IARE SOR LIBERTY

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	MECHANICAL VIBRATIONS
Course Code	:	AME011
Program	:_	B.Tech
Semester	:	V
Branch	:	Mechanical Engineering
Section	:	A&B
Academic Year	:	2019–2020
Course Faculty		Dr. K Viswanath Allamraju, Professor & Prof VVSH Prasad, Professor

COURSE OBJECTIVES:

I	Understand the concept of equilibrium of a body subjected to static and dynamic forces.
II	Apply the phenomenon of friction for automobile application.
III	Analyze the significance of governors and its application in turning moment diagram.
IV	Determine the fundamental frequency of mechanical system.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-I				
1	What do you mean by dynamics?	Dynamics refers to the branch of mechanics that deals with the movement of objects and the forces that drive that movement. In physics, dynamics is the study of bodies in motion and changes in that motion, and that idea can be applied to other areas as well.	Remember	CO1	CLO 1	AME011.01
2	What is the difference between dynamics and mechanics?	Mechanics deals with all interactions between the body with forces, and the resultant motion of the body. It's aim is to predict the nature of motion and rest under the action of forces. Mechanics is broader area of study, comprising of Dynamics and statics.	Remember	CO1	CLO 1	AME011.01
3	What are examples of dynamics?	Dynamics is defined as the branch of mechanics that deals with the effect of outside forces on something. An example of dynamics is how the moon affects the ocean waves. An example of dynamics are the effect of individual relationships on a group of friends.	Remember	CO1	CLO 1	AME011.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	What is	A gyroscope is a device that uses	Remember	CO2	CLO 1	AME011.01
	gyroscope	Earth's gravity to help determine				
	used for?	orientation. Its design consists of a				
		freely-rotating disk called a rotor,				
		mounted onto a spinning axis in the				
		center of a larger and more stable wheel.				
5	What is the	When the gyroscope is applied with	Remember	CO2	CLO 2	AME011.02
3	principle of	external torques or rotations about the	Remember	002	CLO 2	7 HVIE011.02
	gyroscope?	given axis, the orientation can be				
		measured by a precession				
		phenomenon. When an object rotating				
		about an axis is applied with external	ma.	_		
		torque along a direction perpendicular				
		to the rotational axis, the precession)		
	XX71 4	occurs.	D	CO2	CI O 2	AMEO11.02
6	What is	The turning moment which opposes any change of the inclination of the	Remember	CO2	CLO 2	AME011.02
	gyroscope couple?	axis of rotation of agyroscope.				
7	What is	Angular Acceleration is defined as the	Remember	CO2	CLO2	AME011.02
,	gyroscopic	rate of change of angular velocity with	Remember	002	CLO2	711112011.02
	acceleration?	respect to time. It is a Vector quantity.				
		The direction of acceleration vector is				
		not necessarily the same as the				
		displacement and velocity vectors.				
8	What is	Whenever an axis of rotation or spin	Remember	CO2	CLO 2	AME011.02
	reactive .	axis changes its direction a gyroscopic				
	gyroscopic	couple will act about the third axis.				
	couple?	A reactive gyroscopic couple will be experienced by bearings through the				
		shaft.				
9	What is	The phenomenon in which the axis of a	Understand	CO2	CLO 3	AME011.03
	gyroscopic	spinning object (e.g., a gyroscope)	Chacistana	202	0200	12.12011.00
	torque?	describes a cone in space when an	4 _		-	
		external torque is applied to it. The	_	7	· .	2.
		phenomenon is commonly seen in a		*	. ~~	
		spinning toy top, but all rotating			_	
10	****	objects can undergo precession.	XX 1 1	000	CI O 2	A A CE 011 02
10	What is	Gyroscopic effect is ability (tendency)	Understand	CO2	CLO 3	AME011.03
	gyroscopic effect?	of the rotating body to maintain a steady direction of its axis of rotation.		ģ,		
	circet:	The gyroscopes are rotating with		0		
		respect to the axis of symmetry at high	. 0.	>		
		speed.	1 10			
11	What do you	When the inertia forces are neglected	Understand	CO1	CLO 3	AME011.03
	mean by static	in comparison to the externally applied				
	force analysis?	load, one may go for static force				
		analysis. If the body is under				
		equilibrium condition, then this				
		equilibrium is known				
		as static equilibrium and this condition is applicable in many machines where				
		the movement is relatively slow.				
