

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	WAVES AND OPTICS
Course Code	:	AHSB04
Program	:	B.Tech
Semester		II
Branch	:	Electrical and Electronics Engineering
Section	:	A & B
Course Faculty	:	Dr. Rizwana, Professor

OBJECTIVES:

Ι	Enrich knowledge in principles of quantum mechanics and semiconductors.
II	Correlate principles and applications of lasers and fiber optics.
III	Meliorate the knowledge of light and optics and also their applications.
IV	Develop strong fundamentals of transverse, longitudinal waves and harmonic waves.

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code			
		UNIT-I							
	QUANTUM MECHANICS								
1	What is wave Function ψ ?	It is the function which gives all the information that there is about a quantum system. A quantum system can be one or many particles.	Remember	CO 1	CLO 2	AHSB04.02			
2	Why the de-Broglie wave associated with a moving car is not observable?	We know that $x = 1/m$. Since <i>m</i> is very large far a car therefore x is very small. Consequently, the de-Broglie wave associated with moving car is not visible.	Remember	CO 1	CLO 2	AHSB04.02			
3	What is the rest mass of a photon? Write down relation for de-Broglie wavelength o photon.	Planck's law or Planck's radiation law states that energy is radiated in the form of wave-packets and this energy packet has both wave and particle character.	Remember	CO 1	CLO 2	AHSB04.02			
4	Are matter waves electromagnetic waves?	No. This is because electromagnetic waves are produced by accelerated charge. On the other hand, the de-Broglie wave is independent of the charge of a particle.	Remember	CO 1	CLO 2	AHSB04.02			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
5	What is the	The velocity of light waves in	Remember	CO 1	CLO 2	AHSB04.02
	difference between	vacuum is a constant				
	light waves and	quantity. On the other hand,				
	matter waves?	the velocity matter waves in				
		vacuum depends upon their				
		wavelength				
6	Comment on the	Heisenberg's uncertainty	Remember	CO 1	CLO 2	AHSB04.02
	statement	principle is valid for all kinds				
	"Heisenberg's	of particles. For the atomic				
	uncertainty	particles, there is always				
	all kinds of	measurement of two				
	narticles"	conjugate quantities like				
	particles	position- momentum angular		-		
	-	position-angular momentum	1.1			
		energy-time etc. but for the	0			
		particles of large size, this				
		uncertainty is very small as				
		compared to the value of h,				
		the Planck's constant. Hence,				
		uncertainty is not observable.				
7	Describe Compton	The Compton wavelength of	Understand	CO 1	CLO 2	AHSB04.02
	wavelength.	a particle is equal to the				
		wavelength of a photon				
		whose energy is the same as				
		the mass of that particle.				
8	Explain about	Compton effect is the	Remember	CO 1	CLO 2	AHSB04.02
	Compton effect.	increase in wavelength of X-				
		rays and other				
		electromagnetic radiations				
		that have been elastically				
		scattered and it is a principal				
	C	is absorbed in matter	- 1			
9	Define the matter	The wayes associated with	Remember	CO 1	CLO 3	AHSB04.03
	waves?	the particles of matter [e g	Remember	01	CLO J	AII5004.05
		electrons, protons etc.,] are		1 A A		
		known as matter waves or de	11		~	
	C	Broglie waves.				
10	Is light made of	Light exhibits the behavior	Remember	CO 1	CLO 3	AHSB04.03
	particles or of	of both a particle and a wave.		· Q-		
	waves?	1		6	S	
11	What is a "system"	A quantum system is any	Remember	CO 1	CLO 3	AHSB04.03
	in quantum	collection of physical objects				
	mechanics?	that is to be described by a				
		wave function.	-			
12	What does the	The electromagnetic wave	Remember	CO 1	CLO 4	AHSB04.04
	electromagnetic	contains both electric and				
	wave contain?	magnetic fields, which are				
10	XX 71 . 111 . 1	perpendicular to each other	D 1	00.1	CT O 1	
13	What will be the	Matter wave can travel with	Remember	CO 1	CLO 4	AHSB04.04
	velocity of matter	more than the velocity of light				
14	What are Standing	Two identical waves	Domomhor	CO 1	CIO4	AUSD04.04
14	Waves?	travelling towards each other	KUIIUUU		CLU4	ALISD04.04
	11 avcs:	interfere to produce one				
		wave in which there are				
		nodes. This is called a				
		standing wave.				
