

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	DISCRETE MATHEMATICAL STRUCTURES
Course Code	:	ACSB04
Program	:	B.Tech
Semester	:	III
Branch	:	Computer Science and Engineering
Section	:	A, B, C & D
Academic Year	:	2019- 2020
Course Faculty	:	Ms. K Mayuri, Assistant Professor Mr. N V Krishna Rao, Assistant Professor Ms. N M Deepika, Assistant Professor Ms. G Nishwitha, Assistant Professor Ms. B Dhanalaxmi, Assistant Professor Ms. B Pravallika, Assistant Professor

COURSE OBJECTIVES:

The	course should <mark>enable the student</mark> s to:
Ι	Describe the logical and mathematical foundations, and study abstract models of computation.
II	Illustrate the limitations of predicate logic.
III	Define modern algebra for constructing and writing mathematical proofs.
IV	Solve the practical examples of sets, functions, relations and recurrence relations.
v	Recognize the patterns that arise in graph problems and use this knowledge for constructing the trees and spanning trees.

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE	-I			
1	Define Proposition?	A proposition is a statement that is either true or false.	Remember	CO 1	CLO 2	ACSB04.02
2	Define connectives?	Any word or expression used to connect two or more statements is called as connectives	Remember	CO 1	CLO 1	ACSB04.01
3	What is implication?	Logical implication is a type of relationship between two statements or sentences. The relation translates verbally into "logically implies" or "if/then" and is symbolized by a double- lined arrow pointing toward the right (\implies). If A and B represent statements, then A \implies B means "A implies B"	Remember	CO 1	CLO 1	ACSB04.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		or "If A, then B."				
4	DefineTautology ?	A Tautology is a formula which is always true for every value of its propositional variables	Remember	CO 1	CLO 2	ACSB04.02
5	Define contradiction?	A Contradiction is a formula which is always false for every value of its propositional variables.	Remember	CO 1	CLO 2	ACSB04.02
6	What is Contigency?	A proposition that is neither a tautology nor a contradiction is called a contingency.	Remember	CO 1	CLO 2	ACSB04.02
7	What are Connectives in Propositional Logic?	Propositional logic provides five different types of connectives - • OR (\vee) • AND (\wedge) • Negation/ NOT (\neg) • Implication / if-then (\rightarrow) • If and only if (\Leftrightarrow).	Remember	CO 1	CLO 1	ACSB04.01
8	What is negation?	The negation of a proposition A (written as $\neg A$) is false when A is true and is true when A is false.	Remember	CO 1	CLO 1	ACSB04.01
9	What is conjunction?	The conjunction of two statements (or propositions) p and q is the statement $p \land q$ which is read as p and q. The statement $p \land q$ has the truth value T whenever both p and q	Remember	CO 1	CLO 1	ACSB04.01
	5	Otherwise it has truth value F.				A.
10	What is disjunction?	The disjunction of two statements p and q is the statement $p \lor q$ which is read as p or q. The statement $p \lor q$ has the truth value F only when both p and q have the truth value F. Otherwise it has truth value T.	Remember	CO 1	CLO 1	ACSB04.01
11	Define quantifers?	Quantifiers are words that are refer to quantities such as 'some' or 'all'.	Remember	CO 1	CLO 3	ACSB04.03
12	What is Universal quantifer?	Universal quantifier states that the statements within its scope are true for every value of the specific variable. It is denoted by the symbol \forall .	Remember	CO 1	CLO 3	ACSB04.03
13	What is Existential quantifer?	Existential quantifier states that the statements within its scope are true for some values of the specific variable. It is denoted by the symbol \exists .	Remember	CO 1	CLO 3	ACSB04.03
14	What are nested quantifers?	If we use a quantifier that appears within the scope of another quantifier, it is called nested quantifier.	Understand	CO 1	CLO 3	ACSB04.03

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
15	What is	A product of the variables and	Understand	CO 1	CLO 4	ACSB04.04
	elementary	their negations in a formula is				
	product?	called elementary product?				
16	What is	A sum of the variables and their	Understand	CO 1	CLO 4	ACSB04.04
	elementary sum?	negations in a formula is called				
		a elementary sum.				
17	What is	Sum of elementary products is	Remember	CO 1	CLO 4	ACSB04.04
	disjunctive	called as disjunctive normal				
	normal form?	form of the given formula.				
18	What is	Product of elementary sum is	Remember	CO 1	CLO 2	ACSB04.02
	conjunctive	called as conjunctive normal				
10	normal form?	form of the given formula.		GO 1	GY 0 0	
19	What is	A proposition involving the	Remember	COT	CLO 2	ACSB04.02
	quantified	universal or the existential				
	statement?	quantifier is called as quantified				
20	What is Deality	statement.	I la de note a d	CO 1	CLO 2	ACCD04.02
20		Duality principle states that for	Understand	01	CLO 3	AC5B04.05
	principle?	any true statement, the dual				
		interchanging unions into				
		intersections (and vice versa)				
		and interchanging Universal set				
		into Null set (and vice versa) is				
		also true. If dual of any				
		statement is the statement itself.				
		it is said self-dual statement.				
21	Define Predicate?	A common part or factor in a	Remember	CO 1	CLO 2	ACSB04.02
		statement is called as predicate.				
22	What is	A compound proposition	Understand	CO 1	CLO 2	ACSB04.02
	conditional	obtained by combining two				
	statement?	given propositions by using the				
	statement.	words 'if 'and 'then' at				
	50	appropriate places is called a	_			-
	1	conditional statement.				
23	What is	A biconditional statement is a	Understand	CO 1	CLO 3	ACSB04.03
	biconditional	combination of a conditional				
	statement?	statement and its converse				
	0	written in the <i>if and only if</i>				
		form.	1		100	
	-7	A biconditional is true if and		1.1		
		only if both the conditionals are		27		
		Di conditionale ana represented		10		
		Bi-conditionals are represented by the symbol (x) or \Leftrightarrow		S. 7		
		by the symbol \Leftrightarrow of \Leftrightarrow .				