12	What is static	(Static = not moving). Dynamic	Remember	CO1	CLO 4	AME011.04
	and dynamic	force is the force a moving object puts				
	force?	on an object when it hits it The				
		problem is that "support" relates to				
		a static force. "stopping" relates to				
		a dynamic force. Dynamic forces from				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		a falling object are vastly higher				
13	What is static	than static forces from the same object. A static force refers to a	Remember	CO1	CLO 4	AME011.04
13	force?	constant force applied to a stationary	Kemember	COI	CLO 4	AMEOT1.04
		object. A static force is too weak to				
		move an object because it is being				
		countered by equally strong				
		opposite forces The force is then a kinetic force that is being resisted by				
		kinetic friction.				
14	What is an	A static force refers to a	Remember	CO1	CLO4	AME011.04
	example of	constant force applied to a stationary				
	static force?	object. A static forceis too weak to move an object because it is being	-			
		countered by equally strong				
		opposite forces. The most				
		common example of a static				
		force is static friction on a stationary object.				
15	What is the	Dynamics is the study of forces on	Remember	CO1	CLO 4	AME011.04
	difference	moving bodies. Application of forces				
	between static	when they are in motion. Statics means				
	and dynamic mechanics?	study of all the forces couples				
	mechanics?	moments etc. for a stationary object which is in the state of rest.				
		Whereas Dynamics deals with study of				
		all the forces when object is in motion.				
4	****	UNIT - II	D 1	GOA	OT O. F	A A CE 011 05
1	What is clutch and its types?	Centrifugal clutch, hydraulic torque converter and fluid coupling includes	Remember	CO3	CLO 5	AME011.05
	and its types:	in it. This type of clutch is always used				
		with the automatic transmission box.	1		1.0	100
		These are all types of clutches used in	7 -		- 7	No.
		automobile industries to transmit power.	· ·)
2	What is the	Function of the Clutch. Function of	Remember	CO3	CLO 5	AME011.05
	purpose of	transmitting the torque from the engine			1	
	clutch?	to the drivetrain. Smoothly deliver				
		the power from the engine to enable smooth vehicle movement. Perform			(C)	
		quietly and to reduce drive-related				
		vibration.		V.		
3	What causes	Clutch Failure: Common Causes and	Remember	CO3	CLO 5	AME011.05
	the clutch to break?	Replacement Advice The friction that is created between the clutch disc,	///			
	oreak:	pressure plate and flywheel when				
		the clutchengages generates heat and				
		wear, and the more the driver "rides"				
		the clutch pedal or lets it slip excessively, the hotter the clutch disc				
		gets and the faster it wears.				
4	How do	Most cars use friction clutch operated	Remember	CO3	CLO 5	AME011.05
	clutches work?	either by fluid (hydraulic) or, more				
		commonly, by a cable. When a car is				
		moving under power, the clutch is engaged. A pressure plate bolted to the				
		flywheel exerts constant force, by				
		means of a diaphragm spring, on the				
		driven plate .				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
5	Does the	You can slow the car down almost to	Remember	CO3	CLO 6	AME011.06
	clutch stop the	a stop with engine alone, with no				
	car?	brakes, although it will be slow. The other reason is the same				
		racing car drivers always keep				
		the car in proper gear. When you				
		brake, you press the clutch, and go into				
		neutral.				
6	How long does	It's a difficult question to answer	Remember	CO3	CLO 6	AME011.06
	a clutch last?	really, as it all depends on your driving style. Mostclutches are designed				
		to last approximately 60,000 miles				
		before they need to be replaced. Some				
		may need replacing at 30,000 and				
		some others can keep going well over				
		100,000 miles, but this is fairly				
7	Do you have	uncommon. There is no need to press clutch every	Remember	CO3	CLO 6	AME011.06
'	to press the	time you press the brake		235	2200	11.12011.00
	clutch when	pedal. You only press				
	going into	clutch when you switch gears, put the				
	neutral?	car into neutral speed or come to a				
		stop. Whenever you break it is recommended to avoid braking				
		in neutral speed.				