		Č .				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-II				
	INT	RODUCTION TO SOLIDS AN	ID SEMICONDU	CTORS	CT O C	
1	What does the	The conducting property of a solid is not a function of a	Remember	CO 2	CLO 6	AHSB04.06
	metals depend	total number of electrons in				
	upon?	the metal, but it is due to the				
	-F	number of valance electrons				
		called free electrons.				
2	What is the level	Fermi energy level is the	Understand	CO 2	CLO 6	AHSB04.06
	that acts as a	maximum energy level up to				
	reference which	which the electrons can be				
	separated the	filled at UK. Thus it acts as				
	states at OK?	separated the vacant and filled	-	-		
	states at ore.	states at 0K.				
3	Explain Hall	The Hall effect is the	Remember	CO 2	CLO 6	AHSB04.06
	effect.	production of a voltage				
		difference (the Hall voltage)				
		across an electrical conductor,				
		transverse to an electric				
		to an applied magnetic field				
		perpendicular to the current				
4	How does a	A semiconductor is a solid	Remember	CO 2	CLO 6	AHSB04.06
	semiconductor	which has the energy band		002		
	behave at absolute	similar to that of the insulator.				
	zero?	It acts as an insulator at	-			
		absolute zero.			CT 0 7	
5	Explain, is	No. When the temperature is	Remember	CO 2	CLO 5	AHSB04.05
	semiconductor acts	raised or when an impurity is				
	the presence of	increases Conductivity is				
	impurities.	inversely proportional to				
	r · · · · · ·	temperature.				
6	How is the	Semiconductors have negative	Remember	CO 2	CLO 5	AHSB04.05
	resistance of	temperature co-efficient. The		1	-	
	semiconductor	reason for this is, when the			A	
	classified?	large number of charge				
		carriers are produced due to			100	
		the breaking of covalent		0		
		bonds and hence these	· · · ·	67		
		electrons move freely and	0.	~		
		gives rise to conductivity.				
7	What are the charge	In conductors, electrons are	Remember	CO 2	CLO 5	AHSB04.05
	carriers in	charge carriers. But in				
	semiconductors?	electrons and holes are charge				
		carriers and will take part in				
		conduction.				
8	Which column	The compound	Remember	CO 2	CLO 5	AHSB04.05
	elements are	semiconductors are made by				
	combined to	combining the third and fifth				
	make compound	column elements. Such as				
	semiconductors?	third and fifth column				
		elements				
9	How is charge	Impure semiconductors in	Understand	CO 2	CLO 5	AHSB04.05
	carriers produced	which the charge carriers are				
	in extrinsic	produced due to impurity				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	semiconductors?	atoms are called extrinsic				
		semiconductors. They are				
		obtained by doping an				
		intrinsic semiconductor with				
		impurity atoms.				
10	What type of	N-type semiconductor is	Remember	CO 2	CLO 5	AHSB04.05
	material is	obtained by doping an				
	obtained when an	intrinsic semiconductor with				
	intrinsic	pentavalent impurity atoms.				
	semiconductor is					
	doped with					
	jmpuritu?					
11	What is Forward	A pagativa voltaga is applied	Pomombor	CO 3	CLO 5	AUSP04.05
11	Riasing	to the N-type material and a	Kemember	02	CLO 5	Ansb04.05
	Diasing	nositive voltage is applied to				
		the P-type material				
12	What is Reverse	A negative voltage is applied	Remember	CO 2	CLO 5	AHSB04.05
12	Biasing	to the P-type material and a	Remember	02	CLO J	1115201102
	0	positive voltage is applied to				
		the N-type material				
13	What is depletion	semiconductor is an	Remember	CO 2	CLO 5	AHSB04.05
	layer in	insulating region within a				
		conductive, doped semicondu				
		ctor material where the				
		mobile charge carriers have				
		been diffused away, or have				
		been forced away by				
1.4	R 11 1	an electric field.	D 1			
14	Explain about	A region in which particles	Remember	CO 2	CLO 5	AHSB04.05
	potential barrier.	are decelerated or stopped by				
		notential barrier			1.0	
		UNIT-III				
		LASERS AND FIBE	R OPTICS			
1	What is the need to	When population inversion is	Understand	CO 3	CLO 7	AHSB04.07
	achieve population	achieved, the majority of			4	
	inversion?	atoms are in the excited state.				
