

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad - 500 043

### **MECHANICAL ENGINEERING**

#### DEFINITIONS AND TERMINOLOGY QUESTION BANK

| Course Name    | :   | DESIGN OF MACHINE MEMBERS                                                       |
|----------------|-----|---------------------------------------------------------------------------------|
| Course Code    | :   | AME012                                                                          |
| Program        | :   | <b>B.Tech</b>                                                                   |
| Semester       | :   | V                                                                               |
| Branch         | :   | MechanicalEngineering                                                           |
| Section        | ••• | A& B                                                                            |
| Academic Year  | :   | 2019-2020                                                                       |
| Course Faculty | :   | Dr. GVR Sheshagiri Rao,Professor<br>Mr. VKVS Krishnam Raju, Associate professor |

#### **COURSE OBJECTIVES:**

| The | course should enable the students to:                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Ι   | Develop an ability to apply knowledge of mathematics, science, and engineering Outcomes                                                             |
| п   | Knowledge of various design standards, safety, reliability, importance of dimensional parameters and manufacturing aspects in mechanical design.    |
| ш   | Understanding the concepts of stresses, theories of failure and material science to analyze, design and/or select commonly used machine components. |
| IV  | To develop an ability to identify, formulate, and solve various machine members problems                                                            |

- 7 -

# **COURSE OUTCOMES (COs):**

177

| CO1 | Understanding design and analysis of power transmitting elements, selection of suitable materials and manufacturing processes. |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Analyzing the forces acting on various joints and their design.                                                                |
| CO3 | To develop an ability to identify, formulate, and solve various machine members problems                                       |
| CO4 | Ability to design and analyze shafts with different geometrical features under various loading conditions.                     |
| CO5 | Ability to analyze and design of different Springs for required application.                                                   |
|     | I FOR L'                                                                                                                       |

| S.No | QUESTION                                                                  | ANSWER                                                                                                  | <b>Blooms Level</b> | CO   | CLO   | CLO Code  |  |  |  |
|------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|------|-------|-----------|--|--|--|
|      | UNIT-I                                                                    |                                                                                                         |                     |      |       |           |  |  |  |
| 1    | What is Couple?                                                           | The two equal and opposite<br>parallel forces, whose lines of<br>action are different form a<br>couple. | Remember            | CO 1 | CLO 1 | AME012.01 |  |  |  |
| 2    | What is the<br>meaning of grey<br>cast iron<br>designated by<br>'FG 200'? | Minimum tensile strength is 200 N/mm <sup>2</sup>                                                       | Remember            | CO 1 | CLO 2 | AME012.02 |  |  |  |
| 3    | What is 18/8                                                              | 18 per cent chromium and 8 per                                                                          | Remember            | CO 1 | CLO 2 | AME012.02 |  |  |  |

