b)*c$				
		∀ a,b,c belongs to S.	- 11 -	_8		
3	Define closure	Closure:(a*b) belongs to S for	Remember	CO 3	CLO13	ACSBO4.13
	property of semi	all $a,b \in S$.				6
4	group	A : - 4: - : 4	Damamhan	GO 2	CI 012	A CCD 04 12
4	Define Associativity	Associativity: $a*(b*c) = (a*b)*c$ \forall a,b,c belongs to S.	Remember	CO 3	CLO13	ACSBO4.13
	property of semi	u,o,e belongs to b.			70	
	group	A			1	
5	Define monoid	A non-empty set S, (S,*) is	Remember	CO 3	CLO14	ACSBO4.14
		called a monoid if it follows the following axiom:		2		
		Closure:(a*b) belongs to S for	1 / 1			
		all a,b∈ S.				
		Associativity: $a*(b*c) = (a*b)*c$				
		∀a,b,c belongs to S. Identity Element:There exists e				
		\in S such that $a^*e = e^*a = a \ \forall \ a \in$				
		S				
6	Define group	A non-empty set G, (G,*) is	Remember	CO 3	CLO14	ACSBO4.14
		called a group if it follows the following axiom:				
		Closure:(a*b) belongs to G for				
		all a,b ∈ G.				
		Associativity: $a*(b*c) = (a*b)*c$				
		∀ a,b,c belongs to G. Identity Element:There exists e				
		\in G such that $a*e = e*a = a \forall a$				
			La contraction de la contracti			J.

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		\in G Inverses: \forall a \in G there exists a-1 \in G such that a*a-1 = a-1*a = e				
7	Define Abelian Group or Commutative group	A non-empty set S, $(S,*)$ is called a Abelian group if it follows the following axiom: Closure: $(a*b)$ belongs to S for all $a,b \in S$. Associativity: $a*(b*c) = (a*b)*c$ \forall a,b,c belongs to S. Identity Element:There exists $e \in S$ such that $a*e = e*a = a \forall a$	Remember	CO 3	CLO13	ACSBO4.13
		∈ S Inverses: $∀$ a $∈$ S there exists a- 1 $∈$ S such that $a*a-1 = a-1*a = e$ Commutative: $a*b = b*a$ for all a,b ∈ S	0			
8	define Commutative group	A non-empty set S, (S,*) is called a Abelian group if it follows the following axiom: Closure:(a*b) belongs to S for all a,b ∈ S. Associativity: a*(b*c) = (a*b)*c ∀ a,b,c belongs to S. Identity Element:There exists e ∈ S such that a*e = e*a = a ∀ a ∈ S Inverses:∀ a ∈ S there exists a-	Remember	CO 3	CLO13	ACSBO4.13
		$1 \in S$ such that $a*a-1 = a-1*a = e$ Commutative: $a*b = b*a$ for all $a,b \in S$. y		1 :	
9	Define Associative law	An operation * on a set is said to be associative or to satisfy the associative law if, for any elements a, b, c in S we have (a * b) * c = a * (b * c)	Remember	CO 3	CLO14	ACSBO4.14
10	Define commutative law	An operation * on a set S is said to be commutative or satisfy the commutative law if, a * b = b * a for any element a, b in S.	Remember	CO 3	CLO13	ACSBO4.13
11	define Identity element and inverse	Consider an operation * on a set S. An element e in S is called an identity elements for * if for any elements a in S - a * e = e * a = a Generally, an element e is called a left identity or a right identity according to as e *a or a * e = awhere a is any elements in S. Suppose an operation * on a set S does have an identity element e. The inverse of an element in S is an element b such that: a * b = b * a = e	Remember	CO 3	CLO14	ACSBO4.14

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
12	What is a ring	A ring homomorphism which is	Remember	CO 3	CLO13	ACSBO4.13
	isomorphism?	a bijection (one-one and onto) is				
		called aring isomorphism. If f:				
		$R \rightarrow S$ is such an isomorphism, we call the rings R and				
		Sisomorphic and write R S.				