		$p \cdot rq$ means that $n \rightarrow q$ and $q \rightarrow n$				
24	List the types of	Types of Normal form	Remember	CO 1	CLO 3	ACSR04.03
27	Normal Forma?	1 Disjunctive Normal form	Remember	001	CLO J	1105004.05
	NOTHIAL FUTIIS?	2. Conjunctive normal form				
25	What is Principle	For a given formula an	Remember	CO 1	CLO 3	ACSR0/ 02
23	Disjunctive	equivalent formula consisting of	Kennennuer			AC3D04.03
		a disjunction of minterms only				
	normal form?	is known as its principle				
		disjunction normal form. Such a				
		normal form is also said to be				
		the sum-product canonical				
		form.				
26	What is Principle	The principle of conjunctive	Remember	CO 1	CLO 3	ACSB04.03
	Conjunctive	normal form or the product-sum				
	2011janou (C	canonical form, the equivalent				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	normal form?	formula consists of only the				
		conjunction of				
		the maxterms only.				
		MODULE	-11			
1	Define a set?	Collection of elements is called	Remember	CO_2	CIO5	ACSB04_05
1	Define a set?	set	Kemember	02	CLO J	AC3D04.03
2	Define a subset?	Give two set A and B if B	Remember	CO 2	CLO 5	ACSB04.05
_		contains some elements of A				
		then B is called subset of A				
3	Define null set?	A set with no elements is called	Remember	CO 2	CLO 5	ACSB04 .05
		null set.				
4	Define equal	Two sets A and B are said to	Remember	CO 2	CLO 9	ACSB04 .09
	sets?	equal if they have same				
5	Dofino universal	A set which contains all sets as	Pomomhor	CO 2	CLO 5	ACSB04_05
5	set?	subsets is called universal set	Kemember	02	CLO J	AC3D04.03
	500.	and it is denoted by U				
6	Define power	For a given set A we construct a	Remember	CO 2	CLO 5	ACSB04 .05
	set?	set consisting of all subsets of A				
		that set is called power set of A.				
7	What are the	The operation on sets are	Understand	CO 2	CLO 5	ACSB04 .05
	operation on	1. Union				
	sets?	2. Intersection				
		5. Complement				
8	Define	Commutative laws are	Remember	CO 2	CLO 5	ACSB04.05
Ũ	Commutative	(1) $A \cup B = B \cup A$	110111011	001	0200	1100201100
	laws?	(2) $A \circ B = B \circ A$				
9	Define	Associative laws are	Remember	CO 2	CLO 5	ACSB04 .05
	associative law?	(1) $A \cup (B \cup C) = (A \cup B)$				
		$(2) \land \alpha (B \circ C) = (A \circ B)$	- 11 -			1. C
		$(2) \mathbf{A} \cdots (\mathbf{B} \cdots \mathbf{C}) = (\mathbf{A} \cdots \mathbf{B})$			C	
10	Define	Distributive laws are	Remember	CO 2	CLO 5	ACSB04 .05
	distributive laws?	(1) $A \circ (B \cup C) = (A \circ B)$			4	
		$ u$ (A \land C)				
		(3) $A \cup (B \cap C) = (A \cup B)$	1		100	
11	DC	$(A \cup C)$	D 1	GO 3	CT O C	
11	idempotent laws?	Idempotent Laws are $(1) \land \land = \land$	Remember	02	CLO 5	ACSB04 .05
	idempotent laws:	$\begin{array}{c} (1) A \circ A = A \\ (2) A \circ A = A \end{array}$		1		
12	Define identity	Identity laws are	Remember	CO 2	CLO 5	ACSB04 .05
	laws?	(1) $A \cup \otimes = A$				
		(2) $A \circ U = A$				
13	Define law of	Double Complement law is	Remember	CO 2	CLO 5	ACSB04 .05
	double	$\mathbf{A} = \mathbf{A}$				
1.4	complement law?	T.,	Description	<u> </u>		ACCED04_05
14	Define inverse	Inverse law are $(1) \land \check{A} = U$	Remember	02	CLO 5	ACSB04 .05
	1aw :	(1) $A \circ A = 0$ (2) $A \circ \dot{A} = \infty$				
15	Define	DeMorgan laws are	Remember	CO 2	CLO 5	ACSB04 .05
	DeMorgan law?	(1) $(\mathbf{A} \cup \mathbf{B})^c = \mathbf{A}^c \cap \mathbf{B}^c$				
		$(2) (A \cap B)^c = A^c \cup B^c$				
				~ -		
16	Define	Domination laws are (1)	Remember	CO 2	CLO 5	ACSB04 .05
	domination law?	$\begin{array}{c} (1) A \cup U = U \\ (2) A \circ \Sigma = - \end{array}$				
		(2) $A = Q$				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
17	Define absorption	Absorption Laws	Remember	CO 2	CLO 5	ACSB04 .05
	law?	(1) $A \cup (A \cap B) = A$				
		(2) $A \circ (A \cup B) = A$				
18	Define relation?	Let A and B are two sets. Thus	Remember	CO 2	CLO 5	ACSB04 .05
		if R is a relation from A to B				
		,then R contains set of ordered				
		pairs(a,b) where a€A and				
		b€B.then R is said to be a				
10		relation from A to B.		<u> </u>	<u> </u>	
19	What is matrix of	Consider the sets	Understand	CO 2	CLO 5	ACSB04 .05
	relation?	$A = \{a_1, a_2, \dots, a_m\}$ and				
		$B = \{b_1, b_2, \dots, b_n\}$ of orders m and				
		from A to B them $-(a, b)$ and		_		
		from A to B.them _{ij} – (a_i, b_j) and				
		1 if $(a, b) \in \mathbb{R}$ and				
		0 if $(a, b) \mathcal{R}$				
20	Define diagraph	Let r be a relation on finite set	Remember	CO 2	CLO 6	ACSB04.06
	of a relation?	R.there are vertices and	1101110111011	001	0200	1100201100
		nodes,draw an arrow called				
		edge, from vertex x to vertex y if				
		and only if(x,y) \in R, the resulting				
		pictorial representation of R is				
		called a digraph of R.				
