

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING
Course Code	:	ACE009
Program	:	B.Tech
Semester		V
Branch	:	Civil Engineering
Section	:	A & B
Academic Year	:	2019 - 2020
Course Faculty	:	P. Vinay Kumar, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:							
Ι	Identify, formulate and solve engineering problems of RC elements.							
II	Differentiate between working stress design and limit state design.							
III	Understand the importance of limit state design in reinforced concrete structures.							
IV	Design of different structural members like beam, slab, column, footing and stair case.							

DEFINITIONS AND TERMINOLOGY QUESTION BANK

C No	OUESTION	ANGWED	Diagona Laval	CO	CLO	CLOCada
S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE-	I			
1	What is Ultimate Limit State (ULS)?	ULS in concerned with the maximum load – carrying capacity of the structure within the limits of strength of the materials used.	Understand	CO 1	CLO 1	ACE009.01
2	What is characteristic load?	Generally, load on any structural members cannot be determined accurately. For most structures, it is uneconomical to design using anticipated maximum load. Therefore, in normal design practice, the load to be used is based on the characteristic load.	Remember	CO 1	CLO 2	ACE009.02
3	State the 3 types of load.	a) Dead loadb) Imposed loadc) Wind load	Remember	CO 1	CLO 1	ACE009.01

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
4	State four	1. Have acceptable probability	Remember	CO 1	CLO 3	ACE009.03
	objectives of the	of performing satisfactorily				
	design of	during their intended life,				
	reinforced	2. Sustain all loads with limited				
	concrete	deformations during				
	structure.	construction and use,				
		3. Be durable,				
		4. Adequately resist the effects of misuse and fire.				
5	What are the	The three methods are:	Remember	CO 1	CLO 3	ACE009.03
5	three methods of	1.Limit state method,	Remember	001	CLO J	ACE009.05
	design of	2. Working stress method,				
	reinforced	3.Method based on experimental				
	concrete	approach				
	structural		1.1			
	elements?			\sim		
6	How to estimate	In limit state method,	Understand	CO 1	CLO 2	ACE009.02
	the design loads	Design loads = Characteristic				
	in limit state	loads multiplied by the partial				
	method?	safety factor for loads				
7	How to estimate	In working stress method,	Understand	CO 1	CLO 4	ACE009.04
	the design loads	Design loads = Characteristic	-			
	in working str <mark>ess</mark>	loads.				
	method?					
8	Write a short note	The acceptable limit for safety	Remember	CO 1	CLO 2	ACE009.02
	on limit state of	and serviceability requirements				
	durability.	before failure occurs is called a				
		limit state. The aim of design is				
		to achieve acceptable				
		probabilities that the structure will not become unfit for the use				
		for which it is intended, that is,				
	-	that it will not reach a limit				-
	CO	state.		- 17		N
9	What is partial	Factors of safety (FoS), also	Understand	CO 1	CLO 3	ACE009.03
-	safety factor?	known as (and used				MCE007.05
		interchangeably with) safety				
		factor (SF), is a term describing			-	
	C 1	the load carrying capacity of a			- C	
		system beyond the expected or			1	
	- F	actual loads. Essentially, the			h	
		factor of safety is how much		63		
		stronger the system is than it	100	~		
		usually needs to be for an		1		
10	XX	intended load.		00.1		
10	Write any two	The following are the		CO 1	CLO 4	ACE009.04
	assumptions are made in elastic	assumptions made in working stress method:				
	theory methods.	a) At any cross-section, plane				
	uncory memous.	sections before bending remain				
		plain after bending				
		b) All tensile stresses are taken				
		up by reinforcement and none				
		by concrete, except as otherwise				
1 1		specifically permitted				
		specificanty permitted				
11	What is the		Understand	CO 1	CLO 4	ACE009.04
11	What is the formula to find the	$n_{c} = 1/(1 + (\sigma_{st}/m.\sigma_{bc})) d$	Understand	CO 1	CLO 4	ACE009.04
11			Understand	CO 1	CLO 4	ACE009. 0 4
11	formula to find the	$n_c = 1/(1 + (\sigma_{st}/m. \sigma_{bc})) d$ where, σ_{bc} is permissible stress	Understand	CO 1	CLO 4	ACE009. 04

