

OINSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

INFORMATION TECHNOLOGY

DEFINITIONS AND TERMINOLOGY

Course Name		:	SEMICONDUCTOR PHYSICS
Course Code		:	AHSB13
Program		:	B.Tech
Semester		:	II
Branch	~	:	INFORMATION TECHNOLOGY
Section		:	Α
Academic Year		:	2018 - 2019
Course Faculty			Mr. A Chandra Prakash. Assistant Professor.FE

OBJECTIVES:

Ι	To help students to consider in depth the terminology and nomenclature used in the syllabus.
II	To focus on the meaning of new words / terminology/nomenclature

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE - I				
1	What is quantum mechanics ?	Quantum mechanics is a theoretical science that deals with the study of the motions of the microscopic objects that have both observable wave-like and particle-like properties.	Remember	CO 1	CLO2	AHSB13.02
2	State Heisenber g's Uncertaint y Principle.	It is impossible to know both the exact position and exact momentum of an object at the same time.	Remember	CO 1	CLO2	AHSB13.02
3	State Planck's Law	Planck's law or Planck's radiation law states that energy is radiated in the form of wave-packets and this energy packet has both wave and particle character.	Remember	CO 1	CLO2	AHSB13.02
4	What is a black body?	A black body is one which absorbs all wavelengths of radiation at low temperatures and emits radiation at high temperatures.	Remember	CO 1	CLO2	AHSB13.02
5	Define photoelect ric effect	The emission of electrons from a metal plate when illuminated by light or any other radiation of suitable wavelength or frequency is called photoelectric effect.	Remember	CO 1	CLO2	AHSB13.02
6	Recall stopping potential.	The potential difference needed to just stop the photoelectric current is known as stopping potential.	Remember	CO 1	CLO2	AHSB13.02

	T 1 ·		XX 1 . 1	00.1		110012.00
	Explain	The minimum amount of energy	Understand	CO 1	CLO2	AHSB13.02
	the .	required to overcome the binding energy				
7	meaning	of the constituents of the metal and				
-	of work	hence to eject an electron from the				
	function	surface of the metal is known as work				
	of a metal.	function of the metal.				
	Describe	The Compton wavelength of a particle is	Understand	CO 1	CLO2	AHSB13.02
8	Compton	equal to the wavelength of a photon				
0	wavelengt	whose energy is the same as the mass of				
	h.	that particle.				
	Define	Compton effect is the increase in	Remember	CO 1	CLO2	AHSB13.02
	Compton	wavelength of X-rays and other				
9	effect.	electromagnetic radiations that have				
9		been elastically scattered and it is a				
		principal way in which radiant energy is	- i i			
		absorbed in matter.				
	What are	The waves associated with the particles	Remember	CO 1	CLO3	AHSB13.03
10	matter	of matter [e.g., electrons, protons etc.,]				
10	waves?	are known as matter waves or de Broglie				
		waves.				
	Recall	The velocity with which each individual	Remember	CO 1	CLO3	AHSB13.03
11	phase	wave travels is called phase velocity.				
	velocity.	wave davers is cance phase verocity.				
	Explain	The velocity with which the wave packet	Understand	CO 1	CLO3	AHSB13.03
	the term	which is formed due to the superposition	Chacibtana	001	CL03	1115015.05
12	group	of two or more waves of slighty different	-			
14	velocity.	wavelengths is transmitted is known as				
	velocity.	group velocity.				
	What is	Quantization is the concept where	Remember	CO 1	CLO3	AHSB13.03
	quantizati	energy can have only discrete values or	Kennenhoer	01	CLOS	Alisb15.05
13	on of	energy is radiated in the form of discrete				
	energy?	packets known as photons.				
	State	The Bragg's law states that when the x-	Remember	CO 1	CLO3	AHSB13.03
			Kellielildei		CLOS	Ansb15.05
	Bragg's	ray is incident onto a crystal surface, its				
14	law.	angle of incidence θ , will reflect back			-	
14		with a same angle of scattering θ and	_		- N.	2
	1	also when the path difference, d is equal			-	
		to a whole number n, of wavelength, a			A	
	Whatia	constructive interference will occur. A normalized wave funtion means that	Domonther	CO 1	CL O4	AUSD12.04
	What is		Remember	CO 1	CLO4	AHSB13.04
	the	the probability that the particle is found		0		
	meaning	in the considered domain is equal to 1		1		
15	of	and thus the integral of the square of the		1		
	normalizat	wave function in the domain is equal to	. 0.			
	ion of	1.	(\V			
	wave	603	1			
	function?			00.1	CI O (
	Explain	A particle in a 1-dimensional box is a	Understand	CO 1	CLO4	AHSB13.04
	the	fundamental quantum mechanical				
	concept of	approximation describing the				
	particle in	translational motion of a single particle				
16	a one	confined inside an infinitely deep well				
	dimension	from which it cannot escape.				
	al					
	potential					
	box.					
	Define a	A free particle is not subjected to any	Remember	CO 1	CLO4	AHSB13.04
17	free	forces and its potential energy is				
	particle.	constant.				