21	What are the	Operations of relations are	Understand	CO 2	CLO 7	ACSB04 .07
	operations of	1. Union and intersection				
	relation?	of relations				
		2. Complement of a				
		relation				
22	What are the	3. Converse of a relation	Understand	CO 2	CLO 7	ACSP04_07
ZZ	what are the	on a set	Understand	02	CLO /	AC5D04.07
	relation?	1 Reflexive relation				
		2 Irreflexive relation				C
		3. Symmetric relation		_		
		4. Compatibility relation		1		0
		5. Antisymmetric relation				
		6. Transitive relation				
23	Define reflexive	A relation R on set A is	Remember	CO 2	CLO 7	ACSB04 .07
	relation?	reflexive whenever every				
		element a of A is related to itself				
		by R(i.e., aRa,for all a€A)		6	8.075	
24	Define irreflexive	A relation on a set A is said to	Remember	CO 2	CLO 7	ACSB04 .07
	relation?	be irreflexive if (a,a)€R for		<i>2</i>		
		$a \in A$.thatis, a relation R is				
		irreliexive if no element of A is				
25	Define symmetric	A relation P on a set is said to	Romambar	CO^{2}	CIO7	ACSB04 07
23	relation?	$\begin{array}{ccc} A & 1 \\ c & a \\ c & a$	Kemeniber		CLU /	AC5D04.07
	10100111	whenever(a b) $\in \mathbb{R}$ for all a b $\in \mathbb{A}$				
26	Define	A relation R on a set A which is	Remember	CO 2	CLO 7	ACSB04_07
	compatibility	both reflexive and symmetric is				
	relation?	called a compatibility relation				
		on A.				
27	Define anti	A relation R on a set A is said to	Remember	CO 2	CLO 7	ACSB04 .07
	symmetric	be antisymmetric if whenever				
	relation?	(a,b) €R and (b,a)€R then $a=b$.				
28	Define transitive	A relation R on a set A is said to	Remember	CO 2	CLO 7	ACSB04 .07
	relation?	be transitive if whenever(a,b)				
		€Rand(b,c)€Rthen(a,c)€R,for all				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		a,b,c €A.				
29	Define	A relation between elements of	Remember	CO 2	CLO 7	ACSB04 .07
	equivalence	a set which is reflexive,				
	relation?	symmetric, and transitive and				
		which defines exclusive classes				
		whose members bear the				
		relation to each other and not to				
		those in other classes				
30	Define partial	A relation that is reflexive.	Remember	CO 2	CLO 7	ACSB04.07
	order relation?	antisymmetric, and transitive is				
		called a partial order . Two				
		fundamental partial order				
		relations are the "less than or				
		equal" relation on a set of real				
		numbers and the		1.1		
		"subset" relation on a set of				
		sets				
31	Define maximal	An element a € A is called	Remember	CO_2	CLO 8	ACSB04_08
51	element?	minimal element of A if there	rteineineer	002		1105201.00
		exists no element $x!=a$ in A such				
		that aRx in other words a \in A is a				
		minimal element of A if				
		whenever there is $x \in A$ such				
		that aRx then $x=a$.				
32	Define minimal	An element a € A is minimal	Remember	CO 2	CLO 8	ACSB04_08
52	element?	element of A if there exists no		002		1100201.00
	ciement.	element $x'=a$ in A such that				
		xRain other words a is a				
		minimal element of A if	and the second se			
		whenever there is $x \in A$ such				
		that xRa then $x=a$				
33	Define greatest	An element a € A is called a	Remember	CO 2	CLO 8	ACSB04.08
	element?	greatest element of A if xRa for				
		all x € A.				
34	Define least	An element a € A is called a leat	Remember	CO 2	CLO 8	ACSB04.08
	element?	element of A if aRx for all x €		· · ·		0
		А.			-	
35	Define least	The least upper bound of A is	Remember	CO 2	CLO 11	ACSB04 .11
	upper	also called the supremum of A.	1		-	
	bound(LUB)?	It can be written sup(A)			100	
		or lub(A). Sets with no upper		C	here and	
		bound have no least upper		6		
		bound, of course. The set of all		1		
		numbers is an example. The		0		
		empty set has no least upper				
		bound, because every number is				
		an upper bound for the empty				
		set.				
36	Define greatest	The infimum of a subset S of a	Remember	CO 2	CLO 11	ACSB04 .11
	lower bound	partially ordered set T is				
	(GLB)?	the greatest element in T that is				
		less than or equal to all elements				
		of S, if such an element				
		exists.Consequently, the				
		term greatest lower				
		bound(abbreviated as GLB) is				
		also commonly used				
37	Define lattice?	Let(A,R) be a poset.thisposet is	Remember	CO 2	CLO 11	ACSB04 .11
		called lattice if every two-				
		element subset of A has a least				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		upper bound and a Greatest				
		lowe bound in A.				