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
12	Write any two	• Hence the design by limit		CO 1	CLO 5	ACE009.05
	advantages of	state method is found to be				
	limit state over	more economical.				
	other methods.	• In the limit state method of				
		analysis, the principles of				
		both elastic as well as				
		plastic theories used and				
		hence suitable for concrete				
		structures				
13	What is meant by	When the maximum stress in	Remember	CO 1	CLO 5	ACE009.05
	balanced section?	steel and concrete				
		simultaneously reach their				
		allowable values, the section is				
		said to be balanced section.				
		In this section the actual neutral				
		axis depth is equal to the critical	Second Second)		
		neutral axis.				
14	Define Limit	The acceptable limit for the	Understand	CO 1	CLO 5	ACE009.05
	state.	safety and serviceability				
		requirements before failure				
	D. Cl. II	occurs is called a limit state.		G G G G	or c	
15	Define collapse	The load that causes the $(n + 1)^{th}$	Understand	CO 1	CLO 6	ACE009.06
	load.	hinge to form a mechanism is				
		called collapse load where n is				
		the degree of statically				
		indeterminacy. Once the				
		structure becomes a mechanism.				
		MODULE-	п			
1	Define	Development bond: It arises	Remember	CO 2	CLO 9	ACE009.09
1	Define anchorage bond.	over the length of anchorage	Remember	CO 2	CLO 9	ACE009.09
1		over the length of anchorage provided for a bar or near the	Remember	CO 2	CLO 9	ACE009. 09
1		over the length of anchorage provided for a bar or near the end of reinforcing bar. This	Remember	CO 2	CLO 9	ACE009.09
1		over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of	Remember	CO 2	CLO 9	ACE009. 09
1		over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or	Remember	CO 2	CLO 9	ACE009.09
1		over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of	Remember	CO 2	CLO 9	ACE009.09
	anchorage bond.	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression.	26		710.	
1	anchorage bond.	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups	Remember	CO 2 CO 2	CLO 9 CLO 7	ACE009.09 ACE009.07
	anchorage bond. Name various types of shear	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups	26		710.	
2	anchorage bond. Name various types of shear reinforcements?	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups	Remember	CO 2	CLO 7	ACE009.07
	anchorage bond. Name various types of shear reinforcements? What are the	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension	26		710.	
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear	Remember	CO 2	CLO 7	ACE009.07
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression	Remember	CO 2	CLO 7	ACE009.07
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear	Remember	CO 2	CLO 7	ACE009.07
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam?	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond	Remember Understand	CO 2	CLO 7 CLO 7	ACE009.07 ACE009.07
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between	Remember	CO 2	CLO 7	ACE009.07
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam?	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond	Remember Understand	CO 2	CLO 7 CLO 7	ACE009.07 ACE009.07
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam?	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The	Remember Understand	CO 2	CLO 7 CLO 7	ACE009.07 ACE009.07
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam?	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative	Remember Understand	CO 2	CLO 7 CLO 7	ACE009.07 ACE009.07
2	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam?	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative movement between concrete and	Remember Understand	CO 2	CLO 7 CLO 7	ACE009.07 ACE009.07
2 3 4	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam? Define bond.	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative movement between concrete and steel is known as bond.	Remember Understand Understand	CO 2 CO 2 CO 2	CLO 7 CLO 7 CLO 9	ACE009.07 ACE009.07 ACE009.09
2 3 4	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam? Define bond.	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative movement between concrete and steel is known as bond. The different types of bond are	Remember Understand Understand	CO 2 CO 2 CO 2	CLO 7 CLO 7 CLO 9	ACE009.07 ACE009.07 ACE009.09
2 3 4	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam? Define bond.	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative movement between concrete and steel is known as bond. The different types of bond are	Remember Understand Understand	CO 2 CO 2 CO 2	CLO 7 CLO 7 CLO 9	ACE009.07 ACE009.07 ACE009.09
2 3 4 5	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam? Define bond. List out the different types of bond.	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative movement between concrete and steel is known as bond. The different types of bond are Flexure bond, Anchorage bond	Remember Understand Understand Understand	CO 2 CO 2 CO 2 CO 2	CLO 7 CLO 7 CLO 9	ACE009.07 ACE009.07 ACE009.09 ACE009.09
2 3 4 5	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam? Define bond. List out the different types of bond. What is meant by	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative movement between concrete and steel is known as bond. The different types of bond are Flexure bond, Anchorage bond Punching shear is a type of	Remember Understand Understand Understand	CO 2 CO 2 CO 2 CO 2	CLO 7 CLO 7 CLO 9	ACE009.07 ACE009.07 ACE009.09 ACE009.09
2 3 4 5	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam? Define bond. List out the different types of bond. What is meant by	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative movement between concrete and steel is known as bond. The different types of bond are Flexure bond, Anchorage bond Punching shear is a type of failure of reinforced concrete	Remember Understand Understand Understand	CO 2 CO 2 CO 2 CO 2	CLO 7 CLO 7 CLO 9	ACE009.07 ACE009.07 ACE009.09 ACE009.09
2 3 4 5	anchorage bond. Name various types of shear reinforcements? What are the types of shear failure in reinforced concrete beam? Define bond. List out the different types of bond. What is meant by	over the length of anchorage provided for a bar or near the end of reinforcing bar. This bond resists the pulling out of bar if it is in tension or conversely, the pushing in of the bar if it is in compression. a) Vertical stirrups b) Bent up bars with stirrups c) Inclined stirrups a) Shear tension b) Flexure shear c) Shear compression d) Shear bond Bond is defined as grip between concrete and steel. (Or) The force that prevents the relative movement between concrete and steel is known as bond. The different types of bond are Flexure bond, Anchorage bond Punching shear is a type of failure of reinforced concrete slabs subjected to high localized	Remember Understand Understand Understand	CO 2 CO 2 CO 2 CO 2	CLO 7 CLO 7 CLO 9	ACE009.07 ACE009.07 ACE009.09 ACE009.09

