

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name		:	WAVES AND OPTICS
Course Code		:	AHSB04
Program		:	B.Tech
Semester		:	II
Branch	~	:	Electrical and Electronics Engineering
Section		:	A & B
Course Faculty		:	Dr. Rizwana, Professor

OBJECTIVES:

Ι	Enrich knowledge in principles of quantum mechanics and semiconductors.
II	Correlate principles and applications of lasers and fiber optics.
III	Meliorate the knowledge of light and optics and also their applications.
IV	Develop strong fundamentals of transverse, longitudinal waves and harmonic waves.

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code				
	UNIT-I QUANTUM MECHANICS									
1	What is wave Function ψ ?	It is the function which gives all the information that there is about a quantum system. A quantum system can be one or many particles.	Remember	CO 1	CLO 2	AHSB04.02				
2	Why the de-Broglie wave associated with a moving car is not observable?	We know that $x = 1/m$. Since <i>m</i> is very large far a car therefore x is very small. Consequently, the de-Broglie wave associated with moving car is not visible.	Remember	CO 1	CLO 2	AHSB04.02				
3	What is the rest mass of a photon? Write down relation for de-Broglie wavelength o photon.	Planck's law or Planck's radiation law states that energy is radiated in the form of wave-packets and this energy packet has both wave and particle character.	Remember	CO 1	CLO 2	AHSB04.02				
4	Are matter waves electromagnetic waves?	No. This is because electromagnetic waves are produced by accelerated charge. On the other hand, the de-Broglie wave is independent of the charge of a particle.	Remember	CO 1	CLO 2	AHSB04.02				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
5	What is the difference between light waves and matter waves?	The velocity of light waves in vacuum is a constant quantity. On the other hand, the velocity matter waves in	Remember	CO 1	CLO 2	AHSB04.02
		vacuum depends upon their wavelength				
6	Comment on the statement "Heisenberg's uncertainty principle is valid for all kinds of particles"	Heisenberg's uncertainty principle is valid for all kinds of particles. For the atomic particles, there is always some uncertainty in the measurement of two conjugate quantities, like position- momentum, angular	Remember	CO 1	CLO 2	AHSB04.02
		position-angular momentum, energy-time etc. but for the particles of large size, this uncertainty is very small as compared to the value of h, the Planck's constant. Hence, uncertainty is not observable.				
7	Describe Compton wavelength.	The Compton wavelength of a particle is equal to the wavelength of a photon whose energy is the same as the mass of that particle.	Understand	CO 1	CLO 2	AHSB04.02
8	Explain about Compton effect.	Compton effect is the increase in wavelength of X- rays and other electromagnetic radiations that have been elastically scattered and it is a principal	Remember	CO 1	CLO 2	AHSB04.02
	E	way in which radiant energy is absorbed in matter.				2
9	Define the matter waves?	The waves associated with the particles of matter [e.g., electrons, protons etc.,] are known as matter waves or de Broglie waves.	Remember	CO 1	CLO 3	AHSB04.03
10	Is light made of particles or of waves?	Light exhibits the behavior of both a particle and a wave.	Remember	CO 1	CLO 3	AHSB04.03
11	What is a "system" in quantum mechanics?	A quantum system is any collection of physical objects that is to be described by a wave function.	Remember	CO 1	CLO 3	AHSB04.03
12	What does the electromagnetic wave contain?	The electromagnetic wave contains both electric and magnetic fields, which are perpendicular to each other	Remember	CO 1	CLO 4	AHSB04.04
13	What will be the velocity of matter wave	Matter wave can travel with more than the velocity of light	Remember	CO 1	CLO 4	AHSB04.04
14	What are Standing Waves?	Two identical waves travelling towards each other interfere to produce one wave in which there are nodes. This is called a standing wave.	Remember	CO 1	CLO 4	AHSB04.04