18	What is degenerac y?	Degeneracy is the property of different quantum states having the same energy level.	Remember	CO 1	CLO4	AHSB13.04
		MODULE -	· II			
1	State Block's theorem.	Bloch's theorem states that the wavefunction of an electron within a perfectly periodic potential may be written as where has same periodicity as potential of an electron and is called modulating function.	Remember	C0 2	CLO 6	AHSB13.06
2	Describe Fermi level.	Fermi level energy is the energy level above which probability of finding an electron is 0 at 0k. i.e all the electrons have energy less than the Fermi level energy at 0k. No electron exist above Fermi level at 0k.	Understand	C0 2	CLO 6	AHSB13.06
3	Recall Hall effect	The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current.	Remember	C0 2	CLO 6	AHSB13.06
4	Define Hall coefficient.	The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field	Remember	C0 2	CLO 6	AHSB13.06
5	What is an energy band?	A large number of closely spaced energy levels which are formed by merging of discrete energy levels of the individual atoms in solids is called an energy band.	Remember	C0 2	CLO 5	AHSB13.05
6	What is a valence band?	The lower band which is partially or completely filled by valence electrons at T=0K is called the valence band.	Remember	C0 2	CLO 5	AHSB13.05
7	Define conduction band	The lowest filled higher permitted band in which electrons move freely is called conduction band.	Remember	C0 2	CLO 5	AHSB13.05
8	Recall forbidden energy gap	The energy required to transfer an electron from valence band to conduction band is called forbidden energy gap.	Remember	C0 2	CLO 5	AHSB13.05
9	Explain the meaning of a conductor	Metals are conductors. There is no band gap between their valence and conduction bands, since they overlap. There is a continuous availability of electrons in these closely spaced orbitals.	Understand	C0 2	CLO 5	AHSB13.05
10	What do you understand by an insulator?	In insulators, the band gap between the valence band the conduction band is so large that electrons cannot make the energy jump from the valence band to the conduction band.	Remember	C0 2	CLO 5	AHSB13.05
11	Describe a semiconduct or.	Semiconductors have a small energy gap between the valence band and the conduction band. Electrons can make the jump up to the conduction band, but not with the same ease as they do in conductors.	Understand	C0 2	CLO 5	AHSB13.05