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	What are hanger	Hanger bars, are provided in a	Remember	CO 2	CLO 10	ACE009.10
	bars in beams?	beam to keep the Main				
		Reinforcement (which takes care of tension at bottom fibers				
		in simply supported beam, top				
		fibers in cantilever beam) and				
		stirrups (who take care of shear				
		stresses and diagonal tension in				
		beam) in position as the name indicated for them.				
8	What is nominal	Nominal shear stress is	Remember	CO 2	CLO 7	ACE009.07
	shear stress?	the shear force generated on the		002		NeL009.07
		structure due to the force				
		imposed on a given cross-				
9	Define	sectional area. For serviceability limit states	Understand	CO 2	CLO 10	A GE000 10
	serviceability of	• $SL = 1.0 (DL+LL)$	Understand	02	CLO 10	ACE009.10
	limit states.	• $SL = 1.0 (DL + DL)$ • $SL = 1.0 (DL + QL)$				
		• $SL = 1.0DL + 0.8LL + 0.8 QL$				
10	Define shear	The resistance to sliding offered	Remember	CO 2	CLO 7	ACE009.07
	strength.	by the material of beam is				
11	What is maant by	called shear strength. Lap length is the minimum	Understand	CO 2	CLO 10	A CE000 40
11	What is meant by Lap length?	length of overlap required	Onderstand	02		ACE009.10
	Lup longuit.	between two serial rebar's				
		placed in concrete to transfer				
		tension or compression from one				
12	What is the hook	bar to the other. Hook length is calculated by	Understand	CO 2	CLO	A CE000 11
12	formula in	a formula that is 6db (dia of	Understand	02	10	ACE009.11
	stirrups?	bar). So the hook length for			10	
		$10 \text{mm}\emptyset$ bar is, $6 \ge 10 = 60 \text{ mm}$.	-			
	CO	But length of hook should not				~
	0	be less than 75mm (as per code).			0	
13	What is short	Short-term deflection means the	Remember	CO 2	CLO 11	ACE009.11
	term and long	immediate deflection after			4	
	term deflection?	casting and application of partial			-	
	-	or full service loads, while the long-term deflection occurs			100	
	- Y	over a long period of time				
		largely due to shrinkage and				
		creep of the materials.		~		
	What is meant by	Mild steel bars embedded in	Remember	CO 2	CLO 9	ACE009.09
	end anchorage?	concrete are sometimes hooked				
		so as to have proper anchorage with concrete. If bars are				
		provided with hooks, the				
		necessary grip or bond length				
		can be reduced. The anchorage				
		value of the hook alone is considered as 16d where d is the				
		diameter of the bar.				
15	Define Torsion.	Equal and opposite moments	Remember	CO 2	CLO 8	ACE009.08
		applied at both ends of structural				
		element (Member) or its part				
		about its longitudinal axis is				
		called Torsion Also termed as				
		called Torsion. Also termed as torsional moment or twist or				