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	INT	UNIT-II RODUCTION TO SOLIDS AN	ID SEMICONDU	CTORS		
1	What does the	The conducting property of a	Remember	CO 2	CLO 6	AHSB04.06
	conductivity of	solid is not a function of a				
	metals depend	total number of electrons in				
	upon?	the metal, but it is due to the number of valance electrons				
		called free electrons.				
2	What is the level	Fermi energy level is the	Understand	CO 2	CLO 6	AHSB04.06
	that acts as a	maximum energy level up to				
	reference which	which the electrons can be				
	separated the vacant and filled	filled at 0K. Thus it acts as reference level which				
	states at 0K?	separated the vacant and filled	-	-		
		states at 0K.	1,1			
3	Explain Hall	The Hall effect is the	Remember	CO 2	CLO 6	AHSB04.06
	effect.	production of a voltage				
		difference (the Hall voltage) across an electrical conductor,				
		transverse to an electric				
		current in the conductor and				
		to an applied magnetic field				
4	How does a	perpendicular to the current.	Demersiker		CLO 6	
4	How does a semiconductor	A semiconductor is a solid which has the energy band	Remember	CO 2	CLU 6	AHSB04.06
	behave at absolute	similar to that of the insulator.				
	zero?	It acts as an insulator at				
		absolute zero.				
5	Explain, is	No. When the temperature is	Remember	CO 2	CLO 5	AHSB04.05
	semiconductor acts as an insulator in	raised or when an impurity is added, their conductivity				
	the presence of	increases. Conductivity is				
	impurities.	inversely proportional to				-
	W 1 1	temperature.				
6	How is the resistance of	Semiconductors have negative temperature co-efficient. The	Remember	CO 2	CLO 5	AHSB04.05
	semiconductor	reason for this is, when the		1		
	classified?	temperature is increased, a			\sim	
		large number of charge			100	
	- 7.	carriers are produced due to the breaking of covalent		- 0-		
	/	bonds and hence these		0.00		
		electrons move freely and	-			
		gives rise to conductivity.				
7	What are the charge	In conductors, electrons are	Remember	CO 2	CLO 5	AHSB04.05
	carriers in semiconductors?	charge carriers. But in semiconductors, both				
	senneonductors:	electrons and holes are charge				
		carriers and will take part in				
	****	conduction.				
8	Which column	The compound semiconductors are made by	Remember	CO 2	CLO 5	AHSB04.05
	elements are combined to	semiconductors are made by combining the third and fifth				
	make compound	column elements. Such as				
	semiconductors?	GaAs are made by combining				
		third and fifth column				
9	How is charge	elements. Impure semiconductors in	Understand	CO 2	CLO 5	AHSB04.05
7	carriers produced	which the charge carriers are	Understallu			A115D04.05
	in extrinsic	produced due to impurity				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
10	semiconductors?	atoms are called extrinsic semiconductors. They are obtained by doping an intrinsic semiconductor with impurity atoms.	D			
10	What type of material is obtained when an intrinsic semiconductor is doped with pentavalent impurity?	N-type semiconductor is obtained by doping an intrinsic semiconductor with pentavalent impurity atoms.	Remember	CO 2	CLO 5	AHSB04.05
11	What is Forward Biasing	A negative voltage is applied to the N-type material and a positive voltage is applied to the P-type material	Remember	CO 2	CLO 5	AHSB04.05
12	What is Reverse Biasing	A negative voltage is applied to the P-type material and a positive voltage is applied to the N-type material	Remember	CO 2	CLO 5	AHSB04.05
13	What is depletion layer in	semiconductor is an insulating region within a conductive, doped semicondu ctor material where the mobile charge carriers have been diffused away, or have been forced away by an electric field.	Remember	CO 2	CLO 5	AHSB04.05
14	Explain about potential barrier.	A region in which particles are decelerated or stopped by a repulsive force is called potential barrier.	Remember	CO 2	CLO 5	AHSB04.05
		UNIT-III LASERS AND FIBE	R OPTICS			
1	What is the need to achieve population inversion?	When population inversion is achieved, the majority of atoms are in the excited state. This causes amplification of the incident beam by stimulated emission. Thus the laser beam is produced.	Understand	CO 3	CLO 7	AHSB04.07
2	Which process gives the laser its special properties as an optical source?	In Stimulated emission, the photon produced is of the same energy to the one which cause it. Hence, the light associated with stimulated photon is in phase. Therefore, in contrast to spontaneous emission, coherent radiation is obtained. The coherent radiation phenomenon in laser provides amplification thereby making laser a better optical source than LED.	Remember	CO 3	CLO 7	AHSB04.07
3	What type of laser could cause skin cancer if not used properly?	Eximer laser could cause skin cancer if not used properly	Understand	CO 3	CLO 7	AHSB04.07

