

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name		:	ENGINEERING CHEMISTRY
Course Code		:	AHSB03
Program		:	B.Tech
Semester		:	II
Branch		:	Electronics and Communication Engineering
Section			A, B, C, D
Course Faculty	_	:	Dr. V Anitha Rani

COURSE OBJECTIVES:

The	The course should enable the students to:						
Ι	To help students to consider in depth the terminology and nomenclature used in the syllabus.						
II	To focus on the meaning of new words / terminology/nomenclature						

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE-	I			
1	Define voltaic cell?	A Voltaic Cell is an electrochemical cell that uses spontaneous redox reactions to generate electricity.	Remember	CO 1	CLO 1	AHSB03.01
2	What is electrolytic cell ?	Electrolytic cells convert electrical energy into chemical potential energy. The process is known as electrolysis. The purpose of this is usually to convert reactants into more useful products.	Remember	CO 1	CLO 1	AHSB03.01
3	What is electrode potential?	The tendency of an electrode to lose or gain electrons, when it is in contact with its own ions.	Remember	CO 1	CLO 1	AHSB03.01
4	What is electrochemical series?	When the elements are arranged in increasing order of their electrode potential, a series is called electrochemical series.	Understand	CO 1	CLO 1	AHSB03.01
5	Why is salt bridge used in the construction of a cell?	They allow the movement of ions from one solution to another without mixing of the two solutions and complete the electrical circuit. To maintain the electrical neutrality of the solutions in the two half cell.	Understand	CO 1	CLO 1	AHSB03.01
6	Define reference electrode?	An electrode whose electrode potential is accurately known or	Remember	CO 1	CLO 1	AHSB03.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	~~~~~	whose electrode potential has				
		been arbitrarily fixed. or Reference electrode is an				
		electrode of standard potential				
		with which we can compare the potential of another electrode.				
7	Define Battery?	The term battery is a group of	Remember	CO 1	CLO 2	AHSB03.02
	j	two or more electric cells				
		connected together electrically in series.				
8	What is an	The cell in which the cell				
	irreversible cell?	reaction is not reversible.				
9	what is a	The cells in which the cell	Remember	CO 1	CLO 2	AHSB03.02
	reversible cell?	reaction is reversed by passing direct current in opposite	1			
		direction.				
10	Wire mesh	The joints of wire mesh under	Understand	CO 1	CLO 3	AHSB03.03
	corrodes faster at	stressed so these becomes anodic .At these anodic parts,				
	the joints. Wh <mark>y</mark> ?	oxidation takes place and the				
		metal is corroded fast, while the				
		cathodic parts remain unaffected.				
11	Define corrosion?	Any process of deterioration and	Remember	CO 1	CLO 3	AHSB03.03
		consequent loss of solid metallic materials through an unwanted				
		chemical or electrochemical		-		
		attack by its environment,				
		starting at its surface is called corrosion.		-		
12	What is galvanic	When two dissimilar metals are	Remember	CO 1	CLO 3	AHSB03.03
	corrosion?	electrically connected and exposed to an electrolyte, the				100
		metal higher in electrochemical	·			
	0	series undergoes corrosion.		-		
13	Define electro less plating?	Electro less plating is a process of depositing a noble metal on a	Remember	CO 1	CLO 3	AHSB03.03
	less plating.	catalytically active surface of a		× .	_	
		less noble metal by employing a			1	
		suitable reducing agent without				
		using electrical energy.		4.		
14	which types of metal oxide film	The metal oxide film with Fine grained tightly adhering ,	Understand	CO 1	CLO 3	AHSB03.03
	cause rapid and	impervious oxide film, and	1			
	continues	highly unstable oxide film.				
15	corrosion? which types of	The metal oxide film with Fine	Understand	CO 1	CLO 3	AHSB03.03
	metal oxide film	grained tightly adhering ,				
	prevents corrosion?	impervious oxide film, and highly unstable oxide film.				
		MODULE-				
1	Define hardness	Hardness of water is that	Remember	CO 2	CLO 4	AHSB03.04
	of water ?	characteristic, which prevents the lathering of soap. This is due				
		to the presence of salts of				
		calcium, magnesium and other				
		heavy metals dissolved in it.				