38	Define sub	Let (l,r)be a lattice and M be a	Remember	CO 2	CLO 11	ACSB04 .11
	lattice?	subset of L.then M is called a				
		sublattice of L if a V b \in M and				
		$a \wedge b \in M$ whenever $a \in M$ and b				
		€M.		~~ •	~ ~ ~ ~	
39	Define properties	Properties of lattices are	Remember	CO 2	CLO 12	ACSB04.12
	of lattices?	1. Idempotent properties				
		2. Commutative				
		3 Associative properties				
		4 Absorption properties				
40	Define bounded	A lattice (L.R) is said to be	Remember	CO 2	CLO 12	ACSB04_12
10	lattice?	bounded if it has a greatest	Remember	002	CLO 12	1105001.12
	luttice .	element and a least element in			1	
		bounded lattice. a greatest				
		element is denoted by I and least				
		element by 0.				
41	Define	A lattice(L,R) is said to be	Remember	CO 2	CLO 12	ACSB04 .12
	distributive	distributive if, for any a,b,c € L.				
	lattice?	1. $a^{(bVc)}=(a^{b})v(a^{c})$				
		$2. aV(b^{c}) = (aVb)^{a}(aVc)$				
42	Define	Let L be a bounded lattice with	Remember	CO 2	CLO 12	ACSB04 .12
	complemented	greatest element I and least				
	lattice?	element 0.for a choosen element				
		of a of L, if there exists an				
		element $a \in L$ such that $a \vee a$				
		-1 and $a = 0$, then a is called				
43	Define function?	Let A and B be two non-empty	Remember	CO_2	CLO 9	ACSB04_09
т.)	Define function.	sets, then a function f from A to	Remember	002	CLO /	ACDD04.07
		B is a relation from A to B such				1
		that for each a in A there is a	· / ·			
	0	unique b in B such that(a,b)€f. A			- C	
	-	function from A to B is denoted				e
	0	by f:A—>B.			-	
44	Define identify	A function $f:A \rightarrow A$ such that	Remember	CO 2	CLO 9	ACSB04 .09
	function?	$f(a) = a$ for every $a \in A$ is called			Sec. 1	
	10	identity function on A.				
45	Define constant	A function $f:A \rightarrow B$ such that	Remember	CO 2	CLO 9	ACSB04 .09
	function?	$f(a)=c$ for every $a \in A$, where c is		10		
		a fixed element of B,1s called				
16	Define onto	$ A \text{ function } f(A) > \mathbf{R} \text{ is said to be} $	Pomombor	CO^{2}	CLOO	ACSB04_00
40	function?	onto function if every element	Kennennoer	02	CLO 9	AC3D04.09
	runeuon.	of B has a preimage in A under				
		f.				
47	Define one to one	If f:A—>B is a one -to-one	Remember	CO 2	CLO 9	ACSB04.09
	function?	function, then every element of				
		A has a unique image in B and				
		every element of f(A) has a				
		unique preimage in A.				
48	Define bijective	A function which is both one –	Remember	CO 2	CLO 9	ACSB04 .09
	function?	to-one and onto is called				
	-	bijective.				
49	Define recursive	We can also define functions	Remember	CO 2	CLO 10	ACSB04 .10
	function?	recursively: in terms of the				
		same function of a smaller				
		variable. In this way,			l	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		a recursive function "builds"				
		on itself. A recursive				
		definition has two				
		parts: Definition of the smallest				
		argument (usually f (0) or f				
		(1)). Definition of f (n), given f				
		(n - 1), f (n - 2)				
50	Define Invertible	There is a symmetry between	Remember	CO 2	CLO 9	ACSB04 .09
	function?	a function and its inverse.				
		Specifically, if I is an invertible				
		Function with domain A and range V then its inverse f^{-1} has				
		domain V and range X and the				
		inverse of f^{-1} is the				
		original function f. In symbols.	1.1			
		for functions $f: X \to Y$ and $f^{-1}: Y$	<u> </u>			
		\rightarrow X, and.				
		MODULE-	ш			
1	Define Algebraic	A non empty set S is called an	Understand	CO 3	CLO13	ACSBO4.13
	Structure?	algebraic structure w.r.t binary				
	•	operation (*) if it follows				
		Closure: (a*b) belongs to S for				
		all $a b \in S$				
2	DefineSemi	A non empty set $S_{-}(S_{+})$ is	Remember	CO 3	CL 013	ACSBO4 13
2	Group	called a semigroup if it follows	Remember	05	CLOIS	AC5D04.15
	Gloup	the following axiom:	and the second se			
		Closure: (a^*b) belongs to S for				
		Associativity: $a^{*}(b^{*}c) = (a^{*}b)^{*}c$				
		\forall a.b.c belongs to S.				100
3	Define closure	Closure (a*b) belongs to S for	Remember	CO 3	CL013	ACSBO4 13
5	property of semi	all $a b \in S$	Remember	005	CLOIS	nebbo mis
	group				-	
4	Define	Associativity: $a^{(h*c)} - (a*b)*c$	Remember	CO 3	CL 013	ACSBO4 13
т	Associativity	\forall a b c belongs to S	Remember	005	CLOID	1100004.15
	property of semi				100	
	group				1. The second	
5	Define monoid	A non-empty set S. (S.*) is	Remember	CO 3	CLO14	ACSBO4.14
		called a monoid if it follows the	-	1		
		following axiom:	1.1.1			
		Closure:(a*b) belongs to S for				
		all a,b∈ S.				
		Associativity: $a^{*}(b^{*}c) = (a^{*}b)^{*}c$				
		\forall a,b,c belongs to S.				
		Identity Element: There exists e				
		$e > suchtnat a^{*}e = e^{*}a = a \forall a \in S$				
6	Define group	Δ non empty set $G_{-}(G_{-}^{*})$ is	Remember	CO^{2}	CL 014	
0	Denne group	called a group if it follows the	Kemenibei	05	CLU14	AC5D04.14
		following axiom:				
		Closure:(a*b) belongs to G for				
		all $a, b \in G$.				
		Associativity: $a^{*}(b^{*}c) = (a^{*}b)^{*}c$				
		\forall a,b,c belongs to G.				