| S.No | QUESTION                 | ANSWER                             | <b>Blooms Level</b> | CO     | CLO     | CLO Code      |
|------|--------------------------|------------------------------------|---------------------|--------|---------|---------------|
|      | steel                    | cent nickel                        |                     |        |         |               |
| 4    | What steel is            | Medium carbon steel                | Remember            | CO 1   | CLO 3   | AME012.03     |
|      | used for                 |                                    |                     |        |         |               |
|      | manufacturing of         |                                    |                     |        |         |               |
| 5    | Ball bearings?           | They do not become hard with       | Domomhor            | CO 1   |         | AME012.01     |
| 3    | thermonlastic            | the application of heat and        | Remember            | COT    | CLO I   | AME012.01     |
|      | materials?               | pressure and no chemical           |                     |        |         |               |
|      | inatoriais.              | change occurs                      |                     |        |         |               |
| 6    | What is                  | The term interchangeability is     | Remember            | CO 1   | CLO 2   | AME012.02     |
|      | Interchangeabilit        | normally employed for the mass     |                     |        |         |               |
|      | y?                       | production of identical items      |                     |        |         |               |
|      |                          | within the prescribed limits of    |                     |        |         |               |
| 7    | With a fire N and the st | sizes.                             | Deventer            | 00.1   |         | ANE 012 01    |
| /    | what is Nominal          | It is the size of a part           | Remember            | COT    | CLO I   | AME012.01     |
|      | size?                    | specified in the drawing as a      |                     |        |         |               |
| 8    | What is Basic            | It is the size of a part to which  | Remember            | CO 1   | $CLO_2$ | AME012.02     |
| 0    | size?                    | all limits of variation (i.e.      | Remember            | 001    |         | 1 11112012.02 |
|      |                          | tolerances) are applied to arrive  |                     |        |         |               |
|      |                          | at final dimensioning of the       |                     |        |         |               |
|      |                          | mating parts.                      |                     |        |         |               |
| 9    | What is Actual           | It is the actual measured          | Remember            | CO 1   | CLO 3   | AME012.03     |
| 10   | SIZE?                    | Dimension of the part.             | Domomhon            | CO 1   | CLO 1   | AME012.01     |
| 10   | Define Fit?              | looseness between the two          | Remember            | COT    |         | AME012.01     |
|      |                          | mating parts is known as a fit of  |                     |        |         |               |
|      |                          | the parts                          |                     |        |         |               |
| 11   | What is Hole             | When the hole is kept as a         | Remember            | CO 1   | CLO 2   | AME012.02     |
|      | basis system?            | constant member then the limit     |                     |        |         |               |
|      |                          | system is said to be on a hole     |                     |        |         |               |
|      |                          | basis                              |                     |        | 67 G A  |               |
| 12   | What is Shaft            | When the shaft is kept as a        | Remember            | CO 1   | CLO 2   | AME012.02     |
|      | basis system?            | constant member then the limit     |                     |        |         |               |
|      |                          | hasis                              |                     |        | · · · · |               |
| 13   | What are the             | Clearance fit. Interference Fit.   | Remember            | CO 1   | CLO 3   | AME012.03     |
|      | commonly used            | Transition fit                     |                     | 001    | C       |               |
|      | fits according to        |                                    |                     |        | 100     |               |
|      | Indian standards?        |                                    |                     | -      |         |               |
| 14   | Define live or           | A load is said to be a live or     | Remember            | CO 1   | CLO 2   | AME012.02     |
|      | variable load            | variable load, when it changes     |                     | Sec. 1 |         |               |
| 15   | According to             | Continually                        | Domomhon            | CO 1   | CLO 2   | AME012.02     |
| 15   | Indian standard          | and for the shaft is 5             | Kemember            | 001    | CLO 5   | AME012.05     |
|      | specification, 100       | and for the shart is 5.            | 1000                |        |         |               |
|      | H6/g5 means that         |                                    |                     |        |         |               |
| 16   | What are                 | 1. Maximum principal stress        | Remember            | CO 1   | CLO 4   | AME012.04     |
|      | different theories       | theory 2.Maximum shear stress      |                     |        |         |               |
|      | of failures?             | theory 3.Maximum principal         |                     |        |         |               |
|      |                          | strain theory 4. Maximum strain    |                     |        |         |               |
|      |                          | energy theory 5.Maximum            |                     |        |         |               |
| 17   | Dofino Movimum           | distortion energy theory.          | Domomhor            | CO 1   | CLO 4   | AME012.04     |
| 1/   | principal stress         | failure or vielding occurs at a    | Kennennber          | CUT    | CLU 4   | AWEU12.04     |
|      | theory?                  | point in a member when the         |                     |        |         |               |
|      |                          | maximum principal or normal        |                     |        |         |               |
|      |                          | stress in a bi-axial stress system |                     |        |         |               |
|      |                          | reaches the limiting strength of   |                     |        |         |               |
|      |                          | the material in a simple tension   |                     |        |         |               |