		Remarks. Isomorphic rings have				
		all their ring-theoretic properties				
		identical.				
13	What does it	In abstract algebra, a group	Understand	CO 3	CLO14	ACSBO4.14
	mean for two	isomorphism is a function				
	groups to be isomorphic?	between two groups that sets up a one-to-one correspondence				
	isomorphic?	between the elements of	_	_		
		the groups in a way that respects				
		the given group operations. If				
		there exists				
		an isomorphism between two				
		groups, then the groups				
		are called isomorphic.				
14	What is ideal	In ring theory, a branch of	Remember	CO 3	CLO15	ACSBO4.15
	algebra?	abstract algebra, an ideal is a				
		special subset of a ring. Ideals generalize certain subsets of the				
		integers, such as the even				
		numbers or the multiples of 3				
		The concept of an order ideal in				
		order theory is derived from the	No.			
		notion of ideal in ring theory				
15	What is a zero	Zero divisor. In a ring, a	Remember	CO 3	CLO15	ACSBO4.15
	divisor of a ring?	nonzero element is said to be a zero divisor if there exists a				
	1777	nonzero such that . For example,				700
		in the ring of integers taken	- 4	$\neg $		
	0	modulo 6, 2 is a zero	. "	-7)
		divisor because a ring with				
		no zero divisors is called an		_		
		integral domain.				
16	What makes a	Two graphs which contain the	Remember	CO 3	CLO13	ACSBO4.13
	graph	same number of graph vertices		- 0		
	isomorphic?	connected in the same way are said to be isomorphic. Formally,		2		
		two graphs and	- 0	1		
		with graph vertices are said to	1. 1.3	0		
		be isomorphic if there is a				
		permutation of such that is in the				
		set of graph edges if f is in the				
1.5	XXXII	set of graph edges.	, i	ac t	CT C 12	A GGD C 4 4 C
17	What is the zero	In mathematics, the zero ideal in	Remember	CO 3	CLO13	ACSBO4.13
	element of a	a ring is the ideal consisting of				
	ring?	only the additive identity (or zero element).				
10	Wile at the angles		I I adams to a d	CO 2	CL 012	A CCD 0.4.12
18	What is a ring	A ring homomorphism which is a bijection (one-one and onto) is	Understand	CO 3	CLO13	ACSBO4.13
	isomorphism?	called aring isomorphism. If f:				
		$R \rightarrow S$ is such an isomorphism,				
		we call the rings R and S				
		isomorphic and write R S.				
1		Remarks. Isomorphic rings have				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code		
		all their ring-theoretic properties						
19	What is Homomorphism in discrete mathematics?	identical. In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces).	Understand	CO 3	CLO13	ACSBO4.13		
20	What is Homomorphism in discrete mathematics?	In algebra, a homomorphism is a structure	Understand	CO 3	CLO14	ACSBO4.14		
21	define the Fundamental Counting Principle	The Fundamental Counting Principle (also called the counting rule) is a way to figure out the number of outcomes in a probability problem. Basically, you multiply the events together to get the total number of outcomes.	Remember	CO 3	CLO16	ACSBO4.16		
22	What is combination discrete mathematics?	A combination is a selection of all or part of a set of objects, without regard to the order in which objects are selected. For example, suppose we have a set of three letters: A, B, and C Each possible selection would be an example of a combination.	Remember	CO 3	CLO 17	ACSBO4.17		
23	What is pigeonhole principle in discrete mathematics?	The pigeonhole principle states that if items are put into containers, with , then at least one container must contain more than one item.	Remember	CO 3	CLO17	ACSBO4.17		
24	What is sum and product rule of combinatorics?	In combinatorics, the rule of sum or addition principle is a basic counting principle. Stated simply, it is the idea that if we have A ways of doing something and B ways of doing another thing and we can not do both at the same time, then there are A + B ways to choose one of the actions	Remember	CO 3	CLO18	ACSBO4.18		
	MODULE-IV							
1	Define recurrence relation?	A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous term(s).	Remember	CO 4	CLO 19	ACSB04 .019		
2	What is generating function?	A generating function is a (possibly infinite) polynomial whose coefficients correspond to terms in a sequence of numbers a_n .	Understand	CO 4	CLO 19	ACSB04 .019		
3	What is First order Recurrence	A recurrence relation of the form:	Understand	CO 4	CLO 20	ACSB04 .20		

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	relation?	$\mathbf{a_n} = \mathbf{ca_{n-1}} + \mathbf{f(n)}$ for n>=1 where c is a constant and f(n) is				
		a known function is called linear				
		recurrence relation of first order				
		with constant coefficient. If f(n)				
		= 0, the relation is homogeneous otherwise non-homogeneous.				