 An intrinsic semiconductor is a semiconductor in its pure state. For every electron that jumps into the conduction band, the missing electron will generate a 	Understand	C0 2	CLO 6	AHSB13.06
c electron that jumps into the conduction				
J. J. F. S.				
ici pand, the missing electron will generate a				
hole that can move freely in the valence				
band. The number of holes will equal the				
number of electrons that have jumped.	D 1	<u> </u>	CI O C	AUGD 12.04
The absence of electron in a particular	Remember	C0 2	CLO 6	AHSB13.06
place in an atom is called as hole. Hole is a				
ict electric charge carrier which has positive				
charge. The electric charge of hole is equal				
to electric charge of electron but have				
opposite polarity.				
In The semiconductor in which impurities are	Understand	C0 2	CLO 6	AHSB13.06
doped to increase the electrical	`			
ct conductivity is called extrinsic				
semiconductor.	5			
N- When pentavalent or donor impurity is	Remember	C0 2	CLO 6	AHSB13.06
added to an intrinsic or pure semiconductor				
ict (silicon or germanium), then it is said to be				
an n-type semiconductor. In n-type				
semiconductor, free electrons are called				
majority carriers and holes are called				
minority carriers				
P- When trivalent or acceptor impurity is	Remember	C0 2	CLO6	AHSB13.06
added to an intrinsic or pure semiconductor				
ict (silicon or germanium), then it is said to be				
an p-type semiconductor. In p-type	-			
semiconductor, holes are called majority				
carriers and free electrons are called				
minority carriers.				
Carrier generation is a process where	Remember	C0 2	CLO6	AHSB13.06
electron-hole pairs are created by				
exciting an electron from the valence				-
band of the semiconductor to the				
conduction band, thereby creating a hole			- C	
in the valence band.		r	-	
		1	· · ·	
			-	
Recombination is the reverse process	Understand	C0 2	CLO6	AHSB13.06
where electrons and holes from the		2		
g conduction respectively valence band				
recombine and are annihilated	0	100		
U.U.				
f	1.1.2			
	Remember	C0 2	CLO5	AHSB13.05
l decelerated or stopped by a repulsive				
force is called potential barrier.				
	TTT			
	111			
	force is called potential barrier.	decelerated or stopped by a repulsive	decelerated or stopped by a repulsive force is called potential barrier.	decelerated or stopped by a repulsive force is called potential barrier.

1	Wha t do you und ersta nd by gene ratio n of an elect ron- hole pair?	Carrier generation is a process where electron-hole pairs are created by exciting an electron from the valence band of the semiconductor to the conduction band, thereby creating a hole in the valence band	Remember	CO 3	CLO 7	AHSB13.07
2	What is diode?	a semiconductor device with two terminals, typically allowing the flow of current in one direction only.	Remember	CO 3	CLO 7	AHSB13.07
3	Explain the meaning of reco mbi nati on of an elec tron - hole pair	Recombination is the reverse process where electrons and holes from the conduction respectively valence band recombine and are annihilated	Remember	CO 3	CLO 7	AHSB13.07
4	What is Photo diode?	A photodiode is a semiconductor device that converts light into an electrical current. The current is generated when photons are absorbed in the photodiode	Remember	CO 3	CLO 8	AHSB13.08
5	Define LED	A light-emitting diode (LED) is a semiconductor device that emits visible light when an electric current passes through it.	Remember	~	CLO 8	AHSB13.08
6	What is photo detector?	A photo detector has a p-n junction that converts light photons into current.	Understand	CO 3	CLO 9	AHSB13.08
7	What is photo voltaic effect?	is a process that generates voltage or electric current in a photovoltaic cell when it is exposed to sunlight.	Remember	CO 3	CLO 8	AHSB13.08
8	Describe Solar Cell	A solar cell, or photovoltaic cell, is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.	Remember	CO 3	CLO 7	AHSB13.07