S.No	QUESTION	ANSWER	<b>Blooms Level</b>	СО	CLO	CLO Code
2	Define the	It is due to presence of dissolved	Remember	CO 2	CLO 4	AHSB03.04
	temporary	carbonates and bicarbonates of				
2	hardness of water	calcium and magnesium.	D 1	00.0	CLO 4	
3	What are various units of hardness	Parts per Million [ppm],	Remember	CO 2	CLO 4	AHSB03.04
	of water	milligram per litre [mg/L], Clarke's Degree[ ⁰ Cl], Degree				
	of water	French ⁰ Fr].				
4	what is potable	Drinking water also known as	Remember	CO 2	CLO 5	AHSB03.05
	water?	"Potable Water". Water which is				
		used for human consumption is				
		called potable water.				
5	What is softening	The process whereby we remove	Understand	CO 2	CLO 4	AHSB03.04
Ū.	of water?	or reduce the hardness of water	Charlistana	001	0201	111111111111111111111111111111111111111
		,irrespective of whether it is				
		temporary or permanent is				
		termed as softening of water.				
6	what is	Water is allowed to stand	Understand	CO 2	CLO 5	AHSB03.05
	sedimentation?	undisturbed for 2 to 5 hours in				
7	Define	big setting tanks.The process of applying	Remember	CO 2	CLO 5	AHSB03.05
/	chlorination?	calculated amount of chlorine to	Kemember	02	CLO J	AIISD05.05
		water in order to kills the				
		pathogenic bacteria is called				
		"Chlorination".				
8	What is break	The amount of chlorine required	Understand <b>Understand</b>	CO 2	CLO 5	AHSB03.05
	point chlorination ?	to kill bacteria and to remove	_			
	chlorination ?	organic matter is called "break point chlorination".				
9	what is reverse	When a pressure in excess to	Remember	CO 2	CLO 5	AHSB03.05
	osmosis ?	osmotic pressure is applied on a	Remember	002		/ HISB05.05
		concentrated site then the				
		movement of solvent molecules				1
		from concentrated site to dilute				
		site takes place. This is "Reverse Osmosis".			- C	
10	Define brackish	The water with peculiar (or)	Remember	CO 2	CLO 5	AHSB03.05
10	water?	salty taste is known as	Remember	02	CLO J	AIISD05.05
	0	"Brackish Water".				
11	What is	In high pressure boilers, scale	Remember	CO 2	CLO 5	AHSB03.05
	phosphate	formation can be avoided by				
	conditioning ?	adding sodium phosphate, which				
		reacts with hardness of water	0	1		
		forming non-adherent and easily removable soft sludge of				
		calcium and magnesium	1			
		phosphates which can be				
		removed by blow-down				
		operation.				
12	Define deionized	Water coming out from the	Remember	CO 2	CLO 5	AHSB03.05
	water?	exchanges is free from cations				
		as well as anions. Ion free water is known as "deionized" or				
		"Dimineralized water".				
13	What is internal	The softening of water carried	Remember	CO 2	CLO 5	AHSB03.05
	treatment of hard	out inside the boiler is called				_
	water	internal treatment of water. In				
		this process the hardness				
		causing dissolved salts was				

S.No	QUESTION	ANSWER	<b>Blooms Level</b>	СО	CLO	CLO Code
		prohibited.				
14	What is hard water?	Water which does not produce lather with soap solution readily,but forms white curd,is called hard water.	Remember	CO 2	CLO 4	AHSB03.04
15	What is soft water?	Water which lathers easily on shaking with soap solution, is called soft water.	Understand	CO 2	CLO 4	AHSB03.04
		MODULE-I	п			
1	What are atomic orbitals?	Atomic orbital is the region having the highest probability of finding an electron in an atom. The energy levels about the nucleus contain group of these atomic orbitals.	Understand	CO 3	CLO 7	AHSB03.07
2	Write any two salient features for CFT?	i. Ligands are treated as point charges. ii. There is no interaction between metal orbital's and ligand orbital's.	Remember	CO 3	CLO 7	AHSB03.07
3	Define doping?	Doping is the process of adding impurities to increase conductivity nature of semiconductors. Two of the most important materials silicon can be doped with, are boron and phosphorus.	Remember	CO 3	CLO 7	AHSB03.07
4	What are eg, t2g orbital's in crystal field theory?	The dxy, dxz, and dyz orbitals are collectively called the t2g orbitals, whereas the dz2 and dx2-y2 orbitals are called the eg orbitals in crystal field theory.	Remember	CO 3	CLO 7	AHSB03.07
5	Define the term bond order ?	Bond order is a measurement of the number of electrons involved in bonds between two atoms in a molecule. It is used as an indicator of the stability of a chemical bond.	Remember	CO 3	CLO 6	AHSB03.06
6	What are semiconductors?	The gap between valence band and conduction band is small; some electrons jump from valence band to conduction band and thus show some conductivity. Such solids show less conductivity or no conductivity is called semiconductors.	Understand	CO 3	CLO 7	AHSB03.07
7	What are intrinsic semiconductors?	Intrinsic semiconductors are the one with number of holes and electrons are equal, they do not conduct current, all semiconductors used are intrinsic in nature.	Remember	CO 3	CLO 7	AHSB03.07
8	Define the term Bonding moleculer orbital?	The lower energy molecular orbital is called bonding orbital. Since electrons placed in such an orbital increase the stability of the bond.		CO 3	CLO 6	AHSB03.06