| S.No | QUESTION         | ANSWER                                                                            | <b>Blooms Level</b>   | CO     | CLO         | CLO Code       |
|------|------------------|-----------------------------------------------------------------------------------|-----------------------|--------|-------------|----------------|
|      |                  | test.                                                                             |                       |        |             |                |
| 18   | Define Maximum   | According to this theory, the                                                     | Remember              | CO 1   | CLO 4       | AME012.05      |
|      | principal stress | failure or yielding occurs at a                                                   |                       |        |             |                |
|      | theory?          | point in a member when the                                                        |                       |        |             |                |
|      |                  | maximum principal or normal                                                       |                       |        |             |                |
|      |                  | stress in a bi-axial stress system                                                |                       |        |             |                |
|      |                  | the material in a simple tension                                                  |                       |        |             |                |
|      |                  | test                                                                              |                       |        |             |                |
| 19   | Define Maximum   | According to this theory the                                                      | Remember              | CO 1   | CLO 4       | AME012.04      |
|      | Shear stress     | failure or vielding occurs at a                                                   | 1101110111011         | 001    | 020         | 11111111111111 |
|      | theory?          | point in a member when the                                                        |                       |        |             |                |
|      |                  | maximum shear stress in a bi-                                                     |                       |        |             |                |
|      |                  | axial stress system reaches a                                                     |                       |        |             |                |
|      |                  | value equal to the shear stress at                                                |                       |        |             |                |
|      |                  | yield point in a simple tension                                                   | Second Second         |        |             |                |
| 20   | Define Manimum   | test.                                                                             | Damarahan             | CO 1   | CLO 5       | AME012.05      |
| 20   | Strain Enorgy    | failure or violding occurs at a                                                   | Remember              | 01     | CLO 5       | AME012.05      |
|      | theory?          | point in a member when the                                                        |                       |        |             |                |
|      | uicory:          | strain energy per unit volume in                                                  |                       |        |             |                |
|      |                  | a bi-axial stress system reaches                                                  |                       |        |             |                |
|      |                  | the limiting strain energy ( <i>i.e.</i>                                          |                       |        |             |                |
|      |                  | strain energy at the yield point )                                                |                       |        |             |                |
|      |                  | per unit volume as determined                                                     |                       |        |             |                |
|      |                  | from simple tension test                                                          |                       |        |             |                |
|      |                  | UNIT-H                                                                            |                       |        |             |                |
|      |                  |                                                                                   |                       |        |             |                |
| 1    | What is tearing  | The resistance offered by the                                                     | Remember              | CO 2   | CLO 6       | AME012.06      |
|      | resistance of    | plate against tearing is known                                                    |                       |        |             |                |
|      | plate?           | as tearing resistance or tearing                                                  | -                     |        |             |                |
|      |                  | strength or tearing value of the                                                  |                       | _      |             |                |
| 2    | What is emphing  | plate.                                                                            | Domomhor              | CO 2   | CLOG        | AME012.06      |
| Z    | of rivers?       | actually shear off under the                                                      | Kemember              | 02     | CLO 0       | AME012.00      |
|      | of fivets:       | tensile stress, but are crushed.                                                  | and the second second |        |             |                |
|      |                  | rivet hole becomes of an oval                                                     |                       |        |             |                |
|      |                  | shape and hence the joint                                                         |                       |        |             |                |
|      |                  | becomes loose.                                                                    |                       |        | ×           |                |
| 3    | What is the      | $\mathbf{Pt} = (\mathbf{p} - \mathbf{d}) \mathbf{t} \times \mathbf{\sigma t}$     | Remember              | CO 2   | CLO 7       | AME012.07      |
|      | equation for     | 1-                                                                                |                       | Sec. 1 |             |                |
|      | tearing          | 0.                                                                                |                       | 1 m    |             |                |
|      | resistance of    | VN DOD                                                                            |                       | e      |             |                |
|      | the plate        | 1 408                                                                             |                       |        |             |                |
| 4    | What is the      | $\mathbf{Ps} = 4 \ \pi \times \mathbf{d}^{\ 2} \times \mathbf{\tau}$              | Remember              | CO 2   | CLO 6       | AME012.06      |
|      | equation for     |                                                                                   |                       |        |             |                |
|      | shearing         |                                                                                   |                       |        |             |                |
|      | resistance of    |                                                                                   |                       |        |             |                |
| 5    | the rivet?       | D. 1.7.4.9                                                                        | Doment                | 00.2   | $CI \cap 7$ | AMEO12.07      |
| 2    | what is the      | $\mathbf{F}\mathbf{C} = \mathbf{q} \times \mathbf{f} \times \mathbf{Q}\mathbf{C}$ | Keinember             | 002    | CLU /       | AMEUI2.07      |
|      | Crushing         |                                                                                   |                       |        |             |                |
|      | resistance of    |                                                                                   |                       |        |             |                |
|      | the rivet?       |                                                                                   |                       |        |             |                |
| 6    | What is          | An external load, whose line of                                                   | Remember              | $CO^2$ | CLO 6       | AME012.06      |
|      | Eccentric Load?  | action is parallel but does not                                                   | remember              | 002    | 0100        | 1112012.00     |
|      |                  | coincide with the centroidal axis                                                 |                       |        |             |                |
|      |                  | of the machine component, is                                                      |                       |        |             |                |