			_			_
9	What	Biasing of diode means applying dc	Remember	CO 3	CLO 9	AHSB13.08
-	is the	Voltage across the terminals of				
	mean	diode. When voltage is applied				
	ing	across a diode in such a way that the				
	of	diode prohibits current, the				
	biasi					
	ng diode					
		Ohm's law stating that electric current	Understand	CO 3	CLO 9	AHSB13.09
10	State the	is proportional to voltage and inversely	Onderstand	05		AIISD15.07
	ohm's law	proportional to resistance.				
	What are	A semiconductor in which the bottom	Understand	CO 3	CLO 9	AHSB13.09
11	direct	of the conduction band and the top of				
		the valence band occur at the				
	bandgap	momentum k=0, also energy is released				
	semicond	I the form of radiation during	n (
	uctors?	band-to-band electron recombination				
		with a hole is called direct bandgap				
		semiconductor.				
	Wha	a threshold voltage refers to the voltage	Understand	CO 3	CLO 9	AHSB13.09
12	t is	at which certain result occurs. Usually,				
	mea	it is the				
	nt	minimum voltage required for				
	by	conduction to occur but not				
	thres	exclusively used to mean that.				
	hold					
	volt					
	age?		-			
12	What is	Light quitting die de le generated in	Understand	CO 3	CLO 7	AHSB13.07
13	the	Light emitting diode is connected in				
	biasing in	forward biasing, to produce light				
	a light					
	emitting					
	diode		TT 1 / 1	00.2		AUGD12.07
14	What is the	The electron from n side recombines	Understand	CO 3	CLO 7	AHSB13.07
	principle	with the hole on p side .light is emitted due to recombination.			- C	5
	behind	due to recombination.		· · · · ·	-	S
	light				4	
	emitting					
	diode.				100	
15	Explain	The flow of charge carriers from high	Remember	CO 3	CLO 7	AHSB13.07
15	the term	density to low density is called	1	1	l.	
	diffusion	diffusion.				
	in a	diffusion.				
	semicond	×N	1.1.4			
	uctor.	The combination of the latter for		00.2		ALICD 12.07
16	Des crib	The combination of an electron from conduction band to valence band is	Understand	CO 3	CLO 7	AHSB13.07
	e	called recombination.				
	reco					
	mbi					
	nati					
	on					
	phe					
	nom					
1	ena.					

17	Wha	The velocity gained by an electron when	Understand	CO 3	CLO 7	AHSB13.07
17	t is drift	an electric field is applied, is called drift velocity.				
	velo	veroeny:				
	city of					
	an					
	elect ron?					
18	State the	Ohm's law stating that electric current	Understand	CO 3	CLO 9	AHSB13.09
10	ohm's law	is proportional to voltage and inversely proportional to resistance.				
		MODULE -	· IV			
1	Define an	Two equal and opposite charges	Remember	CO 4	CLO 9	AHSB13.09
	electric dipole.	separated by a distance 'r' constitute a dipole.	J			
2	Describe	The product of charge and distance	Remember	CO 4	CLO 9	AHSB13.09
	dipole	between two charges is called electric dipole moment. $\mu = q \times r$.				
3	moment.What is a	The dielectrics in which center of	Remember	CO 4	CLO 9	AHSB13.09
	polar	gravity of negative charge distribution				
	dielectric ?	does not coincide with the center of positive charge distribution are called	0			
		polar dielectrics.				
4	What is a nonpolar	The dielectrics in which center of gravity of negative charge distribution	Understand	CO 4	CLO 9	AHSB13.09
	dielectric ?	coincide with the center of positive				
		charge distribution are called polar				
5	Define	dielectrics. Dielectric constant is the ratio between	Remember	CO 4	CLO 9	AHSB13.09
	Dielectric	the permittivity of the medium and the				
	constant (or)	permittivity of free space. It is denoted by Er.	-			÷
	Relative			_		S
	permittivit y of the		_	7	C)
	medium.				~	
6	What is	When a dielectric substance is placed in	Remember	CO 4	CLO 9	AHSB13.09
	electric polarizatio	an electric field, then positive and negative charges are displaced in				
	n?	opposite direction. This phenomena is		Q~		
7	Define the	called electric polarization. The ratio of dipole moment to that of	Remember	CO 4	CLO 9	AHSB13.09
,	term	electric field applied is called	remember			
	Polarizabil	Polarizability.	1.10			
8	ity. Describe	Polarization Vector is defined as the	Understand	CO 4	CLO 9	AHSB13.09
	Polarizatio	average dipole moment per MODULE				
	n Vector.	volume of a dielectric. If 'N' molecules are present per MODULE volume.				
9	Recall	The electric susceptibility ' χ ' is defined	Remember	CO 4	CLO 9	AHSB13.09
	Electric Susceptibi	as the ratio of polarization vector to the applied electric field 'E'. $\chi = P/E$				
	lity.	apprice electric field $\mathbf{E} \cdot \chi - \mathbf{F} = \mathbf{E}$				
10	Describe	When an electric field is applied on a	Understand	CO 4	CLO 9	AHSB13.09
	the electronic	dielectric material then all the positive nuclei of atoms move in the field				
	Polarizatio	direction and all the negative electron				
	n	cloud of atoms move in opposite				
		directions, hence dipoles are formed to		L		