		Identity Element: There exists e				
		\in G such that $a^*e = e^*a = a \forall a$				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		\in G Inverses : $\forall a \in$ G there exists $a-1 \in$ G such that $a^*a-1 = a-1^*a = e$				
7	Define Abelian Group or Commutative group	A non-empty set S, $(S,*)$ is called a Abelian group if it follows the following axiom: Closure: $(a*b)$ belongs to S for all $a,b \in S$. Associativity: $a*(b*c) = (a*b)*c$ \forall a,b,c belongs to S. Identity Element:There exists e $\in S$ such that $a*e = e*a = a \forall a$	Remember	CO 3	CLO13	ACSBO4.13
		∈ S Inverses: $\forall a \in S$ there exists a- 1 ∈ S such that a*a-1 = a-1*a = e Commutative: a*b = b*a for all a,b ∈ S		0), 	
8	define Commutative group	A non-empty set S, (S,*) is called a Abelian group if it follows the following axiom: Closure:(a*b) belongs to S for all $a,b \in S$. Associativity: $a*(b*c) = (a*b)*c$ $\forall a,b,c$ belongs to S. Identity Element:There exists e $\in S$ such that $a*e = e*a = a \forall a$ $\in S$ Inverses: $\forall a \in S$ there exists a- $1 \in S$ such that $a*a_21 = a_21*a =$	Remember	CO 3	CLO13	ACSBO4.13
		e Commutative: $a*b = b*a$ for all $a.b \in S$			1	5
9	Define Associative law	An operation $*$ on a set is said to be associative or to satisfy the associative law if, for any elements a, b, c in S we have (a * b) * c = a * (b * c)	Remember	CO 3	CLO14	ACSBO4.14
10	Define commutative law	An operation $*$ on a set S is said to be commutative or satisfy the commutative law if, a $*$ b = b $*$ a for any element a, b in S.	Remember	CO 3	CL013	ACSBO4.13
11	define Identity element and inverse	Consider an operation $*$ on a set S. An element e in S is called an identity elements for $*$ if for any elements a in S - a $* e = e * a = a$ Generally, an element e is called a left identity or a right identity according to as e $*a$ or a $* e =$ awhere a is any elements in S. Suppose an operation $*$ on a set S does have an identity element e. The inverse of an element in S is an element b such that: a $* b = b * a = e$	Remember	CO 3	CLO14	ACSBO4.14

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
12	What is a ring	A ring homomorphism which is	Remember	CO 3	CLO13	ACSBO4.13
	isomorphism?	a bijection (one-one and onto) is				
		called aring isomorphism. If f :				
		$R \rightarrow S$ is such an isomorphism,				
		we call the rings R and				
		Sisomorphic and write R S.				
		Remarks. Isomorphic rings have				
		all their ring-theoretic properties				
10	XXX 1	identical.		<u> </u>	GT 014	
13	What does it	In abstract algebra, a group	Understand	CO 3	CL014	ACSBO4.14
	groups to be	between two groups that sets up				
	isomorphic?	a one to one correspondence				
	isomorphic :	between the elements of		-		
		the groups in a way that respects				
		the given group operations. If	<u> </u>			
		there exists				
		an isomorphism between two				
		groups, then the groups				
		are called isomorphic.				
14	What is ideal	In ring theory, a branch of	Remember	CO 3	CLO15	ACSBO4.15
	algebra?	abstract algebra, an ideal is a				
		special subset of a ring. Ideals				
		generalize certain subsets of the				
		integers, such as the even				
		numbers or the multiples of 3				
		The concept of an order ideal in				
		order theory is derived from the				
15	What is a zero	Zero divisor. In a ring	Remember	CO 3	CL 015	ACSB0/ 15
15	divisor of a ring?	nonzero element is said to be	Kemember	05	CLOIJ	AC5D04.15
	divisor of a ring.	a zero divisor if there exists a				
	50	nonzero such that . For example,	_			-
	-	in the ring of integers taken				
	0	modulo 6, 2 is a zero			- C	2
		divisor because a ring with		_	-	
		no zero divisors is called an			A	
	0	integral domain.		~~ ~	CT 0 1 0	
16	What makes a	Two graphs which contain the	Remember	CO 3	CLO13	ACSBO4.13
	graph	same number of graph vertices			1. T	
	isomorphic?	said to be isomorphic. Formally		2.7		
		two graphs and		~		
		with graph vertices are said to		0		
		be isomorphic if there is a				
		permutation of such that is in the	· · · ·			
		set of graph edges if f is in the				
		set of graph edges.				
17	What is the zero	In mathematics, the zero ideal in	Remember	CO 3	CLO13	ACSBO4.13
	element of a	a ring is the ideal consisting of				
	ring?	only the additiveidentity (or zero				
		element).				
18	What is a ring	A ring homomorphism which is	Understand	CO 3	CLO13	ACSBO4.13
	isomorphism?	a bijection (one-one and onto) is				
		called aring isomorphism. If f :				
		$R \rightarrow S$ is such an isomorphism,				
		we call the rings R and S				
		isomorphic and write R S.				
		Remarks. Isomorphic rings have				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		all their ring-theoretic properties				
10		identical.		~~ .		
19	What is	In algebra, a homomorphism is a	Understand	CO 3	CL013	ACSBO4.13
	in discrete	batween two algebraic structures				
	mathematics?	of the same type (such as two				
	maren and a	groups, two rings, or two vector				
		spaces).				
20	What is	In algebra, a homomorphism is a	Understand	CO 3	CLO14	ACSBO4.14
	Homomorphism	structure				
	in discrete					
	mathematics?					
21	define the	The Fundamental Counting	Remember	CO 3	CLO16	ACSBO4.16
	Fundamental	Principle (also called	1.1			
	Drinciple	figure out the number of		-		
	Finicipie	outcomes in a probability				
		problem. Basically, you				
		multiply the events together to				
		get the total number of				
		outcomes.				