| S.No | QUESTION                 | ANSWER                                            | <b>Blooms Level</b> | CO     | CLO      | CLO Code     |
|------|--------------------------|---------------------------------------------------|---------------------|--------|----------|--------------|
|      |                          | known as an eccentric load. The                   |                     |        |          |              |
|      |                          | distance between the centroidal                   |                     |        |          |              |
|      |                          | axis of the machine component                     |                     |        |          |              |
|      |                          | eccentricity                                      |                     |        |          |              |
| 6    | What is                  | The process, a narrow blunt                       | Remember            | CO 2   | CLO 7    | AME012.07    |
|      | caulking?                | tool called caulking tool. The                    |                     |        |          |              |
|      |                          | tool is moved after each blow                     |                     |        |          |              |
|      |                          | along the edge of the plate,                      |                     |        |          |              |
| 7    | What is                  | A fullering tool with a                           | Remember            | CO 2   | CLO 7    | AME012.07    |
|      | Fullering?               | thickness at the end equal to                     |                     |        |          |              |
|      |                          | that of the plate is used in such                 |                     |        |          |              |
|      |                          | due to the blows occur near the                   |                     | 0      |          |              |
|      |                          | joint                                             |                     | _      |          |              |
| 8    | What is the              | $n = P_t / \text{ least of } P_s \text{ or } P_c$ | Remember            | CO 2   | CLO 7    | AME012.07    |
|      | equation for             |                                                   |                     |        |          |              |
|      | number of rivets         |                                                   |                     |        |          |              |
| 9    | What is tensile          | $P = Throat area \times Allowable$                | Remember            | $CO_2$ | CLO 8    | AME012.08    |
| -    | strength of single       | tensile stress                                    |                     | 002    |          |              |
|      | Parallel fillet          | $= 0.707 \text{ s} \times 1 \times \text{ ot}$    |                     |        |          |              |
| 10   | weld?                    |                                                   |                     | ~ ~ ~  | CT O O   |              |
| 10   | Shear strength of        | $P = Throat area \times Allowable$                | Remember            | CO 2   | CLO 9    | AME012.09    |
|      | single parallel          | = 0.707 s $\times$ 1 $\times$ $\tau$              |                     |        |          |              |
|      | fillet weld?             |                                                   |                     |        |          |              |
| 11   | What is                  | It is a permanent joint which is                  | Remember            | CO 2   | CLO 9    | AME012.09    |
|      | welding?                 | obtained by the fusion of the                     |                     |        |          |              |
|      |                          | edges of the two parts to be                      |                     |        |          |              |
| 12   | What is fusion           | The process that use heat alone                   | Remember            | CO 2   | CLO 9    | AME012.09    |
|      | welding?                 |                                                   |                     | 002    | 010 /    | 111111012109 |
| 13   | What is forge            | The process that use                              | Remember            | CO 2   | CLO10    | AME012.10    |
|      | welding?                 | combination of heat and                           |                     |        |          |              |
| 14   | What are                 | 1 Single transverse fillet                        | Pomomhor            | CO 2   | CLO 10   | AME012.00    |
| 14   | different lap            | 2. Double transverse fillet.                      | Remember            | 02     |          | AME012.09    |
|      | joints?                  | 3. Parallel fillet joints.                        |                     |        | 100      |              |
| 15   | What is tearing          | The resistance offered by the                     | Remember            | CO 2   | CLO 10   | AME012.10    |
|      | resistance of            | plate against tearing is known as                 |                     | 63     | 22       |              |
|      | plate I welding?         | tearing resistance or tearing                     |                     | 1      |          |              |
|      |                          | plate.                                            |                     | 2      |          |              |
|      |                          |                                                   |                     |        | <u> </u> |              |
|      |                          | UNIT-II                                           | I                   |        |          |              |
| 1    | What is Key?             | A key is a piece of mild steel                    | Remember            | CO 3   | CLO 11   | AME012.11    |
|      |                          | inserted between the shaft and                    |                     |        |          |              |
|      |                          | hub or boss of the pulley to                      |                     |        |          |              |
|      |                          | to prevent relative motion                        |                     |        |          |              |
|      |                          | between them.                                     |                     |        |          |              |
| 2    | What are                 | 1. Sunk keys, 2. Saddle keys, 3.                  | Remember            | CO 3   | CLO 11   | AME012.11    |
|      | Different keys?          | Tangent keys, 4. Round keys                       |                     |        |          |              |
|      | W/h at 's                | and 5. Splines.                                   | Deres 1             | 00.5   | CL 0 11  | AME012 11    |
| 5    | wnat 18<br>Gib-head key? | a head at one end known as gib                    | Kemember            | CO 3   |          | AMEUI2.11    |
|      | Cito neud Rey.           | head.                                             |                     |        |          |              |
|      |                          |                                                   |                     |        |          |              |