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		MODULE-1	ш			
1	What is simply supported slab?	Simply supported slabs are supported on columns or stanchions. They have support on all four sides of Simply Supported Slab	Understand	CO 3	CLO 12	ACE009.12
2	Why distribution bars are provided in slab?	Distribution bars placed on top of the main bar. Main Reinforcement Bars are used to transfer the bending moment developed at the bottom of the slab. Distribution Bars are used to hold the slabs.	Remember	CO 3	CLO 12	ACE009.12
3	What is the minimum diameter of stirrups?	Minimum diameter for lengthwise reinforcement bars is 10 mm (3/8"). Rebars have to be deformed. If deformed steel cannot be found, the minimum diameter must be increased to 12 mm (1/2"). Stirrup diameter is 6 mm (1/4").	Remember	CO 3	CLO 12	ACE009.12
4	What is one way continuous slab?	The slabs spanning in one direction and continuous over supports are called one-way continuous slabs.	Remember	CO 3	CLO 12	ACE009.12
5	What are stirrups reinforcement?	A stirrup is a closed loop of reinforcement bar that is used to hold the main reinforcement bars together in an RCC structure. In a column, the stirrups provide the lateral	Remember	CO 3	CLO 13	ACE009.13
6	What are main bars?	support to the main bars. The main bar in reinforced concrete structures is the reinforcement provided in the direction in which moment is very high or dominates. only minimum reinforcement or 20 percent of the shorter direction bars (called main bars) would be placed in the longer direction (which are secondary bars or distribution bars).	Understand	CO 3	CLO 12	ACE009.12
7	What is slab structure?	A slab is a structural element, usually made up of reinforced concrete. They help in transferring the loads further to beams. Slabs are of two types one-way or two-way.	Remember	CO 3	CLO 12	ACE009.12
8	What is cantilever strength?	A cantilever is a rigid structural element, such as a beam or a plate, anchored at one end to a support from which it protrudes; this connection could also be perpendicular to a flat, vertical surface such as a wall. Cantilevers can also be constructed with trusses,slabs.	Understand	CO 3	CLO 15	ACE009.15

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
9	What is the	The minimum thickness of slab	Remember	CO 3	CLO 12	ACE009.12
	minimum	used in RCC construction				
	thickness of slab?	is 150mm. But it varies				
		depending upon the type of slab				
		to be used.				
10	What is the value	Minimum reinforcement is	Remember	CO 3	CLO 12	ACE009.12
	of minimum	0.12% for HYSD bars and				
	reinforcement in	0.15% for mild steel bars. The				
	a slab?	diameter of bar generally used				
		in slabs are: 6 mm, 8 mm, 10				
		mm, 12mm and 16mm. The				
		maximum diameter of bar used				
		in slab should not exceed 1/8 of				
	****	the total thickness of slab.		00.0		
11	Why slabs are	Shear reinforcement is	Remember	CO 3	CLO 13	ACE009.13
	not designed for	usually not required				
	shear?	in slabs supported on beams or				
		walls because the depth is small				
		and the span therefore fairly slender so bending and				
		deflection will nearly always				
		govern the design.				
12	What is a two	TWO WAY SLAB: When a	Remember	CO 3	CLO 13	ACE009.13
12	way concrete	reinforced concrete slab is	Remember	005		ACE009.13
	slab?	supported by beams on all the				
		four sides and the loads are				
		carried to the supports along				
		both directions, it is known				
		as two way slab. In two way				
		slab the ratio of longer span (l)				
		to shorter span (b) is less than 2.				
13	What type of	A concrete mix of 1 part cement	Remember	CO 3	CLO 12	ACE009.12
	concrete is used	:2 parts sand : 4 parts coarse				
	for slabs?	aggregate should be used for a				
	0	concrete slab.				
14	What is the use	Bent-up bars or known as Crank	Remember	CO 3	CLO 12	ACE009.12
	of crank bar in	bars. Which we provide in the			4	
	slab?	ends on the top of the slab or				
		also in the top of the mid supports to counter the			10 m	
		mid supports to counter the negative moment called				
		(Hogging) which produce at that				
		sections of the slabs and beams.		1		
15	What is negative	Positive slabs are usually	Remember	CO 3	CLO 13	ACE009.13
	bar in slab?	provided on the lower side of		200		ACL007.13
		the slab and negative on the				
		upper. We should know that,				
		positive moment bars resist				
		maximum moment in between				
		the to adjacent columns, so the				
		lap between the two steel bars				
		should never be provided at that				
		point that is mid.				