8	What is brake	Deceleration: The main function of	Remember	CO3	CLO 6	AME011.06
	function?	the brake system is to decelerate or				
		decrease the speed of a vehicle. By				
		stepping on the brake pedal, the brake pads compress against the				
		rotor attached to the wheel, which then				
		forces the vehicle to slow down due to	1			
	644	friction.				
9	What is types	There are basically two types of	Understand	CO3	CLO6	AME011.06
	of brake?	brakes Drum Brake and Disc Brake. they vary in their construction.				
		Disc Brakes:- Disc brakes consist of			4	
		a brake rotor which is attached directly			-	
		to the wheel The friction between			(P)	
		the pads and the rotor causes the		0		
10	How do breaks	vehicle to slow and stop. As the pedal moves down, it pushes a	Remember	CO3	CLO 7	AME011.07
10	work?	class 2 lever (a kind of simple	Kemember	COS	CLO /	AWIEUTT.U/
	· - ·	machine), increasing your pushing	110			
		force. The lever pushes a piston (blue)				
		into a narrow cylinder filled with				
		hydraulic brake fluid (red) When the brake pad touches the brake disc,				
		friction between the two generates heat				
		(red cloud).				
11	Why do brakes	This is the most common and main	Remember	CO3	CLO 7	AME011.07
	stop working	cause of brake fade his heat buildup				
	when hot?	causes the friction surfaces of the brake				
		pads and rotor to stop working correctly.				
12	Is brake fade	Loss of stopping power, or fade, can be	Understand	CO3	CLO 7	AME011.07
	permanent?	caused by friction fade,				
		mechanical fade, or fluid fade				
		Disc brakes are much more resistant				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		to brake fade because the heat can be vented away from the rotor and pads				
		more easily, and have come to be a				
		standard feature in front brakes for				
12	Wilest is a	most vehicles.	I I d a ad a d	CO2	CI O7	AMEO11.07
13	What is a dynamometer	A dynamometer, or "dyno" for short, is a device for measuring force, moment	Understand	CO3	CLO7	AME011.07
	and how does	of force (torque), or power. For				
	it work?	example, the power produced by an				
		engine, motor or other rotating prime mover can be calculated by				
		simultaneously measuring torque and				
		rotational speed (rpm).				
14	Dynamometer	A dynamometer is a device used for	Remember	CO3	CLO 8	AME011.08
		measuring the torque and brake power required to operate a driven machine.	-0			
15	Why	A dynamometer or "dyno" for short, is	Understand	CO3	CLO 8	AME011.08
10	dynamometer	a device for measuring force, torque, or	Chacistana		0200	111111111111111111111111111111111111111
	is used?	power. For example, the power				
		produced by an engine, motor or other rotating prime mover can be calculated				
		by simultaneously measuring torque				
		and rotational speed (RPM).				
		UNIT - III			ı	
1	What are the uses of turning	Turning Moment (Or Crank	Remember	CO4	CLO 9	AME011.09
	moment	Effort) Diagram (TMD) Turning moment diagram is a graphical				
	diagram?	representation of turning moment or				
		torque (along Y-axis) versus crank				
		angle (X-axis) for various positions of crank. Uses of TMD 1. The area under				
		the TMD gives the work done per	4			
	600	cycle.				
2	What is the	Flywheel stores rotational energy when	Remember	CO ₄	CLO 9	AME011.09
	difference between	the mechanical energy supplied is more than that's required for operation,			-	
	flywheel and	whereas a governor regulates the fuel			4	
	governor?	supply according to the varying load				
	-	conditions. While hypothetically both			6.	
		serve the same purpose, that is speed control, they do it very differently.				