| S.No | QUESTION           | ANSWER                             | <b>Blooms Level</b> | CO     | CLO     | CLO Code    |
|------|--------------------|------------------------------------|---------------------|--------|---------|-------------|
| 4    | What feather       | A key attached to one member       | Remember            | CO 3   | CLO 12  | AME012.12   |
|      | key?               | of a pair and which permits        |                     |        |         |             |
|      |                    | relative axial movement is         |                     |        |         |             |
|      |                    | known as <i>feather key</i> .      |                     |        |         |             |
| 5    | What is            | A woodruff key is capable of       | Remember            | CO 3   | CLO 13  | AME012.13   |
|      | Woodruff key?      | tilting in a recess milled out in  |                     |        |         |             |
|      |                    | the shaft by a cutter having the   |                     |        |         |             |
|      |                    | same curvature as the disc from    |                     |        |         |             |
|      | 11.11              | which the key is made.             | D 1                 |        | CT 0 10 |             |
| 6    | What are           | <b>1.</b> Flat saddle key, and     | Remember            | CO 3   | CLO 12  | AME012.12   |
|      | different saddle   | 2. Hollow saddle key               |                     |        |         |             |
| 7    | What are anima?    | Sometimes, have one mode           | Domomhor            | 60.2   | CLO 12  | AME012 12   |
| /    | what are spines?   | integral with the shaft which fits | Kemeniber           | 03     | CLO 15  | AME012.15   |
|      |                    | in the keyways broached in the     | 1                   |        |         |             |
|      |                    | hub Such shafts are known as       |                     | $\sim$ |         |             |
|      |                    | splined shafts.                    |                     |        |         |             |
| 8    | What are forces    | 1. Forces (F1) due to fit of the   | Remember            | CO 3   | CLO 12  | AME012.12   |
|      | acting in sunk     | key in its keyway.                 |                     |        |         |             |
|      | key?               | 2. Forces (F) due to the torque    |                     |        |         |             |
|      |                    | transmitted by the shaft.          |                     |        |         |             |
| 9    | What is Cotter?    | A cotter is a flat wedge shaped    | Remember            | CO 3   | CLO 13  | AME012.13   |
|      |                    | piece of rectangular cross-        |                     |        |         |             |
|      |                    | section and its width is tapered   |                     |        |         |             |
|      |                    | (either on one side or both        |                     |        |         |             |
|      |                    | sides) from one end to another     |                     |        |         |             |
| 10   | What are           | 1 Socket and aniget actter joint   | Domomhor            | 60.2   | CLO 12  | AME012 12   |
| 10   | different cotters? | 2. Sleeve and cotter joint and     | Remember            | CO 3   | CLO IS  | AMEU12.15   |
|      | different cotters: | 3 Gib and cotter joint             |                     |        |         |             |
| 11   | What is knuckle    | A knuckle joint is used to         | Remember            | CO 3   | CLO 14  | AME012.14   |
|      | joint              | connect two rods which are         |                     | 005    |         |             |
|      |                    | under the action of tensile loads. |                     |        |         | 100         |
| 12   | What is sleeve     | It is used to connect two round    | Remember            | CO 3   | CLO 14  | AME012.14   |
|      | and cotter joint   | rods or bars.                      |                     |        | - C     |             |
| 13   | What is round      | These are circular in section and  | Remember            | CO 3   | CLO14   | AME012.14   |
|      | key?               | fit into holes drilled partly      |                     |        |         |             |
| 1.4  | XX71               | in the shaft and partly in the hub |                     |        | 01.0.15 |             |
| 14   | What is parallel   | The parallel sunk keys may be      | Remember            | CO 3   | CLO 15  | AME012.15   |
|      | key?               | of rectangular or square section   |                     | - 0    |         |             |
|      |                    | throughout                         |                     | 1.7    |         |             |
| 15   | What is tangent    | The tangent keys are fitted in     | Remember            | 03     | CLO 15  | AME012 15   |
| 15   | key?               | pair at right angles. Each key is  | remember            | 05     |         |             |
|      |                    | to withstand torsion in one        |                     |        |         |             |
|      |                    | direction only. These are used in  |                     |        |         |             |
|      |                    | large heavy duty shafts.           |                     |        |         |             |
|      |                    |                                    |                     |        |         |             |
|      |                    | UNIT-IV                            | /                   |        |         |             |
| 1    | Define Shaft?      | A shaft is a rotating machine      | Remember            | CO 4   | CL016   | AME012 16   |
|      | Donne Shult:       | element which is used to           | i contenito ei      | CO 7   | CL010   | 21012012.10 |
|      |                    | transmit power from one place      |                     |        |         |             |
|      |                    | to another.                        |                     |        |         |             |
| 2    | What are the       | 1.high strength                    | Remember            | CO 4   | CLO16   | AME012.16   |
|      | material           | 2.good machinability               |                     |        |         |             |
|      | properties of      | 3.low notch sensitivity factor     |                     |        |         |             |
|      | shaft?             | 4. good heat treatment             |                     |        |         |             |
|      |                    | properties.                        |                     |        |         |             |
|      |                    | 5. high wear resistant             |                     |        |         |             |