22	What is	A combination is a selection of	Remember	CO 3	CLO 17	ACSBO4.17
	combination	all or part of a set of objects,				
	discrete	without regard to the order in				
	mathematics?	which objects are selected. For				
		example, suppose we have a set				
		of three letters: A, B, and C				
		be an example of a combination				
23	What is	The pigeonhole principle states	Remember	CO 3	CLO17	ACSBO4.17
20	pigeonhole	that if items are put into	Remember	005	CLOT	1105201117
	principle in	containers, with, then at least				
	discrete	one container must contain more		_		
	mathematics?	than one item.			100	
24	What is sum and	In combinatorics,	Remember	CO 3	CLO18	ACSBO4.18
	product rule of	the rule of sum or addition			~	
	combinatorics?	principle is a basic counting		× .	-	
		principle. Stated simply, it is the			-	
		doing something and B ways of			100	
		doing another thing and we can			h., .	
		not do both at the same time.		6		
		then there are $A + B$ ways to		\sim		
		choose one of the actions		1		
		MODULE-	IV			
1	Define recurrence	A recurrence relation is on	Remember	CO 4	CLO 10	ACSB04_010
1	relation?	equation that defines a sequence	Kemennen	0.04	CLU 19	AC5D04.019
		based on a rule that gives the				
		next term as a function of the				
		previous term(s).				
2	What is	A generating function is a	Understand	CO 4	CLO 19	ACSB04 .019
	generating	(possibly infinite) polynomial				
	function?	whose coefficients correspond				
		to terms in a sequence of				
2	What is First	numbers a_n	Understand	CO 4	CL O 20	ACSD04 20
3	order Recurrence	form :	Understand	CU 4	CLO 20	AC3D04.20
			1			1

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	relation?	$a_n = ca_{n-1} + f(n)$ for $n \ge 1$				
		where c is a constant and f(n) is				
		a known function is called linear				
		with constant coefficient If $f(n)$				
		-0 the relation is homogeneous				
		otherwise non-homogeneous.				
4	What is Second	A recurrence relation of the	Understand	CO 4	CLO 20	ACSB04 .20
	orderlinear	form				
	homogeneous	$c_n a_n + c_{n-1} a_{n-1} + c_{n-2} a_{n-2} = 0$ for				
	Recurrence	n>=2				
	relation?	where c_n , c_{n-1} and c_{n-2} are real				
		constants with $c_n != 0$ is called a				
		second order linear				
		relation with constant				
		coefficients				
5	What is	The characteristic	Understand	CO 4	CLO 21	ACSB04 .21
	characteristic	equation (or auxiliary equation)				
	equation?	is an algebraic equation				
		of degree <i>n</i> upon which depends				
		the solution of a given <i>n</i> th-				
6	XX71 / · /1 · 1 1	order differential equation.		00.1		A COD04 00
6	What is third and higher order	A recurrence relation of the	Understand	CO 4	CLO 20	ACSB04 .20
	linear					
	homogeneous	$a_n = 0, \text{ for } n > k > 3.$				
	recurrence	Where cn, cn-1,cn-k are real				
	relations?	constants with cn $\neq 0$. A relation				
		of this type is called recurrence				
		relation of third and higher order				
		linear homogeneous relation				
7	What is the form	with constant coefficients.	Understand	CO 4	CLO 21	ACSD04 21
/	of Second and	form	Understand	CO 4	CLO 21	AC5D04.21
	higher order	$C_{-}a_{-}+C_{-}a_{-}a_{-}a_{-}a_{-}a_{-}a_{-}a_{-}a$				2
	linear	$a_{n,k} = f(n)$, for $n \ge k \ge 2$.				
	nonhomogeneous	Where c_n , c_{n-1} ,, c_{n-k} are real			~	
	recurrence	constants with $c_n \neq 0$ and $f(n)$ is a	9		Sec. 1	
	relations?	real valued function of n.			. N.	
		MODULE	V			
		MODULE	- •			
1	Define Graph	Graph is a collection (nonempty	Remember	CO 5	CLO 22	ACSB04 .22
		set) of vertices and edges				
2	Define Vertices	A vertex (plural: vertices) is a	Remember	CO 5	CLO 22	ACSB04 .22
		point where two or more line				
		segments meet. It can have				
		names and properties				
3	Define Edges	It connects two vertices, can be	Remember	CO 5	CLO 22	ACSB04.22
	= 24800	labeled, can be directed		232		
1	Define Adjacent	If there is an edge between the	Remember	CO 5	CL O 22	ACSB0/ 22
-	vertices	vertices then that vertices can be	Remember	005	CLO 22	1.22
	vertices	called as adjacent vertices.				
5	Define undirected	In undirected graphs the edges	Remember	CO 5	CLO 22	ACSB04 .22
	graphs	are symmetrical, e.g. if A and B		232		
	0	are vertices. A B and B A are				
		one and the same edge				
		one une une sume cuge.				I

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
6	Define directed	In directed graphs the edges are	Remember	CO 5	CLO 22	ACSB04 .22
	graphs	oriented; they have a beginning				
		and an end. Thus A B and B A				
		are different edges. Sometimes				
		the edges of a directed graph are				
7		called arcs.	D 1	00.5	CT 0 22	
/	Define Cycles.	A cycle is a simple path with	Remember	05	CLO 22	ACSB04 .22
		distinct edges, where the first				
8	Dafina Loon	An edge that connects the vertex	Pomomhor	CO 5	CLO 22	ACSB04 22
0	Denne Loop	with itself	Kemember	05	CLO 22	AC5D04 .22
9	Define	There is a path between each	Remember	CO 5	CLO 22	ACSB04 22
	Connected graph	two vertices in a graph are	Kemember	05		ACSD04.22
	Connected graph	called connected graphs				
		B				
		Ī				
		D				
10	Define	There are at least two vertices	Remember	CO 5	CLO 22	ACSB04 .22
	Disconnected	not connected by a path				
	graph	Vertices: A,B,C,D				
		Edges: AB AC				
		Luges: IID, ITO	- 31 -	- 7		0
				-7	- C	
		\bigcirc		_		e
		AB			4	
		22 27				
		-			100	
		(c) (D)			h.,	
		\bigcirc		Sec. 1		
				2.1		
		1.5.0.1	1.1.1			
11	Define	Two graphs which contain the	Remember	CO 5	CLO 22	ACSB04 22
	Isomorphic	same number of graph vertices		232		
	graphs	connected in the same way are				
		said to be isomorphic.				