3	What is mean	The resisting torque is the	Remember	CO4	CLO 9	AME011.09
	resisting	maximum torque above which the	81.			
	torque?	flywheel starts to rotate. Generally fly wheel has ver large mass, so a greater	11.			
		amount of torque is required to rotate				
		the flywheel.				
4	What is	Fluctuation of energy, co-efficient	Remember	CO4	CLO10	AME011.10
	fluctuation of energy?	of fluctuation of energy, co-efficient of fluctuation speed,maximum fluctuati				
		on of energy. Answer:Fluctuations of				
		energy: The variations of energy above				
		and below the mean resisting torque				
5	Where is	line are called fluctuations of energy. For dynamic balancing of the engine	Remember	CO4	CLO10	AME011.10
	flywheel used?	and to store energy. A flywheel is a	Temomori	204		
	-	rotating mechanical device that				
		is used to store rotational				
		energy. Flywheels have an inertia			l	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		called the moment of inertia and thus				
		resist changes in rotational speed.		~~.	GT 0.10	17.57011.10
6	How does a flywheel	A flywheel is a mechanical device specifically designed to efficiently	Remember	CO4	CLO10	AME011.10
	Work?	store rotational				
	WOIK.	energy. Flywheels resist changes in				
		rotational speed by their moment of				
		inertia For example, flywheels are				
		used in reciprocating engines because				
		the active torque from the individual				
		pistons is intermittent. Energy storage				
7	What is meant	systems. Moment. The turning effect of a force	Remember	CO4	CLO 10	AME011.10
'	by turning	is known as the moment. It is the	Remember	CO4	CLO 10	7 HVILOT1.10
	moment?	product of the force multiplied by the	J			
		perpendicular distance from the line of				
		action of the force to the pivot or point				
0	XX71 C1 1 1	where the object will turn.	D 1	GO 4	CI O 10	AMEO11 10
8	Why flywheel is used in	A flywheel is the heavy rotating mass which is placed between the power	Remember	CO4	CLO 10	AME011.10
	punching	source and the driven machine to act as				
	machine?	a reservoir of energy. It is used to store				
		the energy when the demand of energy				
		of energy is less and deliver it when				
	**	the demand of energy is high.		GO 4	GY 0 11	17.0014.44
9	How energy is	In batteries, initially energy is	Remember	CO4	CLO 11	AME011.11
	stored in flywheel?	stored by other electrical energy sources or energy is				
	my wheer:	stored from a result of some chemical				
		reaction. Flywheel energy storage can				
		be compared to the battery in the same				
	-57	way. The flywheel energy storage			1.0	700
		system uses electrical energy and	A -			
10	What is	stores it in the form of kinetic energy. Governor is a device used to maintain	Remember	CO4	CLO 11	AME011.11
10	governor and	the speed of an engine within specified	Kemember	CO4	CLO 11	AMEOI1.11
	its type?	limits when the engine works in			4	
		varying of different loads. Based on				
		the source of controlling force,			(P)	
		the governors can be classified into		0		
		two types. Governor types are centrifugal governors and		0		
		inertia governors.	. 0.	>		
11	How does	Like many functions on modern, fuel-	Remember	CO4	CLO 11	AME011.11
	speed	injected cars, speed limiters operate	1			
	governor	through electronic sensors and the				
	work?	engine computer Once you reach a				
		pre-determined top speed, the				
		computer steps in and restricts the flow of air and fuel to the engine and even				
		the sparks that cause combustion.				
12	What is the	The functions of a governor is to	Remember	CO4	CLO 12	AME011.12
	main function	regulate the mean speed of an engine,				
	of governor?	when there are variations in the load.				
		When the load on an engine increases,				
		its speed decreases, therefore it becomes necessary to increases the				
		supply of working fluid.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
13	What is the	A centrifugal governor is a specific	Remember	CO4	CLO 12	AME011.12
	purpose of	type of governor with a feedback				
	governor?	system that controls the speed of an				
		engine by regulating the flow of fuel or				
		working fluid, so as to maintain a near-				
		constant speed. It uses the principle of proportional control.				