| S.No | QUESTION                   | ANSWER                                                                                                   | <b>Blooms Level</b>   | СО          | CLO     | CLO Code    |
|------|----------------------------|----------------------------------------------------------------------------------------------------------|-----------------------|-------------|---------|-------------|
| 3    | What is the                | Shafts are generally                                                                                     | Remember              | CO 4        | CLO 15  | AME012.15   |
|      | manufacturing              | manufactured by hot rolling and                                                                          |                       |             |         |             |
|      | process of shafts?         | finished to size by cold drawing                                                                         |                       |             |         |             |
|      | 1                          | or turning and grinding.                                                                                 |                       |             |         |             |
| 4    | What are stresses          | 1. Shear stresses due to the                                                                             | Remember              | CO 4        | CLO 15  | AME012.15   |
|      | in shafts?                 | transmission of torque ( <i>i.e.</i> due                                                                 |                       |             |         |             |
|      |                            | to torsional load).                                                                                      |                       |             |         |             |
|      |                            | 2. Bending stresses (tensile or                                                                          |                       |             |         |             |
|      |                            | compressive) due to the forces                                                                           |                       |             |         |             |
|      |                            | acting upon machine elements                                                                             |                       |             |         |             |
|      |                            | like gears, pulleys etc. as well as                                                                      |                       |             |         |             |
|      |                            | due to the weight of the shaft                                                                           |                       |             |         |             |
|      |                            | itself.                                                                                                  |                       |             |         |             |
|      |                            | 3. Stresses due to combined                                                                              |                       |             |         |             |
|      |                            | torsional and bending loads                                                                              |                       |             |         |             |
| 5    | What cases are             | (a) Shafts subjected to twisting                                                                         | Remember              | CO 4        | CLO 16  | AME012.16   |
|      | considered while           | moment or torque only,                                                                                   |                       |             |         |             |
|      | designing shaft            | (b) Shafts subjected to bending                                                                          |                       |             |         |             |
|      | on the basis of            | moment only,                                                                                             |                       |             |         |             |
|      | strength.                  | (c) Shafts subjected to                                                                                  |                       |             |         |             |
|      |                            | combined twisting and bending                                                                            |                       |             |         |             |
|      |                            | moments, and                                                                                             | -                     |             |         |             |
|      |                            | (d) Shafts subjected to axial                                                                            |                       |             |         |             |
|      |                            | loads in addition to combined                                                                            |                       |             |         |             |
|      | ****                       | torsional and bending loads.                                                                             |                       | <b>GO</b> 4 | CL 0 15 |             |
| 6    | What is the                |                                                                                                          | Remember              | CO 4        | CLO I7  | AME012.17   |
|      | equation when              | $M = \sigma_b$                                                                                           |                       |             |         |             |
|      | the shaft is               | $\frac{1}{I} = \frac{1}{V}$                                                                              |                       |             |         |             |
|      | bonding moment             |                                                                                                          |                       | -           |         |             |
|      | only?                      |                                                                                                          |                       |             |         |             |
| 7    | What is the                |                                                                                                          | Remember              | CO 4        | CLO 16  | AME012 16   |
| ,    | equation when              | T                                                                                                        | Remember              | 001         | CLO IO  | 71012012.10 |
|      | the shaft is               | $\frac{1}{2} = \frac{1}{2}$                                                                              |                       |             |         |             |
|      | subjected to               | J r                                                                                                      |                       |             | 0       |             |
|      | twisting moment            |                                                                                                          |                       |             |         |             |
|      | only?                      | A second second second second second                                                                     | and the second second |             |         |             |
| 8    | What is the                |                                                                                                          | Remember              | CO 4        | CLO 18  | AME012.18   |
|      | equation when              | 1 (                                                                                                      | 10/                   |             | -       |             |
|      | the shaft is               | $\tau_{max} = \frac{1}{2} \sqrt{(\sigma_b)^2 + 4\tau^4}$                                                 |                       |             | 1       |             |
|      | subjected to               | 2 .                                                                                                      |                       | Q           |         |             |
|      | bending moment             |                                                                                                          |                       | 67          |         |             |
|      | and twisting               | 0                                                                                                        | 1.1.1                 | ~           |         |             |
|      | moment?                    | VA.                                                                                                      |                       | 1           |         |             |
| 9    | What is the                | 18 500                                                                                                   | Remember              | CO 4        | CLO18   | AME012.18   |
|      | equivalent                 | $T = \sqrt{(K \times M)^2 + (K + T)^2}$                                                                  |                       |             |         |             |
|      | twisting moment            | $\Gamma_{\theta} = \sqrt{(\Omega_m \times D_l) + (\Omega_l + 1)}$                                        |                       |             |         |             |
|      | when shaft                 |                                                                                                          |                       |             |         |             |
|      | subjected to               |                                                                                                          |                       |             |         |             |
|      | fluctuating                |                                                                                                          |                       |             |         |             |
|      | bending and                |                                                                                                          |                       |             |         |             |
| 10   | torsional loads?           |                                                                                                          |                       | 00.1        | 01.010  |             |
| 10   | what is the                | $M_{r} = \frac{1}{2} \left[ K_{m} \times M + \sqrt{(K_{m} \times M)^{2} + (K_{r} \times T)^{2}} \right]$ | Remember              | CO 4        | CL018   | AME012.18   |
|      | equivalent                 | 6 2 L - m - · · · · · · · · · · · · · · · · ·                                                            |                       |             |         |             |
|      | bending moment             |                                                                                                          |                       |             |         |             |
|      | when shall<br>subjected to |                                                                                                          |                       |             |         |             |
|      | fluctuating                |                                                                                                          |                       |             |         |             |
|      | hending and                |                                                                                                          |                       |             |         |             |
|      | torsional loads?           |                                                                                                          |                       |             |         |             |
| 1    | constantin routes.         | 1                                                                                                        |                       |             |         |             |