		produce dipole moment.				
11	Define a	Two equal and opposite poles separated	Remember	CO 4	CLO10	AHSB13.10
	Magnetic dipole.	by a distance 'r' constitute a dipole.				
12	What is	It is defined as the amount of magnetic	Remember	CO 4	CLO10	AHSB13.10
	Magnetic	lines of forces passing perpendicularly				
	flux	through MODULE area of a given material. It is denoted by 'Φ'				
13	Recall the	The magnetic moment per MODULE	Remember	CO 4	CLO10	AHSB13.10
	term	volume is called Intensity of				
	Intensity of	magnetization.				
	Magnetiza					
	tion.					
14	Define	Magnetic induction at a point is defined	Remember	CO 4	CLO10	AHSB13.10
	Magnetic	as the force experienced by a MODULE				
	Induction	North Pole Placed at that point. It is denoted by 'B'				
15	What is	Permeability is the ability of the medium	Remember	CO 4	CLO10	AHSB13.10
	Permeabili	to pass magnetic lines of forces through				
10	ty?	it.	D 1	00.4	CL 010	AUGD12 10
16	Define Magnetic	Magnetic susceptibility is defined as ratio of intensity of magnetization and	Remember	CO 4	CLO10	AHSB13.10
	susceptibil	applied magnetic field.				
	ity.					
17	Define	relative Permeability is defined as the	Remember	CO 4	CLO10	AHSB13.10
	relative Permeabili	ratio of Permeability of medium and Permeability of free space.				
	ty.	remieability of free space.				
		MODULE	-V			
1	Define	LASER stands for Light Amplification	Remember	CO 5	CLO7	AHSB13.07
2	LASER. Explain	by Stimulated Emission of Radiation. If a photon of energy $hv=E_2-E_1$ collides	Understand	CO 5	CLO7	AHSB13.07
2	the	with an atom present in the ground state	Understand	05	CLO/	AllSD15.07
	phenomen	of energy E_1 then the atom completely				
	on of	absorbs the incident photon and makes	_	1		
	absorption	transition to excited state E_2 . This process is known as absorption.	-		-	
3	What do	An atom initially present in the excited	Remember	CO 5	CLO7	AHSB13.07
-	you mean	state makes transition voluntarily on its				
	by	own to the ground state, without any aid		0		
	spontaneo us	of external stimulus agency. This	1	1		
	emission?	process is known as spontaneous emission.		100		
	CHHSSIOH	ennission.				
4	Describe	An atom in the excited state makes a	Understand	CO 5	CLO7	AHSB13.07
4	Describe stimulated	An atom in the excited state makes a transition to the ground state before its	Understand	CO 5	CLO7	AHSB13.07
4	Describe	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external	Understand	CO 5	CLO7	AHSB13.07
4	Describe stimulated	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known	Understand	CO 5	CLO7	AHSB13.07
4	Describe stimulated	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external	Understand	CO 5 CO 5	CLO7	AHSB13.07 AHSB13.07
	Describe stimulated emission. What are the	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission. Characteristics of a laser are directionality, coherence,	1.10			
	Describe stimulated emission. What are the characteris	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission. Characteristics of a laser are	1.10			
	Describe stimulated emission. What are the characteris tics of a	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission. Characteristics of a laser are directionality, coherence,	1.10			
	Describe stimulated emission. What are the characteris tics of a laser?	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission. Characteristics of a laser are directionality, coherence, monochromatic and high intensity.	Remember	CO 5	CLO7	AHSB13.07
5	Describe stimulated emission. What are the characteris tics of a	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission. Characteristics of a laser are directionality, coherence,	1.10			
5	Describe stimulated emission. What are the characteris tics of a laser? What are Einstein coefficient	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission. Characteristics of a laser are directionality, coherence, monochromatic and high intensity. Einstein coefficients are mathematical quantities which are a measure of the probability of absorption or emission of	Remember	CO 5	CLO7	AHSB13.07
5	Describe stimulated emission. What are the characteris tics of a laser? What are Einstein coefficient s?	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission. Characteristics of a laser are directionality, coherence, monochromatic and high intensity. Einstein coefficients are mathematical quantities which are a measure of the probability of absorption or emission of light by an atom or molecule.	Remember	CO 5	CLO7 CLO7	AHSB13.07 AHSB13.07
5	Describe stimulated emission. What are the characteris tics of a laser? What are Einstein coefficient	An atom in the excited state makes a transition to the ground state before its lifetime under the influence of external stimulus energy. This process is known as stimulated emission. Characteristics of a laser are directionality, coherence, monochromatic and high intensity. Einstein coefficients are mathematical quantities which are a measure of the probability of absorption or emission of	Remember	CO 5	CLO7	AHSB13.07