4	What is Second	A recurrence relation of the	Understand	CO 4	CLO 20	ACSB04 .20
	orderlinear	form	Ciracistana		020 20	1100201.20
	homogeneous	$c_n a_n + c_{n-1} a_{n-1} + c_{n-2} a_{n-2} = 0$ for				
	Recurrence	n>=2				
	relation?	where c_n , c_{n-1} and c_{n-2} are real constants with $c_n = 0$ is called a				
		second order linear	_	_		
		homogeneous recurrence				
		relation with constant				
5	What is	coefficients. The characteristic	Understand	CO 4	CLO 21	ACSB04 .21
3	characteristic	equation (or auxiliary equation)	Understand	CO 4	CLO 21	ACSB04 .21
	equation?	is an algebraic equation				
	•	of degree n upon which depends				
		the solution of a given nth-				
6	What is third and	order differential equation. A recurrence relation of the	Understand	CO 4	CLO 20	ACSB04 .20
	higher order	form	Chacistana	CO 4	CLO 20	ACSBO+.20
	linear	$c_n a_n + c_{n-1} a_{n-1} + c_{n-2} a_{n-2} + \dots + c_n$				
	homogeneous	$ka_{n-k}=0$, for $n\geq k\geq 3$,				
	recurrence relations?	Where cn, cn-1,cn-k are real constants with cn \neq 0. A relation				
	relations.	of this type is called recurrence				
		relation of third and higher order				
		linear homogeneous relation with constant coefficients.				
7	What is the form	A recurrence relation of the	Understand	CO 4	CLO 21	ACSB04 .21
	of Second and	form				5
	higher order	$c_n a_n + c_{n-1} a_{n-1} + c_{n-2} a_{n-2} + \dots + c_n$				
	linear nonhomogeneous	$ka_{n-k} = f(n)$, for $n \ge k \ge 2$, Where c_n , c_{n-1} , c_{n-k} are real		,	1	
	recurrence	constants with $c_n \neq 0$ and $f(n)$ is a				
	relations?	real valued function of n.			V	
		MODULE	-V			
1	Define Graph	Graph is a collection (nonempty	Remember	CO 5	CLO 22	ACSB04 .22
1	Define Orapii	set) of vertices and edges	Remember	203		110000+.22
2	Define Vertices	A vertex (plural: vertices) is a	Remember	CO 5	CLO 22	ACSB04 .22
		point where two or more line				
		segments meet. It can have				
		names and properties				
3	Define Edges	It connects two vertices, can be	Remember	CO 5	CLO 22	ACSB04 .22
		labeled, can be directed.				
4	Define Adjacent	If there is an edge between the	Remember	CO 5	CLO 22	ACSB04 .22
	vertices	vertices then that vertices can be called as adjacent vertices.				
5	Define undirected	In undirected graphs the edges	Remember	CO 5	CLO 22	ACSB04 .22
	graphs	are symmetrical, e.g. if A and B	110111001			1100D0 F.22
	5	are vertices, A B and B A are				
		one and the same edge.				