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE-I	V			
1	What is column and its type?	Column is a vertical structural member. It transmits the load from ceiling/roof slab and beam, including its self-weight to the foundation. Columns may be subjected to a pure compressive load.	Remember	CO 4	CLO 17	ACE009.17
2	What is column in construction?	A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member.	Remember	CO 4	CLO 17	ACE009.17
3	What is meant by braced column?	A column may be considered braced in a given plane if lateral stability to the structure as a whole is provided by walls or bracing or buttressing designed to resist all lateral forces.	Remember	CO 4	CLO 18	ACE009.18
4	What is slenderness ratio in civil engineering?	The slenderness ratio is the ratio between the height or length of a structural element (such as a column, or strut) and the width or thickness of the element.	Remember	CO 4	CLO 17	ACE009.17
5	What is radius of gyration formula?	It is denoted by 'K '. If M is mass of the body, the moment of inertia is given as, Moment of inertia (I) = mass of the body (M) × (radius of gyration) ² . So, the formula for radius of gyration (K) is given as, where K = radius of gyration, I = Moment of inertia and M = mass of the body.	Remember	CO 4	CLO 17	ACE009.17
6	How the compression failures occur in columns?	 i. The maximum compressive strain in concrete in axial compression is 0.002 ii. Plane sections remain plane in compression iii. The design stress strain curve is taken to be the same as in tension. 	Remember	CO 4	CLO 17	ACE009.17
7	Write any two reinforcement provision in columns	As per IS 456-2000 a reinforced concrete column shall have longitudinal steel reinforcement and cross sectional area of such reinforcement shall not be less than 0.8% nor more than 6% of cross sectional area of column required to transmit all the loading.	Remember	CO 4	CLO 20	ACE009.20

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
8	What are the	A short concrete column is one	Remember	CO 4	CLO 17	ACE009.17
	important	having a ratio of unsupported				
	limitations of	length to least dimension of the				
	slender columns?	cross section equal to or less				
		than 10. If the ratio is greater than 10, it is considered a long				
		column (sometimes referred to				
		as a slender column).				
9	Write any two	The following assumptions are	Remember	CO 4	CLO 19	ACE009.19
	salient	made for column failing under				1102007125
	assumptions are	pure compression:				
	made in the limit	i. The maximum compressive				
	state design of	strain in concrete in axial				
	columns.	compression is 0.002				
	C	ii. Plane sections remain plane				
		in compression iii. The design stress strain curve				
		for steel in compression is taken				
		to be the same as in tension				
10	What is the	All axially loaded columns	Remember	CO 4	CLO 17	ACE009.17
	salient condition	should be designed considering				1102007127
	for minimum	the minimum eccentricity				
	eccentricity of	ex min \geq greater of) 1/500 +				
	column?	D/30) or 20 mm				
		ey min \geq greater of) 1/500 + b/30) or 20 mm				
		where l, D and b are the				
		unsupported length, larger				
		lateral dimension and least .				
11	What is pedestal?	A concrete pedestal is a	Remember	CO 4	CLO 17	ACE009.17
		compression element provided				
		to carry the loads from				
	00	supported elements		_		
	-	like columns, statues etc. to footing below the ground.		- 17	1	
12	What are the	Compression failure,	Remember	CO 4	CLO 17	ACE009.17
12	mode of failure	Tension failure	remember	0.0	CLO II	ACE009.17
	of a column?				-	
13	What is the	Short axially loaded members in	Remember	CO 4	CLO 20	ACE009.20
	loading the	axial compression.		-	100	
	condition for	Short axially loaded column			h	
	short column?	with minimum eccentricity.		4.7		
14	What is the	Slenderness ratio is the ratio of	Remember	CO 4	CLO 20	ACE009.20
	formula of	the effective length of a column		C		
	slenderness ratio?	(L_e) and the least radius of guration (r) about the axis under				
		gyration (r) about the axis under consideration. It is given by the				
		symbol " λ " (lambda).				
		Effective slenderness ratio of the				
		section about the minor axis of				
		cross-section = L_e/r_{y}				
15	What is buckling	Crippling is just like buckling,	Remember	CO 4	CLO 19	ACE009.19
	or crippling load?	but it happens in the web of a				
		beam when it is being				
		compressed. It occurs at the supports of a beam, where the				
		bottom flange is resting on a				
		support, and the top flange is				
		holding up the load.				