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	List the	Characteristics of a laser are	Remember	CO 3	CLO 7	AHSB04.07
	characteristics of a	directionality, coherence,				
	laser?	monochromatic and high				
	****	intensity.			GT C -	
5	Which one is a	Coherence is an important	Remember	CO 3	CLO 7	AHSB04.07
	unique property of	characteristic of laser beam				
	laser?	because in laser beams, the				
		wave trains of the same				
		frequency are in phase/ Due to high coherence it results in				
		an extremely high power.				
6	Which type of laser	The atoms of Ruby are	Remember	CO 3	CLO 7	AHSB04.07
Ŭ	is an example of	excited with the help of		005	CLC /	
	optical pumping?	photons emitted with the help		_		
		of photons emitted by an				
		external optical source. The				
		atoms absorb energy from				
		photos and raises to excited				
		state. Therefore Ruby laser is				
		an example of optical				
_	D.C.	pumping.		00.5	or c =	
7	Define population	When the population of	Remember	CO 3	CLO 7	AHSB04.07
	inversion.	higher excited state is more than the population of lower				
		than the population of lower				
		state, it is called population inversion.				
8	Explain about	The process of supplying	Understand	CO 3	CLO 7	AHSB04.07
0	pumping	suitable form of energy to a	Chucistallu	005		AU3D04.07
	mechanism in laser	system to achieve population				
		inversion is known as				
		pumping.				
9	What is the	In optical fibers, the light	Understand	CO 3	CLO 7	AHSB04.07
	principle of fiber	entering the fiber does not				
	optical	encounter any new surfaces,				
	communication?	but repeatedly they hit the				
		same surface. The reason for		- C	-	
		confining the light beam			A	
		inside the fibers is the total				
10	How does the	internal reflection.	Doment	CO 2	CLO 7	ALICDO 4 07
10	How does the refractive index	The refractive index of the core is maximum along the	Remember	CO 3	CLU /	AHSB04.07
	vary in Graded	fiber axis and it gradually		1.5		
	Index fiber?	decreases. Here the refractive		S		
	INGOA HUUL :	index varies radially from the				
		axis of the fiber. Hence it is	1 1 1			
		called graded index fiber.	· · · ·			
11	Which of the	When rays travel through	Remember	CO 3	CLO 7	AHSB04.07
	following has more	longer distances there will be				
	distortion?	some difference in reflected				
		angles. Hence high angle rays				
		arrive later than low angle				
		rays. Therefore the signal				
		pulses are broadened thereby				
		results in a distorted output.				
12	Which of the	Scattering is a wavelength	Remember	CO 3	CLO 8	AHSB04.08
	following loss	dependent loss. Since the				
	occurs inside the	glass used in fabrication of				
	fiber?	fibers, the disordered				
			1		1 1	
		structure of glass will make some vibrations in the				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		refractive index inside the fiber. This causes Rayleigh scattering.				
13	When more than one mode is propagating, how is it dispersed?	When more than one mode is propagating through a fiber, then inter modal dispersion will occur. Since many modes are propagating, they will have different wavelengths and will take different time to propagate through the fiber.	Understand	CO 3	CLO 8	AHSB04.08
14	Explain about the critical angle.	Critical angle is defined as the angle of incidence beyond which rays of light passing through a denser medium to the surface of a less dense medium are no longer refracted but totally reflected.	Remember	CO 3	CLO 8	AHSB04.08
15	Define numerical aperture?	Numerical Aperture is the light gathering capacity of an optical fiber and it is given by sine of acceptance angle.	Remember	CO 3	CLO 8	AHSB04.08
		UNIT-IV				
1	What is an	LIGHT AND O	PTICS Remember	<u> </u>	CL 0 11	AHSB04.11
1	interferometer?	Interferometers work by merging two or more sources of light to create an interference pattern, which can be measured and analyzed.	Kemember	CO 4	CLO 11	Апзб04.11
2	Explain the working of Michelson interferometer.	The Michelson interferometer produces interference fringes by splitting a beam of monochromatic light so that one beam strikes a fixed mirror and the other a movable mirror. When the reflected beams are brought back together, an interference pattern results.	Understand	CO 4	CLO 11	AHSB04.11
3	Describe circular aperture diffraction.	The diffraction pattern of circular disc shaped intermediate dark and bright fringes with a central bright spot, formed when light passes through a small circular aperture, is known as Circular-Aperture Diffraction.	Understand	CO 4	CLO 12	AHSB04.12
4	Define Airy's pattern.	The amplitude distribution for diffraction due to a circular aperture forms an intensity pattern with a bright central band surrounded by concentric circular bands of rapidly decreasing intensity is called Airy's pattern.	Remember	CO 4	CLO 12	AHSB04.12
5	What is Rayleigh criterion?	According to Rayleigh criterion, two images are just	Remember	CO 4	CLO 12	AHSB04.12