		·				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
6	Define directed	In directed graphs the edges are	Remember	CO 5	CLO 22	ACSB04 .22
	graphs	oriented; they have a beginning				
		and an end. Thus A B and B A				
		are different edges. Sometimes				
		the edges of a directed graph are				
		called arcs.				
7	Define Cycles.	A cycle is a simple path with	Remember	CO 5	CLO 22	ACSB04 .22
		distinct edges, where the first				
		vertex is equal to the last				
8	Define Loop	An edge that connects the vertex	Remember	CO 5	CLO 22	ACSB04 .22
		with itself				
9	Define	There is a path between each	Remember	CO 5	CLO 22	ACSB04 .22
	Connected graph	two vertices in a graph are				
		called connected graphs.	Name of Street			
		(A)				

		(b)				
10	Define	There are at least two vertices	Remember	CO 5	CLO 22	ACSB04 .22
	Disconnected	not connected by a path				
	graph	Vertices: A,B,C,D				
		Edges: AB, AC				
		Edges. AB, AC	- 11 -	-0		
			. 41 .			
				7		6
		(A)(B)			4	
		T			-	
					100	
				- 0		
				4		
			-	1		
			. 13	0		
		F 60 5				
11	Define	Two graphs which contain the	Remember	CO 5	CLO 22	ACSB04 .22
	Isomorphic	same number of graph vertices				
	graphs	connected in the same way are				
		said to be isomorphic.				
1.0	Define Euler	A closed walk in a graph G	Remember	CO 5	CLO 22	ACSB04 .22
12	Define Euler					
12	graph	containing all the edges of G is				
12						
12		containing all the edges of G is				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		e_1 v_1 e_2 v_3 e_4 v_5 Eulerian graph				
13	Define Hamiltonian graphs	A cycle passing through all the vertices of a graph is called a Hamiltonian cycle. A graph containing a Hamiltonian graph. A path passing through all the vertices of a graph is called a Hamiltonian path and a graph containing a Hamiltonian path is said to be traceable. Examples of Hamiltonian graphs are given in Figure	Remember	CO 5	CLO 23	ACSB04 .23
		e_1			,	
14	Define Planar graph	A planar graph is an undirected graph that can be drawn on a plane without any edges crossing. Such a drawing is called a planar representation of the graph in the plane	Remember	CO 5	CLO 22	ACSB04 .22
15	Define Euler's	A planar representation of a	Remember	CO 5	CLO 23	ACSB04 .23
	Planar Formula	graph splits the plane into regions, where one of them has infinite area and is called the infinite region.	115	S ES		
16	Define Graph Coloring	Graph coloring is the procedure of assignment of colors to each vertex of a graph G such that no adjacent vertices get same color. The objective is to minimize the number of colors while coloring a graph. The smallest number of colors required to color a graph G is called its chromatic number of that graph. Graph coloring problem is a NP Complete problem.	Remember	CO 5	CLO 22	ACSB04 .22
	Define Graph	Graph traversal is the problem	Remember	CO 5	CLO 22	ACSB04 .22

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	Traversal	of visiting all the vertices of a				
		graph in some systematic order.				
		There are mainly two ways to				
		traverse a graph.				
		Breadth First Search				
		Depth First Search				
18	Define Digraphs	A graph in which each graph	Remember	CO 5	CLO 22	ACSB04 .22
		edge is replaced by a directed				
		graph edge, also called a				
		digraph. A directed graph				
		having no multiple edges or				
		loops (corresponding to a binary				
		adjacency matrix with 0s on the				
		diagonal) is called a simple				
		directed graph.				
19	Define complete	A complete graph in which each	Remember	CO 5	CLO 22	ACSB04 .22
	bidirected	edge is bidirected is called a				
		complete directed graph.				
20	Define oriented	A directed graph having no	Remember	CO 5	CLO 22	ACSB04 .22
	graph	symmetric pair of directed edges				
		(i.e., no bidirected edges) is				
		called an oriented graph.				