0	Define	XX/L	D 1	CO 5	CI 07	AUGD 12 07
8	Define	When the population of higher excited state is more than the population of	Remember	CO 5	CLO7	AHSB13.07
	population inversion.	lower state, it is called population				
	mversion.	inversion.				
9	Describe	The process of supplying suitable form	Understand	CO 5	CLO7	AHSB13.07
/	pumping.	of energy to a system to achieve	Chicorstand	005	CLO/	1110010.07
	pumping.	population inversion is known as				
		pumping.				
10	Explain	Optical laser is a part of a laser,	Understand	CO 5	CLO7	AHSB13.07
	optical	consisting of two mirrors, one highly				
	resonator	reflective and one partially reflective,				
	in a laser	placed on either side of a laser pump and				
	system.	between which light bounces back and				
		forth, enhancing stimulated emission				
		within the pump. Light is emitted from	N 14			
		the optical resonator through the partly				
		reflective mirror.	· · · ·			
11	What do	The active medium is a collection of	Remember	CO 5	CLO7	AHSB13.07
	you	atoms or molecules, which can be				
	understand	excited into a population inversion				
	by active	situation, and can have electromagnetic				
	medium?	radiation extracted out of it by				
12	What and	stimulated emission. A semiconductor in which the bottom of	Remember	CO 5	CLO7	AHSB13.07
12	What are direct		Remember	05	CL07	AHSB13.07
	bandgap	the conduction band and the top of the valence band occur at the momentum	-			
	semicondu	k=0, also energy is released I the form of				
	ctors?	radiation during band-to-band electron				
	ctors.	recombination with a hole is called				
		direct bandgap semiconductor.				
		Examples are GaAs, InP, etc.				
13	Define	Fiber optics, or optical fiber, refers to the	Remember	CO 5	CLO8	AHSB13.08
	fiber	medium and the technology associated				
	optics.	with the transmission of information as				100
		light pulses along a glass or plastic				
	0	strand or fiber.	1			
14	Explain	Light launched into the optical fiber at	Understand	CO 5	CLO8	AHSB13.08
	the	one end gets propagated to the other end		1	4	
	principle	by total internal reflection at core-				
	of	cladding interface.			100	
	working			100		
	af an					
	of an			1		
	optical	1	-	8		
15	optical fiber.	Critical angle is defined as the the angle	Remember	CO 5	CI O8	AHSR13 08
15	optical fiber. Recall	Critical angle is defined as the the angle of incidence beyond which rays of light	Remember	CO 5	CLO8	AHSB13.08
15	optical fiber. Recall critical	of incidence beyond which rays of light	Remember	CO 5	CLO8	AHSB13.08
15	optical fiber. Recall	of incidence beyond which rays of light passing through a denser medium to the	Remember	CO 5	CLO8	AHSB13.08
15	optical fiber. Recall critical	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no	Remember	CO 5	CLO8	AHSB13.08
15	optical fiber. Recall critical	of incidence beyond which rays of light passing through a denser medium to the	Remember	CO 5	CLO8 CLO8	AHSB13.08 AHSB13.08
	optical fiber. Recall critical angle.	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected.	L'IS			
	optical fiber. Recall critical angle. Define	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle	L'IS			