S.No	QUESTION	ANSWER	<b>Blooms Level</b>	СО	CLO	CLO Code
9	Define the term anti - bonding molecule orbital?	The antibonding orbital is a type of molecular orbital (MO) that weakens the bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more nodes in the bonding region between the nuclei.	Remember	CO 3	CLO 6	AHSB03.06
10	Define the band structure of solids?	The energy band structure of a solid determines whether it is a conductor, an insulator or a semiconductor.	Remember	CO 3	CLO 7	AHSB03.07
11	what is diamagnetic property?	The transition metals which contain paired electrons depict diamagnetic behavior. The magnetic properties decreases with the decrease in the number of unpaired electrons.	Remember	CO 3	CLO 6	AHSB03.06
12	Define about n- type semiconductor?	The n-type semiconductor is an excess negatively charged electrons containing semiconductor and obtained by adding extremely small quantity of a pentavalent element impurity.	Remember	CO 3	CLO 7	AHSB03.07
13	How crystal field splitting takes place in tetrahedral complexes?	Tetrahedral complexes are high spin complexes as the energy gap between two sets of orbitals is roughly half of octahedral complexes.	Remember	CO 3	CLO 7	AHSB03.07
14	Define crystal filled stabilization energy?	The crystal field stabilization energy (CFSE) is the stability that results from placing a transition metal ion in the crystal field generated by a set of ligands.	Remember	CO 3	CLO 7	AHSB03.07
15	How crystal field splitting takes place in octahedral complexes?	In the octahedral complexes, ligand approach along the axes. As a result, the d-orbitals where electron density is oriented along the axes, $dx^2-y^2$ and $dz^2$ are repelled much more by the ligands while the orbitals dxy, dyz, dxz having electron density oriented in between the axes are repelled lesser by the ligands.	Remember	CO 3	CLO 7	AHSB03.07
		MODULE-I	IV			
1	What is an electrophile?	The positive or partially positive atom is referred to as an electrophile.	Understand	CO 4	CLO 9	AHSB03.09
2	Define the term isomer?	Molecule has the same number of atoms of each element, but has a different arrangement of the atoms. Isomers have the	Remember	CO 4	CLO 9	AHSB03.09