14	What is the	Flywheel stores rotational energy when	Remember	CO4	CLO 12	AME011.12
1 .	difference	the mechanical energy supplied is	Remember	001	CLO 12	7 HVIE011.12
	between	more than that's required for operation,				
	flywheel and	whereas a governor regulates the fuel				
	governor?	supply according to the varying load				
		conditions. While hypothetically both	-			
		serve the same purpose, that is speed				
1.5	Where is	control, they do it very differently.	Damamhan	COA	CLO 12	AME011.12
15	Where is flywheel used?	For dynamic balancing of the engine and to store energy. A flywheel is a	Remember	CO4	CLO 12	AME011.12
	fry wheer useu?	rotating mechanical device that				
		is used to store rotational				
		energy. Flywheels have an inertia				
		called the moment of inertia and thus				
		resist changes in rotational speed.				
		UNIT - IV		~~~		
1	Why do we do	A rotating system of mass is in	Remember	CO5	CLO 13	AME011.13
	balancing of rotating	dynamic balance when the rotation does not produce any resultant				
	masses?	centrifugal force or couple If a				
	masses:	system is initially unbalanced, to avoid				
		the stress upon the bearings caused by				
		the centrifugal couple,				
		counterbalancing weights must be				
	100	added.				
2	What is static	Static Balancing A rotating mass is	Remember	CO5	CLO 13	AME011.13
	balancing of rotating	said to be statically balanced if the rotating mass can rest, without	1			
	masses?	turning, at any angular position in its			-	
	masses:	bearings. This condition is attained			4	
		when the sum of the centrifugal forces			-	
		on the rotating mass due to			100	
		unbalanced masses is zero in any radial				
		direction.		905	GY C	
3	How the	When several masses rotate in different	Remember	CO ₅	CLO 13	AME011.13
	different	planes, the centrifugal forces, in	. 10			
	masses rotating in	addition to being out of balance, also form couples. A system of rotating	1			
	different	masses is in dynamic balance when				
	planes are	there does not exist any resultant				
	balanced?	centrifugal force as well as resultant				
		couple.				
4	Why is	Balancing of rotating parts	Remember	CO5	CLO 13	AME011.13
	balancing	is necessary for every engine, only in				
	necessary?	high speed engines it becomes very				
		important. The force exerted by the rotating parts is proportional to the				
		square of the rotational speed, omega.				
		If the rotating parts are not balanced,				
		then the vibrations caused by the parts				
		will be too much.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
5	Why	The balancing of rotating bodies is	Remember	CO5	CLO 13	AME011.13
	balancing of	important to avoid				
	dynamic	vibration. Dynamic and Static				
	forces are necessary?	Balancing in Heavy Industrial machinery such as generators and				
	necessary!	motors can cause catastrophic failure,				
		as well as noise and discomfort. To				
		help with balancing, it involves simply				
		moving the centre of gravity to the				
		centre of rotation.				
6	What is	Rotating unbalance is the uneven	Remember	CO5	CLO 13	AME011.13
	rotating mass?	distribution of mass around an axis of rotation. Arotating mass, or rotor, is				
		said to be out of balance when its	7			
		center of mass (inertia axis) is out of		ш.		
		alignment with the center				
		of rotation (geometric axis).				
7	What are the	There are two types of wheel	Remember	CO5	CLO 13	AME011.13
	two types of	balancing, static and dynamic.				
	wheel balancing?					
8	Which	Balance is especially important for	Remember	CO5	CLO 13	AME011.13
	balancing	older adults hoping to reduce the risk			020 10	111112011110
	exercise is best	of falls and injuries. Core stability is				
	for improving	essential to both static and dynamic				
	dynamic	balance. Unfortunately, many				
	balance?	traditional core-training exercises, such as crunches and leg raises, do little to				
		improve stability.				