21	Define	A complete oriented graph (i.e.,	Remember	CO 5	CLO 22	ACSB04 .22
	tournament	a directed graph in which each				
		pair of nodes is joined by a				
		single edge having a unique				
		direction) is called a				
		tournament.				
22	Define Directed	Directed acyclic graphs (DAGs)	Remember	CO 5	CLO 23	ACSB04 .23
	acyclic graphs	are used to model probabilities,	40		1	
		connectivity, and causality. A			1	2.
		"graph" in this sense means a				
		structure made from nodes and			-	
		edges.	9			
23	Define Weighted	We can assign numbers to the	Remember	CO 5	CLO 23	ACSB04 .23
	digraphs	edges or vertices of a graph in			**	
		order to enable them to be used		×.		
		in physical problems. Such an				
		assignment is called the weight	1 / /			
		of the edges or vertices.				
24	Define Planarity	"A graph is said to be planar if it	Remember	CO 5	CLO 22	ACSB04 .22
		can be drawn on a plane without				
		any edges crossing. Such a				
		drawing is called a planar				
		representation of the graph."				
25	Define Trees	A tree is an undirected graph	Remember	CO 5	CLO 24	ACSB04 .24
		with no cycles and a vertex				
		chosen to be the root of the tree.				
26	Define spanning	A spanning tree of a graph A	Remember	CO 5	CLO 24	ACSB04 .24
	tree	spanning tree of an undirected				
		graph is a subgraph that contains				
		all the vertices, and no cycles. If				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		we add any edge to the spanning				
		tree, it forms a cycle, and the				
		tree becomes a graph.				
27	Define Complete	Graphs with all edges present -	Remember	CO 5	CLO 24	ACSB04 .24
	graphs	each vertex is connected to all				
		other vertices, are called				
		complete graphs.				
28	Define Dense	relatively few of the possible	Remember	CO 5	CLO 24	ACSB04 .24
	graphs	edges are missing				
29	Define Sparse	relatively few of the possible	Remember	CO 5	CLO 24	ACSB04 .24
	graphs	edges are present	_		. 1	
20	D.C.	A	D	CO 5	CI O 25	A CCD 04 25
30	Define spanning	A spanning forest is a type of	Remember	CO 5	CLO 25	ACSB04 .25
	forest	subgraph that generalises the				
		concept of a spanning tree.				
		However, there are two				
		definitions in common use. One				
		is that a spanning forest is a				
		subgraph that consists of a				
		spanning tree in each connected				
		component of a graph.				
31	Define Minimum	A spanning tree with assigned	Remember	CO 5	CLO 25	ACSB04 .25
	Spanning Tree	weight less than or equal to the				
		weight of every possible				
		spanning tree of a weighted,				
		connected and undirected graph				
		GG, it is called minimum				
	1777	spanning tree (MST). The				700
		weight of a spanning tree is the				
		sum of all the weights assigned				>
		to each edge of the spanning			-	
		tree.			A	
32	Define Kruskal's	Kruskal's algorithm is a greedy	Remember	CO 5	CLO 25	ACSB04 .25
	Algorithm	algorithm that finds a minimum			100	
	Y.	spanning tree for a connected			ha,	
		weighted graph. It finds a tree of				
		that graph which includes every	. <	Y. ~		
		vertex and the total weight of all				
		the edges in the tree is less than				
		or equal to every possible				
		spanning tree.				
33	Define Degree of	The degree of a vertex V of a	Remember	CO 5	CLO 22	ACSB04 .22
	a Vertex	graph G (denoted by deg (V)) is				
		the number of edges incident				
		with the vertex V.				
34	Define Degree of	The degree of a graph is the	Remember	CO 5	CLO 22	ACSB04 .22
	a Graph	largest vertex degree of that				
		graph.				