| S.No | QUESTION                   | ANSWER                                                     | <b>Blooms Level</b> | СО       | CLO    | CLO Code  |
|------|----------------------------|------------------------------------------------------------|---------------------|----------|--------|-----------|
| 11   | What is shaft              | In order to have a greater                                 | Remember            | CO 4     | CLO 20 | AME012.20 |
|      | coupling?                  | length, it becomes necessary to                            |                     |          |        |           |
|      |                            | join two or more pieces of the                             |                     |          |        |           |
|      |                            | shaft by means of a coupling.                              |                     |          |        |           |
| 12   | What are                   | ( <i>a</i> ) Sleeve or muff coupling.                      | Remember            | CO 4     | CLO 19 | AME012.19 |
|      | different Rigid            | (b) Clamp or split-muff or                                 |                     |          |        |           |
|      | couplings?                 | compression coupling, and                                  |                     |          |        |           |
|      |                            | (c) Flange coupling.                                       |                     |          |        |           |
| 13   | What are                   | ( <i>a</i> ) Bushed pin type coupling,                     | Remember            | CO 4     | CLO 19 | AME012.19 |
|      | different Flexible         | (b) Universal coupling, and                                |                     |          |        |           |
|      | couplings?                 | (c) Oldham coupling.                                       |                     |          |        |           |
| 14   | What is the use            | Is shafts have which have lateral                          | Remember            | CO 4     | CLO 19 | AME012.19 |
|      | of Oldham                  | misalignment                                               |                     |          |        |           |
|      | coupling?                  |                                                            |                     |          |        |           |
| 15   | What are the uses          | 1. To provide for the connection                           | Remember            | CO 4     | CLO 20 | AME012.20 |
|      | of Shaft                   | of shafts of units that are                                |                     |          |        |           |
|      | couplings?                 | manufactured separately such as                            |                     |          |        |           |
|      |                            | a motor and generator and to                               |                     |          |        |           |
|      |                            | provide for disconnection for                              |                     |          |        |           |
|      |                            | repairs or alternations.                                   |                     |          |        |           |
|      |                            | 2. To provide for misalignment                             |                     |          |        |           |
|      |                            | of the shafts or to introduce                              |                     |          |        |           |
|      |                            | mechanical flexibility.                                    |                     |          |        |           |
|      |                            | UNIT-V                                                     |                     |          |        |           |
|      |                            |                                                            |                     |          |        |           |
| 1    | Define spring?             | A spring is defined as an elastic                          | Remember            | CO 5     | CLO 21 | AME012.21 |
| _    | 8.                         | body, whose function is to                                 |                     |          |        |           |
|      |                            | distort when loaded and to                                 |                     |          |        |           |
|      |                            | recover its original shape when                            |                     |          |        |           |
|      |                            | the load is removed.                                       |                     |          |        |           |
| 2    | What are                   | 1. Helical springs                                         | Remember            | CO 5     | CLO 22 | AME012.22 |
|      | different types of         | 2. Conical and volute springs                              |                     | _        |        | 100       |
|      | springs?                   | 3. Torsion springs                                         |                     |          |        |           |
|      | 0                          | 4. Laminated or leaf springs                               |                     |          | - C    |           |
|      |                            | 5. Disc or Belleville springs.                             |                     |          |        |           |
|      | 0                          | 6. Special purpose springs.                                |                     |          |        |           |
| 3    | What are the               | The springs are mostly made                                | Remember            | CO 5     | CLO 21 | AME012.21 |
|      | materials used             | from oil-tempered carbon steel                             |                     |          | 100    |           |
|      | for spring?                | wires containing 0.60 to 0.70                              |                     |          |        |           |
|      |                            | per cent carbon and 0.60 to 1.0                            |                     |          |        |           |
|      |                            | per cent manganese. Music wire                             |                     | Sec. 7   |        |           |
|      |                            | is used for small springs.                                 |                     | ~        |        |           |
|      |                            | Non-ferrous materials like                                 |                     | 1        |        |           |
|      |                            | phosphor bronze, beryllium                                 |                     |          |        |           |
|      |                            | copper, monel metal, brass etc.,                           |                     |          |        |           |
|      |                            | may be used in special cases to                            |                     |          |        |           |
|      |                            | increase fatigue resistance,                               |                     |          |        |           |
|      |                            | temperature resistance and                                 |                     |          |        |           |
|      | ***                        | corrosion resistance.                                      |                     | <u> </u> |        |           |
| 4    | What are                   | The material of the spring                                 | Remember            | CO 5     | CLO 22 | AME012.22 |
|      | 1mportant                  | should have high fatigue                                   |                     |          |        |           |
|      | properties of              | strength, high ductility, high                             |                     |          |        |           |
|      | spring material?           | resilience and it should be creep                          |                     |          |        |           |
| -    | W/h at is the section 11 1 |                                                            | Damageration        | CO 5     | CLO 21 | AME012.21 |
| Э    | what is the solid          | Ls = n . awnere                                            | Remember            | 005      | CLO 21 | AME012.21 |
|      | length of spring?          | n = 1 otal number of colls, and $d = Diamater of the wire$ |                     |          |        |           |
| 6    | What is the free           | a = Diameter of the Wire.                                  | Domomhor            | CO 5     | CIO22  | AME012 22 |
| 0    | length of spring?          | $L_F = SOHU Hengin + Maximum$                              | Kemember            | 05       | CLO 22 | AWEU12.22 |
| 1    | rengen or spring?          | compression + Creatance                                    |                     |          |        |           |