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		resolved if the centre of the				
		first Airy pattern is				
		superimposed on the 1st dark				
		ring of the 2nd pattern.				
6	Define Newton's	Newton's rings is a	Remember	CO 4	CLO 11	AHSB04.11
	rings.	phenomenon in which an				
		interference pattern is created				
		by the reflection of light				
		between two surfaces—a				
		spherical surface and an				
7	Give one example	adjacent flat surface. Example of Newton's ring is	Remember	CO 4	CLO 11	AHSB04.11
/	of Newton's rings?	observed in the color full	Kennennber	004	CLO II	Ansb04.11
	of Newton's thigs?	florescence on water surface	-	_		
	-	with a thin layer of kerosene				
		on it.				
8	Why is the center of	At the center the thickness of	Remember	CO 4	CLO 11	AHSB04.11
	Newton's ring dark?	the air film formed between				
	5	lens and glass plate is zero.				
		Therefore, at the center the				
		geometrical path difference				
		between the rays incident and				
		reflected from glass plate is				
		zero, but due to reflection a				
		path difference of (lambda/2)				
		is introduced. This path				
		difference gives destructive				
		interference at the center and				
0		hence center is dark.	D 1	00.4	CT 0 11	
9	Explain Young's	It shows that light has both a	Remember	CO 4	CLO 11	AHSB04.11
	double slit	wave nature or characteristic				
	experiment.	and a particle nature or				-
	C	characteristic, and that these natures are inseparable. So				
	0	light is said to have wave-			100	
	~	particle duality rather than be			· · · ·	1.
	6	only a wave or only a particle.		1 C		
		The same is true of electrons			A	
	C2	and other quantum particles.				
10	Define constructive	When the resultant amplitude	Remember	CO 4	CLO 11	AHSB04.11
	interference	is the sum of the amplitudes		0		
	1	due to two light waves, the		6		
		interference is "constructive	0	~		
		interference".				
11	Define destructive	If the resultant amplitude is	Remember	CO 4	CLO 11	AHSB04.11
	interference	equal to the difference of two				
		amplitudes, the interference				
		becomes "destructive				
		interference".				
		UNIT-V	<u> </u>			
	HARMO	ONIC OSCILLATIONS AND W		DIMENS		
1	What do you mean	It is a space in which each	Understand	CO 5	CLO 13	AHSB04.13
	by phase space?	axis corresponds to one of the				
		coordinates to specify the				
		state of a physical system, all				
		the coordinates being thus				
		represented so that a point in				
		the space corresponds to a				
		state of the system				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
2	Explain about	The parallel rays which are	Understand	CO 5	CLO 13	AHSB04.13
	Marginal and	away from the principal axis				
	Paraxial rays.	and not meet at the principal				
	-	focus after reflections are				
		called marginal rays. AND				
		The parallel rays near to the				
		principal axis and after				
		reflection meet at the principal				
		focus are called paraxial rays				
3	Define Steradian	The SI unit of solid angle,	Remember	CO 5	CLO 13	AHSB04.13
		equal to the angle at the				
		centre of a sphere subtended				
		by a part of the surface equal		_		
	-	in area to the square of the				
	1	radius.				
4	Recall Flux	Flux describes any effect that	Remember	CO 5	CLO 13	AHSB04.13
		appears to pass or travel				
		through a surface or				
		substance. A flux is either a				
		concept based in physics or				