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		MODULE-	V			
1	What is the main purpose of foundation?	The main purpose of the foundation is to distribute the structural load over a large bearing area without causing bearing capacity failure and excessive settlement to obtain a level and hard strata or bed for building operations to increase the stability of the structure.	Remember	CO 5	CLO 21	ACE009.21
2	What is the purpose of footings?	Footings are an important part of foundation construction. They are typically made of concrete with rebar reinforcement that has been poured into an excavated trench. The purpose of footings is to support the foundation and prevent settling.	Remember	CO 5	CLO 21	ACE009.21
3	What is difference between footing and foundation?	A footing is a foundation unit constructed in brick work, masonry or concrete under the base of a wall or a column for the purpose of distributing the load over a large area. A footing or a shallow foundation is placed immediately below the lowest part of the Superstructure supported by it.	Remember	CO 5	CLO 21	ACE009.21
4	What are footings used for?	Footings are an important part of foundation construction. They are typically made of concrete with rebar reinforcement that has been poured into an excavated trench. The purpose of footings is to support the foundation and prevent settling	Remember	CO 5	CLO 22	ACE009.22
5	What is strip footing?	A wall footing or strip footing is a continuous strip of concrete that serves to spread the weight of a load-bearing wall across an area of soil. It is the component of a shallow foundation.	Understand	CO 5	CLO 21	ACE009.21
6	How many types of foundation are there?	There are two types of pile foundations, each of which works in its own way. In end bearing piles, the bottom end of the pile rests on a layer of especially strong soil or rock.	Understand	CO 5	CLO 21	ACE009.21
7	What is waist slab in staircase?	Waist Slab for a staircase is probably more used as a slang not as a professional technical word. This term refers to a slab of the stair that is slanting from the floor slab to the landing slab.	Understand	CO 5	CLO 23	ACE009.23

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
8	What is the tread	The horizontal top portion of a	Understand	CO 5	CLO 23	ACE009.23
	measurement of a	step where foot rests is known				
	RCC stair in	as tread. The dimension ranges				
	public building?	from 270 mm for residential				
	paone canang.	buildings and factories to 300				
		mm for public buildings where				
		large number of persons use the				
0	XX71	staircase.	TTo 1 and a 1	CO 5	CI 0 22	A CE000 22
9	What is the minimum width	Staircase Width: 36 Inches, Minimum. Staircase width	Understand	CO 5	CLO 23	ACE009.23
	of stairs?	refers to the side-to-side				
	of stalls:	distance if you were walking up				
		or down the stairs. This distance				
		must be at least 36 inches and				
		does not include handrails.	1			
10	At what height	Stair riser heights shall be 7	Understand	CO 5	CLO 23	ACE009.23
	are stairs	inches (178 mm) maximum and				
	required?	4 inches (102 mm) minimum.				
		Stair tread depths shall be 11				
		inches (279 mm) minimum. The				
		riser height shall be measured				
		vertically between the leading				
	**	edges of adjacent treads.	D	<u> </u>		1 CE000 00
11	How many types	In these type of stairs the flight	Remember	CO 5	CLO 23	ACE009.23
	of staircase are	of stair turns 90 degrees art				
	there?	landing as it rises to connect two different levels. So it is also				
		called as L-stair. Again these				
		quarter turn stairs are two types.				
12	What is straight	A straight staircase can be	Remember	CO 5	CLO 23	ACE009.23
12	stair?	defined as one having a single,	rteineinser	005	010 25	1102007.25
		straight flight of stairs like a				
		ladder that connects two levels				100
		or floors in a building.	-	_		
13	What are the	Basements, buoyancy rafts,	Remember	CO 5	CLO 21	ACE009.21
	types of deep	caissons, cylinders, shaft,				
	foundation?	foundations, Pile foundations				
14	How many types	Pile foundations are capable of	Remember	CO 5	CLO 21	ACE009.21
	of footing are	taking higher loads than spread			100	
	there?	footings. There are two types of				
		pile foundations, each of which			1	
		works in its own way. In end		1		
		bearing piles, the bottom end of the pile rests on a layer of				
		especially strong soil or rock.				
15	What are the 3	Shallow foundation.	Remember	CO 5	CLO 21	ACE009.21
10	types of	Individual footing or isolated		200	220 21	
	foundations?	footing. Combined footing.				
		Strip foundation. Raft or mat				
		foundation.				
		• Deep Foundation. Pile				
		foundation. Drilled Shafts or				
		caissons.				

Signature of the Faculty

HOD, CE