| S.No   | QUESTION                         | ANSWER                                                                 | <b>Blooms Level</b> | CO                  | CLO            | CLO Code  |
|--------|----------------------------------|------------------------------------------------------------------------|---------------------|---------------------|----------------|-----------|
|        |                                  | between adjacent coils (or clash                                       |                     |                     |                |           |
|        |                                  | allowance)                                                             |                     |                     |                |           |
|        |                                  | $= n'.d + \delta_{max} + 0.15 \delta_{max}$                            |                     |                     |                |           |
| 7      | Define spring                    | The spring index is defined as                                         | Remember            | CO 5                | CLO 22         | AME012.22 |
|        | index?                           | the ratio of the mean diameter                                         |                     |                     |                |           |
|        |                                  | wire                                                                   |                     |                     |                |           |
|        |                                  | Spring index, $C = D / d$                                              |                     |                     |                |           |
| 8      | Define spring                    | The spring rate (or stiffness or                                       | Remember            | CO 5                | CLO 23         | AME012.23 |
|        | rate?                            | spring constant) is defined as                                         |                     |                     |                |           |
|        |                                  | the load required per unit                                             |                     |                     |                |           |
|        |                                  | deflection of the spring.                                              |                     | 00 F                | CL O DD        |           |
| 9      | Define Pitch                     | The pitch of the coll is defined                                       | Remember            | 05                  | CLO 23         | AME012.23 |
|        |                                  | adjacent coils in uncompressed                                         |                     |                     |                |           |
|        |                                  | state.                                                                 |                     |                     |                |           |
| 10     | What are stresses                | Torsional shear stress, Direct                                         | Remember            | CO 5                | CLO 23         | AME012.23 |
|        | in helical sp <mark>rings</mark> | shear stress, stress due to                                            |                     |                     |                |           |
| 11     | of circular wire?                | curvature of wire.                                                     | D I                 | <b>a</b> a <b>r</b> | GL O AL        |           |
| 11     | What is Wahl is                  | To consider the effects of both                                        | Remember            | CO 5                | CLO 24         | AME012.24 |
|        | stress factor                    | of the wire                                                            |                     |                     |                |           |
|        |                                  | 4C = 1 - 0.615                                                         |                     |                     |                |           |
|        |                                  | $K = \frac{10}{4C-4} + \frac{0.015}{C}$                                |                     |                     |                |           |
| 12     | What is the                      | $W G_d^4 G_d$                                                          | Remember            | CO 5                | CLO 24         | AME012.24 |
|        | stiffness of the                 | $\frac{n}{8} = \frac{1}{8D^3n} = \frac{1}{8C^3n}$                      |                     |                     |                |           |
|        | spring?                          | 0 02 11 00 11                                                          |                     |                     |                |           |
| 13     | What is the                      |                                                                        | Remember            | CO 5                | CLO 24         | AME012.24 |
|        | equation for                     | $W_{\alpha} = k \times K_{\rm B} \times L_{\rm F}$                     |                     |                     |                |           |
|        | Buckling of                      | $K_{\rm B}$ = Buckling factor depending upon the ratio $L_{\rm F}/D$ . |                     |                     |                |           |
|        | spring?                          |                                                                        |                     |                     |                | 0         |
| 14     | What is equation                 | 1                                                                      | Remember            | CO 5                | CLO 24         | AME012.24 |
|        | for energy stored                | $U = -\frac{1}{2}W.\delta$                                             |                     |                     |                |           |
|        | in the spring?                   |                                                                        |                     |                     | <b>AT 0.05</b> |           |
| 15     | What are                         | 1. Plain ends                                                          | Remember            | CO 5                | CLO 25         | AME012.25 |
|        | connections for                  | 2. Ground ends                                                         |                     |                     | Sec. 1         |           |
|        | compression                      | 4. Squared and ground ends.                                            |                     |                     |                |           |
|        | helical springs?                 |                                                                        |                     | 2.3                 | 22             |           |
|        |                                  | 10                                                                     | 100                 | ~                   |                |           |
|        |                                  |                                                                        |                     |                     |                |           |
|        |                                  |                                                                        |                     |                     |                |           |
| Signat | ure of the Faculty               |                                                                        |                     |                     |                | HOD, ME   |

## Signature of the Faculty