		used with applied				
		mathematics				
5	What is a	The oscillation alternates	Remember	CO 5	CLO 14	AHSB04.14
	Wilberforce?	between an elongation of a				
		vertical spring and the				
		rotation of an object at the				
6	Describe Helerich	end of that spring	TT. 1	CO 5	CL 0 12	AUGD04.12
6	Describe Helmholtz resonator	Helmholtz resonance or wind	Understand	CO 5	CLO 13	AHSB04.13
	resonator	throb is the phenomenon of air resonance in a cavity, such				
		as when one blows across the				
		top of an empty bottle. The			0	1000
	10 m	name comes from a device				1 m
	0	created in the 1850s by	_		100	
	<u> </u>	Hermann von Helmholtz, the			100	P
	C	Helmholtz resonator.		1		
7	What do you	Full width at half maximum	Understand	CO 5	CLO 14	AHSB04.14
	understand by	is an expression of the extent				
	FWHM?	of function given by the				
	Y	difference between the two		0		
	1	extreme values of the		6 -	1	
		independent variable at which	0	~		
		the dependent variable is				
		equal to half of its maximum				
		value. In other words, it is the				
		width of a spectrum curve				
		measured between those				
		points on the y-axis which are				
		half the maximum amplitude.		<u> </u>	01.0.11	
8	Define soliton.	A soliton is a self-reinforcing	Remember	CO 5	CLO 13	AHSB04.13
		solitary wave packet that				
		maintains its shape at a				
		constant velocity. Solitons are				
		caused by a cancellation of				
		nonlinear and dispersive				
9	What is a	effects in the medium Helmholtz resonance or wind	Domomhan	CO 5	CLO 13	AUSD04 12
9	What is a Helmholtz		Remember	05	CLU 13	AHSB04.13
	resonator?	throb is the phenomenon of air resonance in a cavity, such				
	1050114101 /	an resonance in a cavity, such				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		as when one blows across the top of an empty bottle. The name comes from a device created in the 1850s by Hermann von Helmholtz, the Helmholtz resonator.				
10	Define intensity of a wave.	It is defined as ratio of energy per second passing normally through a given area to the Area.	Remember	CO 5	CLO 13	AHSB04.13
11	Recall angular velocity.	For a point describing a circle at uniform speed, the angular velocity ω is equal to the angle θ swept out the radius in time t divided by t. ($\omega = \theta/t$)	Remember	CO 5	CLO 13	AHSB04.13
12	Explain the meaning of free oscillations.	Free oscillations occur when an oscillatory system (such as a mass on a spring, or a pendulum) is displaced and released. [The frequency of the free oscillations is known as the natural frequency.]	Understand	CO 5	CLO 13	AHSB04.13
13	Define Period T for a point describing a circle.	It is defined as time taken for one complete circuit.	Remember	CO 5	CLO 13	AHSB04.13
14	Describe mechanical wave.	A type of wave that involves matter. Ocean waves are mechanical waves and also the waves produced by pulling a string. The matter itself may move in place, but, as with all types of wave motion, there is no net movement of matter—only of energy.	Understand	CO 5	CLO 13	AHSB04.13
15	What do you understand by periodic motion?	A wave in which a uniform series of crests and troughs follow one after the other in regular succession. By contrast, the wave produced by applying a pulse to a stretched string does not follow regular, repeated patterns.	Understand	CO 5	CLO 13	AHSB04.13

Signature of the Faculty

HOD, CE