12	Define Euler	A closed walk in a graph G	Remember	CO 5	CLO 22	ACSB04 .22
	graph	containing all the edges of G is				
		called an Euler line in G. A				
		graph containing an Euler line is				
		called an Euler graph.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		e_1 e_7 e_6 e_6 e_7 e_2 e_3 e_4 e_4 e_5 Eulerian graph				
13	Define Hamiltonian graphs	A cycle passing through all the vertices of a graph is called a Hamiltonian cycle. A graph containing a Hamiltonian graph. A path passing through all the vertices of a graph is called a Hamiltonian path and a graph containing a Hamiltonian path and a graph containing a Hamiltonian path is said to be traceable. Examples of Hamiltonian graphs are given in Figure	Remember	CO 5	CLO 23	ACSB04.23
14	Define Planar graph	A planar graph is an undirected graph that can be drawn on a plane without any edges crossing. Such a drawing is	Remember	CO 5	CLO 22	ACSB04 .22
		called a planar representation of the graph in the plane			~	
15	Define Euler's Planar Formula	A planar representation of a graph splits the plane into regions, where one of them has infinite area and is called the infinite region.	Remember	CO 5	CLO 23	ACSB04.23
16	Define Graph	Graph coloring is the procedure of assignment of colors to each vertex of a graph G such that no adjacent vertices get same color. The objective is to minimize the number of colors while coloring a graph. The smallest number of colors required to color a graph G is called its chromatic number of that graph. Graph coloring problem is a NP Complete problem.	Remember	CO 5	CLO 22	ACSB04 .22
1/	Denne Graph	Graph traversal is the problem	Kennember	005		AC3D04.22

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	Traversal	of visiting all the vertices of a				
		graph in some systematic order.				
		There are mainly two ways to				
		traverse a graph.				
		Breadth First Search				
		Depth First Search				
18	Define Digraphs	A graph in which each graph	Remember	CO 5	CLO 22	ACSB04.22
10	2 enne 2 igraphs	edge is replaced by a directed		000	020	1100201.22
		graph edge also called a				
		digraph A directed graph				
		having no multiple edges or				
		loops (corresponding to a binary				
		adjacency matrix with 0s on the				
		diagonal) is called a simple				
		diagonal) is called a simple				
10	Define complete	A complete graph in which each	Domombor	CO 5	CL 0.22	ACSP04 22
19	bidinastad	A complete graph in which each	Kemeniber	05		ACSD04.22
	bidirected	edge is bidirected is called a				
20		complete directed graph.	Description	CO 5		A CSD04 22
20	Define oriented	A directed graph having no	Remember	05	CLO 22	ACSB04 .22
	graph	symmetric pair of directed edges				
		(1.e., no bidirected edges) is				
		called an oriented graph.				
21	Define	A complete oriented graph (i.e.,	Remember	CO 5	CLO 22	ACSB04 .22
	tournament	a directed graph in which each				
		pair of nodes is joined by a				
		single edge having a unique				
		direction) is called a				
	1.00	tournament.			1	
22	Define Directed	Directed acyclic graphs (DAGs)	Remember	CO 5	CLO 23	ACSB04 .23
	acyclic graphs	are used to model probabilities,			1	
		connectivity, and causality. A				e
		"graph" in this sense means a	Contraction of the second			
		structure made from nodes and			· · · ·	
	C	edges.			Sec.	
23	Define Weighted	We can assign numbers to the	Remember	CO 5	CLO 23	ACSB04 .23
	digraphs	edges or vertices of a graph in		22	-	
		order to enable them to be used		S		
		in physical problems. Such an		N		
		assignment is called the weight				
		of the edges or vertices.	· · ·			
24	Define Planarity	"A graph is said to be planar if it	Remember	CO 5	CLO 22	ACSB04 .22
		can be drawn on a plane without				
		any edges crossing. Such a				
		drawing is called a planar				
		representation of the graph."				
25	Define Trees	A tree is an undirected graph	Remember	CO 5	CLO 24	ACSB04 .24
		with no cycles and a vertex				
		chosen to be the root of the tree.				
26	Define spanning	A spanning tree of a graph A	Remember	CO 5	CLO 24	ACSB04 .24
	tree	spanning tree of an undirected				
		graph is a subgraph that contains				
		all the vertices, and no cycles. If				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		we add any edge to the spanning				
		tree, it forms a cycle, and the				
		tree becomes a graph.				
27	Define Complete	Graphs with all edges present –	Remember	CO 5	CLO 24	ACSB04 .24
	graphs	each vertex is connected to all				
		other vertices, are called				
		complete graphs.				
28	Define Dense	relatively few of the possible	Remember	CO 5	CLO 24	ACSB04 .24
	graphs	edges are missing				
20	D.C. C.		Damanhan	CO 5	CI 0.24	ACSD04 24
29	Define Sparse	relatively few of the possible	Remember	05	CLO 24	AC5B04.24
	graphs	edges are present				
30	Define spanning	A spanning forest is a type of	Remember	CO 5	CLO 25	ACSB04.25
00	forest	subgraph that generalises the		000	020 20	11002001120
		concept of a spanning tree.				