9	What is	When several masses revolve in	Remember	CO5	CLO 13	AME011.13
	reference	different planes, they may be				
	plane in	transferred to areference plane and		7.0	1.0	700
	balancing?	this reference plane is a plane passing	A -	7		
		through a point on the axis of rotation and perpendicular to it the couples	T -	-9		
		about the reference plane must balance		J	-	
		i.e., the resultant couple must be zero.			4	
10	Why is a shaft	A shaft dynamically balanced at one	Remember	CO5	CLO 13	AME011.13
	dynamically	rotational speed is also balanced at any			(C)	
	balanced at	other speed because the tangential		. 0		
	one rotational speed also	velocity is constant. This means that only the acceleration due to changes of		6		
	balanced at	direction will affect the dynamical	. 0			
	any other	balance. It also shows that a shaft	110			
	speed?	statically balance may also be dynamic				
1.1	T 1 1 '	ally balance.	D 1	007	CI C 12	A) (E011.12
11	Is balancing an engine	Street engines do not necessarily need balancing. Except for a couple of	Remember	CO5	CLO 13	AME011.13
	necessary?	rare occasions, almost no factory				
		engine ever came fully balanced, even				
		most "performance" engines				
		weren't balanced. Balancing helps				
		an engine run smoother with less				
		vibration which creates less havoc on main bearings and helps things last				
		longer.				
12	What are the	Most Common Causes of	Remember	CO5	CLO 13	AME011.13
	causes and	Machine Vibration As machine				
	effect of	speed increases, theeffects of				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	vibration?	imbalance become greater. Imbalance can severely reduce bearing life as well				
		as cause undue machine vibration.				
		Misalignment: Vibration can result				
13	How do you	when machine shafts are out of line. To calculate torque, start multiplying	Remember	CO5	CLO 13	AME011.13
10	calculate	the mass of the object exerting force by		000	020 10	111111111111111111111111111111111111111
	torque to	the acceleration due to gravity, which				
	rotate a mass?	is 9.81. When the force is clockwise, its torque is negative, and when it's				
		moving counterclockwise, it's positive.				
14	How do you find the center	center of mass formula to find the exact location of the center of	Remember	CO5	CLO 13	AME011.13
	of mass?	mass between a system of objects, you	٦.			
		add all the masses times their positions	J)		
		and divide by the total mass, the position can be measured relative to				
		any point you call X equals zero and				
1.5	11.	the number you get out of that.	D1	COF	CI O 12	AMEO11 12
15	How are mass and rotational	Rotational inertia plays a similar role in rotational mechanics to mass in	Remember	CO5	CLO 13	AME011.13
	inertia related?	linear mechanics. Indeed, the rotational				
		inertia of an object depends on its mass. It also depends on the				
		distribution of that mass relative to the				
		axis of rotation.				
1	Period of	UNIT - V The time taken to complete one cycle	Remember	CO5	CLO 13	AME011.13
1	oscillation.	of motion is known as the period of	Remember	003	CLO 13	7 MVILOTT.13
		oscillation $\tau=2 \pi/\omega$				
		Time period and is denoted by τ Rotate through an angle of 2 π				
	600	The circular frequency ω	7			
2	Frequency of oscillation.	The number of cycles per unit time is called the frequency of oscillation	Remember	CO5	CLO 13	AME011.13
3	synchronous	Consider two vibratory motions	Remember	CO5	CLO 13	AME011.13
		denoted by $x1 = A1 \sin \omega t$ $x2 = A2 \sin(\omega t + \varphi)$				
		The two harmonic motions given by		- 1	0.0	
4	Periodic	above Eqs. are called synchronous Oscillatory motion may repeat itself	Remember	CO5	CLO 13	AME011.13
7	motion.	regularly, as in the case of a simple	Kemember	CO3	CLO 13	AMEO11.13
		pendulum, or itmay display	01.			
		considerable irregularity, as in the case of ground motion during an	1			
		earthquake.If the motion is repeated				
		after equal intervals of time, it is called periodic motion.				
5	Harmonic	The simplest type of periodic motion is	Remember	CO5	CLO 13	AME011.13
	motion	harmonic motion.	XX 1	007	CT C 12	A) (F) (14.40
6	Distributed or continuous	Systems where mass, damping, and elasticity were assumed to be present	Understand	CO5	CLO 19	AME011.19
	systems	only at certain discrete points in the				
		system. In many cases, known as distributed or continuous systems.				