		This causes amplification of			100	
		the incident beam by				
		stimulated emission. Thus the			2	
	XX71 ' 1	laser beam is produced.	D 1	00.2		
2	Which process	In Stimulated emission, the	Remember	CO 3	CLO /	AHSB04.07
	gives the laser its	photon produced is of the	~			
	special properties	same energy to the one which				
	as an optical	associated with stimulated				
	source:	photon is in phase Therefore				
		in contrast to spontaneous				
		emission, coherent radiation				
		is obtained. The coherent				
		radiation phenomenon in				
		laser provides amplification				
		thereby making laser a better				
		optical source than LED.				
3	What type of laser	Eximer laser could cause skin	Understand	CO 3	CLO 7	AHSB04.07
	could cause skin	cancer if not used properly				
	cancer if not used					
	properly?					
				1		

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	List the	Characteristics of a laser are	Remember	CO 3	CLO 7	AHSB04.07
	characteristics of a	directionality, coherence,				
	laser?	monochromatic and high				
5	XX71 ' 1	intensity.	Densel	00.2		
5	which one is a	concrete is an important	Remember	003	CLO /	AHSB04.07
	laser?	because in laser beams the				
	lasel !	wave trains of the same				
		frequency are in phase/ Due				
		to high coherence it results in				
		an extremely high power.				
6	Which type of laser	The atoms of Ruby are	Remember	CO 3	CLO 7	AHSB04.07
	is an example of	excited with the help of				
	optical pumping?	photons emitted with the help				
		of photons emitted by an				
		external optical source. The				
		atoms absorb energy from				
		photos and raises to excited				
		state. Therefore Ruby laser is				
		pumping				
7	Define population	When the population of	Remember	CO 3	CLO 7	AHSB04 07
,	inversion.	higher excited state is more	Remember	005	CLO /	1115004.07
		than the population of lower				
		state, it is called population				
		inversion.				
8	Explain about	The process of supplying	Understand	CO 3	CLO 7	AHSB04.07
	pumping	suitable form of energy to a				
	mechanism in laser	system to achieve population				
		inversion is known as				
	W71 (' 1)	pumping.	TTo do not on d	00.2	$CI \cap 7$	AUCD04.07
9	what is the	In optical fibers, the light	Understand	003	CLO /	AHSB04.07
	optical	encounter any new surfaces				C
	communication?	but repeatedly they hit the	_		1	
	communication.	same surface. The reason for		7	-	
		confining the light beam			~	
		inside the fibers is the total	/		\sim	
		internal reflection.				
10	How does the	The refractive index of the	Remember	CO 3	CLO 7	AHSB04.07
	refractive index	core is maximum along the		100		
	vary in Graded	fiber axis and it gradually		Sec. 7		
	Index fiber?	decreases. Here the refractive	. 0.			
		index varies radially from the				
		axis of the fiber. Hence it is	1 - C			
11	Which of the	When rays travel through	Remember	CO 3	CLO 7	AHSB0/ 07
11	following has more	longer distances there will be	Remember	005	CLO /	1115004.07
	distortion?	some difference in reflected				
		angles. Hence high angle rays				
		arrive later than low angle				
		rays. Therefore the signal				
		pulses are broadened thereby				
		results in a distorted output.				
12	Which of the	Scattering is a wavelength	Remember	CO 3	CLO 8	AHSB04.08
	following loss	dependent loss. Since the				
	occurs inside the	glass used in fabrication of				
	fiber?	fibers, the disordered				
		structure of glass will make				
		some vibrations in the				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		refractive index inside the				
		fiber. This causes Rayleigh				
		scattering.				
13	When more than	When more than one mode is	Understand	CO 3	CLO 8	AHSB04.08
	one mode is	propagating through a fiber,				
	propagating, how is	then inter modal dispersion				
	it dispersed?	will occur. Since many modes				
		have different wavelengths				
		and will take different time to				
		propagate through the fiber.				
14	Explain about the	Critical angle is defined as	Remember	CO 3	CLO 8	AHSB04.08
	critical angle.	the angle of incidence beyond				
	C	which rays of light passing				
		through a denser medium to				
		the surface of a less dense				
		medium are no longer				
		refracted but totally reflected.				
15	Define numerical	Numerical Aperture is the	Domombor	CO 3	CLOS	AUSD04.09
13	aperture?	light gathering capacity of an	Kemeniber	003	CLU 8	AU3D04.09
	aperture	optical fiber and it is given by				
		sine of acceptance angle.				