		However, there are two				
		definitions in common use. One				
		is that a spanning forest is a				
		subgraph that consists of a				
		spanning tree in each connected				
		component of a graph.				
31	Define Minimum	A spanning tree with assigned	Remember	CO 5	CLO 25	ACSB04 .25
	Spanning Tree	weight less than or equal to the				
	1 0	weight of every possible				
		spanning tree of a weighted,				
		connected and undirected graph	100			
		GG, it is called minimum				
		spanning tree (MST). The				100
		weight of a spanning tree is the				
		sum of all the weights assigned			- C	5
		to each edge of the spanning				e
	1	tree.			4	
32	Define Kruskal's	Kruskal's algorithm is a greedy	Remember	CO 5	CLO 25	ACSB04 .25
	Algorithm	algorithm that finds a minimum			100	
		spanning tree for a connected			h., .	
		weighted graph. It finds a tree of				
		that graph which includes every		\sim		
		vertex and the total weight of all				
		the edges in the tree is less than				
		or equal to every possible				
		spanning tree.		~~ ~		
33	Define Degree of	The degree of a vertex V of a	Remember	CO 5	CLO 22	ACSB04 .22
	a Vertex	graph G (denoted by deg (V)) is				
		the number of edges incident				
2.1		with the vertex V.		00.7	01.0.22	
34	Define Degree of	The degree of a graph is the	Remember	CO 5	CLO 22	ACSB04 .22
	a Graph	largest vertex degree of that				
25	Define 11	graph.	Demonst	<u> </u>	CLO 22	A.CSD04.22
55	Define null graph	A null graph has no edges.	Kemember	05	CLO 22	АС5В04.22

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		$\begin{bmatrix} a & c \\ O & O \\ b \end{bmatrix}$				
36	Define Simple Graph	A graph is called simple graph/strict graph if the graph is undirected and does not contain any loops or multiple edges.	Remember	CO 5	CLO 22	ACSB04.22
37	Define Multi- Graph	If in a graph multiple edges between the same set of vertices are allowed, it is called Multigraph. In other words, it is a graph having at least one loop or multiple edges.	Remember	CO 5	CLO 23	ACSB04.23
38	Define Bipartite Graph	If the vertex-set of a graph G can be split into two disjoint	Remember	CO 5	CLO 23	ACSB04 .23
		sets, V1 and V2, in such a way				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		that each edge in the graph joins				
		a vertex in V1 to a vertex in V2,				
		and there are no edges in G that				
		connect two vertices in V1 or				
		two vertices in V2, then the				
		graph G is called a bipartite				
		graph G is called a orparitie				
		gruph				
		a				
			Sec. 1			
		b a				
39	Define Complete	A complete bipartite graph is a	Remember	CO 5	CLO 23	ACSB04 .23
	Bipartite Graph	bipartite graph in which each				
		vertex in the first set is joined				
		to every single vertex in the				
		second set. The complete				
		bipartite graph is denoted by				
		Kx where the graph G				
		contains x vertices in the first				
		set and v vertices in the second				
		set				
		Set.				
		a c			×	
	50		_			-
	-					
	0				- C	
					1 m	
		d			A	
10	DC N		D 1	00.5	CT 0 02	
40	Define Non-	A graph 1s non-planar 1f 1t	Remember	CO 5	CLO 23	ACSB04 .23
	planar graph	cannot be drawn in a plane			h.,	
		without graph edges crossing.		6		
41	Define Planar	G is called a planar graph if it	Remember	CO 5	CLO 23	ACSB04 .23
	graph	can be drawn in a plane without				
		any edges crossed. If we draw				
		graph in the plane without edge				
		crossing, it is called embedding				
		the graph in the plane.				
42	Define	If two graphs G and H contain	Remember	CO 5	CLO 24	ACSB04 .24
	Isomorphism	the same number of vertices				
		connected in the same way,				
		they are called isomorphic				
		graphs (denoted by G≅H).				
		It is easier to check non				
		isomorphism than isomorphism				
		If any of these following				
		conditions occurs, then two				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		graphs are non-isomorphic –				
		1. The number of				
		connected components				
		are different				
		2. Vertex-set cardinalities				
		are different				
		3. Edge-set cardinalities				
		are different				
		4. Degree sequences are				
13	Dofino	A homomorphism from a graph	Remember	CO 5	CLO 24	ACSB04 24
45		G to a graph H is a mapping	Kemember	005	CLO 24	ACSD04.24
	Homomorphism	(May not be a bijective				
		(whay not be a bijective mapping)				
		h:G→H				
		h:G \rightarrow H such that –	<u> </u>			
		$(\mathbf{x}, \mathbf{y}) \in F(G) \rightarrow (h(\mathbf{x}), h(\mathbf{y})) \in F(H)$				
		$(x,y) \in E(G) \rightarrow (h(x),h(y)) \in E(H).$				
		It maps adjacent vertices of				
		graph				
		Gto the adjacent vertices of the				
4.4	State momenties	graph H.	Understand	CO 5	CLO 24	ACSP04 24
44	state properties	isomorphism if it is a bijective	Olideistalld	05	CLO 24	AC3D04.24
		manning				
	Homomorphism	Homomorphism always				
		preserves edges and				
		connectedness of a graph.				
		The compositions of				
		homomorphisms are also				
		homomorphisms.				
		To find out if there exists any				1000
		homomorphic graph of another	- A -			
	0	graph is a NP complete problem.				5
45	Define	A connected graph G is called	Remember	CO 5	CLO 23	ACSB04 .23
	HamiltonianGrap	Hamiltonian graph if there is a				
	hs	cycle which includes every				
		vertex of G and the cycle is			100	
		Hamiltonian walk in granhG is				
		a walk that passes through each				
		vertex exactly once.		20		
				0		

Signature of the Faculty

HOD, IT