7	System of	A continuous system is also called a	Remember	CO5	CLO 14	AME011.14
	infinite	system of infinite degrees of freedom.				
	degrees of freedom					
			1		1	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
8	Wave equation	$c^2 \frac{\partial^2 w}{\partial z^2} = \frac{\partial^2 w}{\partial z^2}$	Remember	CO5	CLO 14	AME011.14
		The Equation $\partial x^2 - \partial t^2$ is also				
	_	known as the wave equation.		~~-	GT 0 11	
9	Frequency or	$\sin \frac{\omega l}{\omega} = 0$	Remember	CO5	CLO 14	AME011.14
	characteristic	Equation c is called the				
10	equation	frequency or characteristic equation.	D	COF	CI O 15	AMEO11.15
10	Eigenvalues	Equation $\sin \frac{\omega l}{c} = 0$ is called the	Remember	CO5	CLO 15	AME011.15
		frequency or characteristic equation				
		and is satisfied by severalvalues of				
		ωThe values of ware called the				
		eigenvalues (or natural frequencies				
		orcharacteristic values) of the problem.				
11	Fundamental	The mode corresponding to $n = 1$ is	Remember	CO5	CLO 15	AME011.15
	mode	called the fundamental mode.				
12	Fundamental	The mode corresponding to $n = 1$ is	Remember	CO5	CLO 16	AME011.16
	frequency.	called the fundamental mode, and ω_1 is				
		called the fundamental frequency.				
13	Why do we	Almost every imaginable signal can be	Remember	CO5	CLO 17	AME011.17
	use Fourier	broken down into a combination of				
	transform?	simple waves This break down, and				
	What is	how much of each wave is needed, is				
	it used for?	the Fourier Transform. Fourier transforms (FT) take a signal and				
		express it in terms of the frequencies of				
		the waves that make up that signal.				
14	What is time	Time domain is the analysis of	Remember	CO5	CLO 17	AME011.17
1 .	domain	mathematical functions, physical	Remember	003	CLO 17	7 HVILOTT.T7
	analysis?	signals or timeseries of economic or				
	ř	environmental data, with respect				
		to time. In the time domain, the signal				
		or function's value is known for all real	*			
		numbers, for the case of continuous				
		time, or at various separate instants in	-		100	
		the case of discrete time.		~~~	GT 0 1 =	12501115
15	What is	Vibration Analysis refers to the	Remember	CO5	CLO 17	AME011.17
	vibration	process of measuring			^	
	analysis?	the vibration levels and frequencies of industrial machinery, and using that				
		information to determine the "health"			(C)	
		of the machine, and its components		_ Q		
		This vibration can be measured, using				
		a device called an accelerometer.	0	-		
16	Resonance	Whenever the natural frequency of	Remember	CO5	CLO 17	AME011.17
		vibration of a machine or structure	1			
		coincides with the frequency of the				
		external excitation, there occurs a				
		phenomenon known as resonance				
17	vibration	Any motion that repeats itself after an	Remember	CO5	CLO 17	AME011.17
		interval of time is called vibration or				
10	1' 1	oscillation	D 1	COT	CI O 17	AMEO11.17
18	generalized	The coordinates necessary to describe	Remember	CO5	CLO 17	AME011.17
	coordinates	the motion of a system constitute a set				
		of generalized coordinates. These are usually denoted as and may represent				
		Cartesian and/or non-Cartesian				
		coordinates				
19	Resonance	Whenever the natural frequency of	Remember	CO5	CLO 17	AME011.17
		vibration of a machine or structure				
					1	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		coincides with the frequency of the				
		external excitation, there occurs a				
		phenomenon known as resonance				
20	Natural	If a system, after an initial disturbance,	Remember	CO5	CLO 17	AME011.17
	frequency.	is left to vibrate on its own, the				
		frequency with which it oscillates				
		without external forces is known as its				
		natural frequency.				

Signature of the Faculty

Signature of HOD