		UNIT-IV				
		LIGHT AND O	PTICS	r		
1	What is an	Interferometers work by	Remember	CO 4	CLO 11	AHSB04.11
	interferomete <mark>r?</mark>	merging two or more sources				
		of light to create an				
		interference pattern, which				
		analyzed				
2	Explain the	The Michelson interferometer	Understand	CO 4	CLO 11	AHSB04.11
-	working of	produces interference fringes	Chieffistand	00.	02011	1110201111
	Michelson	by splitting a beam of	-			
	interferometer.	monochromatic light so that			- C	
		one beam strikes a fixed		J	-	
		mirror and the other a			4	
		movable mirror. When the				
		reflected beams are brought			100	
		back together, an interference			· ·	
2	Describe circular	The diffraction pattern of	Understand	CO 4	CLO 12	AUSD04 12
3	aperfure	circular disc shaped	Understand	004	CLO 12	AII3D04.12
	diffraction	intermediate dark and bright				
	difficultion.	fringes with a central bright	1 1 1			
		spot, formed when light	· · · · ·			
		passes through a small				
		circular aperture, is known as				
		Circular-Aperture Diffraction.				
4	Define Airy's	The amplitude distribution for	Remember	CO 4	CLO 12	AHSB04.12
	pattern.	diffraction due to				
		a circular aperture forms an intensity pattern				
		with a bright central band				
		surrounded by				
		concentric circular bands of				
		rapidly decreasing intensity is				
		called Airy's pattern.				
5	What is Rayleigh	According to Rayleigh	Remember	CO 4	CLO 12	AHSB04.12
	criterion?	criterion, two images are just				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		resolved if the centre of the				
		first Airy pattern is				
		superimposed on the 1st dark				
		ring of the 2nd pattern.				
6	Define Newton's	Newton's rings is a	Remember	CO 4	CLO 11	AHSB04.11
	rings.	phenomenon in which an				
		interference pattern is created				
		by the reflection of light				
		between two surfaces—a				
		spherical surface and an				
	~	adjacent flat surface.		~~ (AT 0 11	
7	Give one example	Example of Newton's ring is	Remember	CO 4	CLO 11	AHSB04.11
	of Newton's rings?	observed in the color full				
		florescence on water surface				
	C (with a thin layer of kerosene		<u> </u>		
0	Why is the contor of	On It.	Domomhon	CO 4	$CI \cap 11$	AUCD04 11
8	Why is the center of Newton's ring derk?	At the center the thickness of	Remember	CO 4		AHSB04.11
	Newton's ring dark?	lang and glass plate is zero				
		Therefore at the center the				
		recometrical path difference				
		between the rays incident and				
		reflected from glass plate is				
		zero, but due to reflection a				
		path difference of (lambda/2)				
		is introduced. This path				
		difference gives destructive	_			
		interference at the center and				
		hence center is dark.				
9	Explain Young's	It shows that light has both a	Remember	CO 4	CLO 11	AHSB04.11
	double slit	wave nature or characteristic				
	experiment.	and a particle nature or	-			
		characteristic, and that these				
		natures are inseparable. So			100	
		light is said to have wave-	_)
	1	particle duality rather than be		J	-	
		The same is true of electrons			A	
	0	and other quantum particles				
10	Define constructive	When the resultant amplitude	Remember	CO 4	CLO 11	AHSB0// 11
10	interference	is the sum of the amplitudes	Remember	004	CLO II	AII5D04.11
	Interference	due to two light waves the		1.5		
		interference is "constructive	-			
		interference".				
11	Define destructive	If the resultant amplitude is	Remember	CO 4	CLO 11	AHSB04.11
	interference	equal to the difference of two	· · · ·			
		amplitudes, the interference				
		becomes "destructive				
		interference".				