35	Define null graph	A null graph has no edges.	Remember	CO 5	CLO 22	ACSB04 .22

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		a c C C C D D				
36	Define Simple Graph	A graph is called simple graph/strict graph if the graph is undirected and does not contain any loops or multiple edges.	Remember	CO 5	CLO 22	ACSB04 .22
37	Define Multi-Graph	If in a graph multiple edges between the same set of vertices are allowed, it is called Multigraph. In other words, it is a graph having at least one loop or multiple edges.	Remember	CO 5	CLO 23	ACSB04 .23
38	Define Bipartite Graph	If the vertex-set of a graph G can be split into two disjoint sets, V1 and V2, in such a way	Remember	CO 5	CLO 23	ACSB04 .23

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		that each edge in the graph joins				
		a vertex in V1 to a vertex in V2,				
		and there are no edges in G that				
		connect two vertices in V1 or				
		two vertices in V2, then the				
		graph G is called a bipartite				
		graph.				
		a c				
		b d				
39	Define Complete	A complete bipartite graph is a	Remember	CO 5	CLO 23	ACSB04 .23
	Bipartite Graph	bipartite graph in which each				
		vertex in the first set is joined				
		to every single vertex in the				
		second set. The complete				
		bipartite graph is denoted by				
		Kx,y where the graph G				
		contains x vertices in the first				
		set and y vertices in the second				
		set.				
		a c			,	
						700
			- 4			
						>
					-	
		d d			1	
40	Define Non-	A graph is non-planar if it	Remember	CO 5	CLO 23	ACSB04 .23
40	planar graph	cannot be drawn in a plane	Remember	603	CLO 23	11C5B0+.23
	pidilai grapii	without graph edges crossing.			**	
41	Define Planar	G is called a planar graph if it	Remember	CO 5	CLO 23	ACSB04 .23
71	graph	can be drawn in a plane without	Remember	203	25	1100004.23
	graph	any edges crossed. If we draw	1 1			
		graph in the plane without edge				
		crossing, it is called embedding				
		the graph in the plane.				
42	Define	If two graphs G and H contain	Remember	CO 5	CLO 24	ACSB04 .24
	Isomorphism	the same number of vertices				· · - ·
	F	connected in the same way,				
		they are called isomorphic				
		graphs (denoted by G≅H).				
		<i>S</i> 1 (
		It is easier to check non-				
		isomorphism than isomorphism.				
		If any of these following conditions occurs, then two				
1		conditions occurs, then two			1	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		graphs are non-isomorphic -				
		1. The number of				
		connected components				
		are different				
		2. Vertex-set cardinalities				
		are different				
		3. Edge-set cardinalities				
		are different				
		4. Degree sequences are				
		different				
43	Define	A homomorphism from a graph	Remember	CO 5	CLO 24	ACSB04 .24
	Homomorphism	G to a graph H is a mapping				
		(May not be a bijective				
		mapping)			1	
		h:G→H				
		h:G→H such that –	Name of Street			
		$(x,y) \in E(G) \rightarrow (h(x),h(y)) \in E(H)$				
		$(x,y) \in E(G) \rightarrow (h(x),h(y)) \in E(H).$				
		It maps adjacent vertices of				
		graph				
		Gto the adjacent vertices of the				
		graph H.		~~ -		
44	State properties	A homomorphism is an	Understand	CO 5	CLO 24	ACSB04 .24
	of	isomorphism if it is a bijective				
	Homomorphism	mapping.				
		Homomorphism always				
		preserves edges and connectedness of a graph.				
		The compositions of				
		homomorphisms are also				
		homomorphisms.				
		To find out if there exists any				1
		homomorphic graph of another				
		graph is a NP complete problem.	- 400			
45	Define	A connected graph G is called	Remember	CO 5	CLO 23	ACSB04 .23
	HamiltonianGrap	Hamiltonian graph if there is a	T C T T C T T C T T T T T T T T T T T T		323 23	1100201.23
	hs	cycle which includes every			-	
	()	vertex of G and the cycle is				
		called Hamiltonian cycle.			100	
		Hamiltonian walk in graphG is			h.	
		a walk that passes through each				
		vertex exactly once.	-			

Signature of the Faculty

HOD, CSE