16	optical fiber. Recall critical angle. Define acceptance angle.	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection.	Remember	CO 5	CLO8	AHSB13.08
	optical fiber. Recall critical angle. Define acceptance	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection. Numerical Aperture is the light	L'IS			
16	optical fiber. Recall critical angle. Define acceptance angle. What do you mean	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection. Numerical Aperture is the light gathering capacity of an optical fiber and	Remember	CO 5	CLO8	AHSB13.08
16	optical fiber. Recall critical angle. Define acceptance angle. What do you mean by	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection. Numerical Aperture is the light	Remember	CO 5	CLO8	AHSB13.08
16	optical fiber. Recall critical angle. Define acceptance angle. What do you mean by numerical	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection. Numerical Aperture is the light gathering capacity of an optical fiber and	Remember	CO 5	CLO8	AHSB13.08
16	optical fiber. Recall critical angle. Define acceptance angle. What do you mean by numerical aperture?	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection. Numerical Aperture is the light gathering capacity of an optical fiber and it is given by sine of acceptance angle.	Remember	CO 5 CO 5	CLO8 CLO8	AHSB13.08 AHSB13.08
16	optical fiber. Recall critical angle. Define acceptance angle. What do you mean by numerical aperture? What are	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection. Numerical Aperture is the light gathering capacity of an optical fiber and it is given by sine of acceptance angle.	Remember	CO 5	CLO8	AHSB13.08
16	optical fiber. Recall critical angle. Define acceptance angle. What do you mean by numerical aperture?	of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected. Acceptance angle is the maximum angle made by the light ray with the fiber axis, so that light can propagate through the fiber after total internal reflection. Numerical Aperture is the light gathering capacity of an optical fiber and it is given by sine of acceptance angle.	Remember	CO 5 CO 5	CLO8 CLO8	AHSB13.08 AHSB13.08

		core and a sharp decrease in refractive index at the core-cladding interface so that the cladding is of a lower refractive index.				
19	Explain acceptance cone.	Acceptance cone is the cone in which the light incident at acceptance angle or less than the acceptance angle and then the light can propagate through the fiber after total internal reflection.	Understand	CO 5	CLO8	AHSB13.08
20	Explain the meaning of graded index fibers.	In fiber optics, a graded index is an optical fiber whose core has a refractive index that decreases with increasing radial distance from the optical axis of the fiber.	Understand	CO 5	CLO8	AHSB13.08
21	Define LASER.	LASER stands for Light Amplification by Stimulated Emission of Radiation.	Remember	CO 5	CLO7	AHSB13.07
22	Explain the phenomen on of absorption	If a photon of energy $hv=E_2-E_1$ collides with an atom present in the ground state of energy E_1 then the atom completely absorbs the incident photon and makes transition to excited state E_2 . This process is known as absorption.	Understand	CO 5	CLO7	AHSB13.07

Signature of the Faculty

CANON E

Signature of HOD

LIBER