		UNIT-V				
	HARMO	DNIC OSCILLATIONS AND W	AVES IN ONE I	DIMENS	ION	
	What do you mean	It is a space in which each	Understand	CO 5	CLO 13	AHSB04.13
	by phase space?	axis corresponds to one of the				
		coordinates to specify the				
		the coordinates being the				
		represented so that a point in				
		the space corresponds to a				
		state of the system				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
2	Explain about	The parallel rays which are	Understand	CO 5	CLO 13	AHSB04.13
	Marginal and	away from the principal axis				
	Paraxial rays.	and not meet at the principal				
		focus after reflections are				
		called marginal rays. AND				
		The parallel rays near to the				
		principal axis and after				
		reflection meet at the principal				
		focus are called paraxial rays				
3	Define Steradian	The SI unit of solid angle,	Remember	CO 5	CLO 13	AHSB04.13
		equal to the angle at the				
		centre of a sphere subtended	_			
		in area to the square of the		· · · ·		
		radius		_		
4	Recall Flux	Flux describes any effect that	Remember	CO 5	CLO 13	AHSB0/ 13
-	Recall I lux	appears to pass or travel	Remember	005		AII5004.15
		through a surface or				
		substance. A flux is either a				
		concept based in physics or				
		used with applied				
		mathematics				
5	What is a	The oscillation alternates	Remember	CO 5	CLO 14	AHSB04.14
	Wilberforce?	between an elongation of a				
		vertical spring and the				
		rotation of an object at the				
		end of that spring				
6	Describe Helmholtz	Helmholtz resonance or wind	Understand	CO 5	CLO 13	AHSB04.13
	resonator	throb is the phenomenon of				
		air resonance in a cavity, such				
		as when one blows across the				
		top of an empty bottle. The		_		
		name comes from a device				
		created in the 1850s by	_			
		Helmholtz resonator		- · · ·		
7	What do you	Full width at half maximum	Understand	CO 5	$CI \cap 14$	AHSB0/ 1/
,	understand by	is an expression of the extent	Onderstand	005	CLO 14	AIISD04.14
	FWHM?	of function given by the			100	
	Y	difference between the two		0		
		extreme values of the		6.		
		independent variable at which		· · · ·		
		the dependent variable is				
		equal to half of its maximum				
		value. In other words, it is the	-			
		width of a spectrum curve				
		measured between those				
		points on the y-axis which are				
	D C 11	half the maximum amplitude.		<i></i>	GY 0 10	
8	Define soliton.	A soluton is a self-reinforcing	Remember	CO 5	CLO 13	AHSB04.13
		solitary wave packet that				
		maintains its shape at a				
		constant velocity. Solitons are				
		nonlinear and diamonistic				
		effects in the medium				
0	What is a	Helmholtz resonance or wind	Remember	CO 5	$CI \cap 13$	AHSB0/ 12
7	Helmholtz	throh is the phenomenon of	IXCHICIHUCI		CLU 13	ATTOD04.13
	resonator?	air resonance in a cavity such				
		an resonance in a cavity, such				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		as when one blows across the				
		top of an empty bottle. The				
		name comes from a device				
		created in the 1850s by				
		Hermann von Helmholtz, the				
		Helmholtz resonator.				
10	Define intensity of	It is defined as ratio of energy	Remember	CO 5	CLO 13	AHSB04.13
	a wave.	per second passing normally				
		through a given area to the				
		Area.				
11	Recall angular	For a point describing a circle	Remember	CO 5	CLO 13	AHSB04.13
	velocity.	at uniform speed, the angular				
		velocity ω is equal to the				
		angle θ swept out the radius				
	C	in time t divided by t. ($\omega = \theta/t$)				
12	Explain the	Free oscillations occur when	Understand	CO 5	CLO 13	AHSB04.13
	meaning of free	an oscillatory system (such as				
	oscillations.	a mass on a spring, or a				
		pendulum) is displaced and				
		released. [The frequency of				
		the free oscillations is known				
10		as the natural frequency.]		<i></i>	GY 0 10	
13	Define Period T for	It is defined as time taken for	Remember	CO 5	CLO 13	AHSB04.13
	a point describing a	one complete circuit.				
1.4	circle.			CO 5	CL 0.12	41000412
14	Describe	A type of wave that involves	Understand	CO 5	CLO 13	AHSB04.13
	mechanical wave.	matter. Ocean waves are				
		mechanical waves and also				
		the waves produced by				
		pulling a string. The matter				
		itself may move in place, but,				
		as with all types of wave			0	
		motion, there is no net				
		movement of matter—only of			100	
15	What do you	A wave in which a uniform	Understand	COS	CLO 12	AUSD04 12
15	what do you	A wave in which a uniform	Understand	05	CLO 15	АПЗД04.15
	understand by	follow one often the other in			A	
	periodic motion?	rogular succession By				
		apperent the wave produced			1 m	
		by applying a pulse to a		0		
		stratched string does not		1.5		
		follow regular reported		0		
		patterns				
		pauerns.				

Signature of the Faculty

HOD, EEE