S.No	QUESTION	ANSWER	<b>Blooms Level</b>	CO	CLO	CLO Code
		same molecular formula, but				
		different chemical structures.				
3	Define	The reaction in which the	Remember	CO 4	CLO 10	AHSB03.10
	nucleophilic substitution	electron rich nucleophile				
	reactions?	selectively bonds with or attacks the positive or partially positive				
	reactions?	charge of an atom or a group of				
		atoms to replace a leaving group				
		are known as nucleophilic				
		substitution reactions.				
4	State	An enantiomer is a type of	Remember	CO 4	CLO 10	AHSB03.10
	Markovnikov's	stereoisomers that have the	-			
	rule.	same molecular formula and constitutions around the atom				
		but differ in their spatial	<u> </u>			
	_	arrangement of groups around				
		the atom.				
5	What are enantiomers?	An enantiomer is a type of stereoisomers that have the same	Understand	CO 4	CLO 9	AHSB03.09
	enantiomers?	molecular formula and				
		constitutions around the atom				
		but differ in their spatial				
		arrangement of groups around				
6	What are	the atom. Diastereomers are stereoisomers	Understand	CO 4	CLO 9	AHSB03.09
0	diastereomers?	that are not mirror images of one	Understand	04	CLO 9	Ansb05.09
		another and are non-				
		superimposable on one another.				
7	Define the term	An addition reaction is a	Remember	CO 4	CLO 10	AHSB03.10
	addition	reaction where two smaller				
	reactions?	molecules react to form a bigger				
	0	molecule with no other products.			1	
8	What are	A substitution reaction occurs	Understand	CO 4	CLO 10	AHSB03.10
	substitution	when an exchange of elements			1	
	reactions?	in the reactants takes place. The			-	
		initial reactants are transformed or swopped around to give a			100	
	- Y	final product.				
9	What are	A nucleophile is a species (an	Understand	CO 4	CLO 10	AHSB03.10
	nucleophiles?	ion or a molecule) which is	. <	~		
		strongly attracted to a region of				
		positive charge in something				
		else.				
10	State saytzeff's	Dehydro halogenation reactions, the preferred product is that	Remember	CO 4	CLO 10	AHSB03.10
	rule.	alkene which has the greater				
		number of alkyl groups attached				
		to the doubly bonded carbon				
11	What cr	atoms.	Domerster	<u>CO 4</u>	CL 0 10	AUGD02 10
11	What are elimination	An elimination reaction occurs when a reactant is broken up	Remember	CO 4	CLO 10	AHSB03.10
	reactions?	into two products. Elimination				
	1000101151	reactions occur with saturated				
		compounds.				
		tompounds.				

S.No	QUESTION	ANSWER	<b>Blooms Level</b>	CO	CLO	CLO Code
12	Define the term	Stereo isomers refer to isomers	Remember	CO 4	CLO 9	AHSB03.09
	Stereomers?	which share an identical bond				
		structure but differ with regards				
		to the geometric position of the				
		functional groups and atoms.				
13	Define the term	The type of isomerism in which	Remember	CO 4	CLO 9	AHSB03.09
	optical	isomeric compound differ only				
	isomerism?	in the direction in which they				
		rotate the plane polarized light is				
		known as optical isomerism.				
14	State Anti	In an addition reaction of a	Remember	CO 4	CLO 9	AHSB03.09
1.	Markovnikov's	generic electrophile HX to an	remember	001	010 )	1115203107
	rule.	alkene or alkyne, the hydrogen				
	ruie.	atom of HX becomes bonded to				
		the carbon atom that had the				
		least number of hydrogen atoms				
		in the starting alkene or alkyne.				
15	Define the term	isomers having identical	Remember	CO 4	CLO 9	AHSB03.09
15	structural	molecular formulas but differing	Kemember	007		11151505.07
	isomerism?	in the order in which the				
		individual atoms are connected.				
		individual atoms are connected.				
		MODULE-	V			
1	How many types	There are three types of fuels.	Understand	CO 5	CLO 12	AHSB03.12
	of fuels are there	They are solid fuels, liquid fuels				
	and what are	and gaseous fuels.				
	they?					
2	What the	The calorific value of	Understand	CO 5	CLO 12	AHSB03.12
	calorific value of	bituminous coal is 7500-8000				0
1	bituminous coal?	kcal/kg.The carbon content			1	
	bituminous coal?	kcal/kg.The carbon content ranges from 75-80%.			C	>
3	bituminous coal? What are	_	Understand	CO 5	CLO 12	AHSB03.12
3	~	ranges from 75-80%.	Understand	CO 5	CLO 12	AHSB03.12
3	What are	ranges from 75-80%. Peat, lignite, bituminous coal	Understand	CO 5	CLO 12	AHSB03.12
3	What are different varieties	ranges from 75-80%. Peat, lignite, bituminous coal	Understand	CO 5	CLO 12	AHSB03.12
3	What are different varieties of coal formed	ranges from 75-80%. Peat, lignite, bituminous coal	Understand	CO 5	CLO 12 CLO13	AHSB03.12 AHSB03.13
	What are different varieties of coal formed inside the earth? What is fractional	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in			6	
	What are different varieties of coal formed inside the earth? What is fractional distillation	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence			6	
	What are different varieties of coal formed inside the earth? What is fractional	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by			6	
	What are different varieties of coal formed inside the earth? What is fractional distillation	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically			6	
4	What are different varieties of coal formed inside the earth? What is fractional distillation process?	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column.	Understand	CO 5	CLO13	AHSB03.13
	What are different varieties of coal formed inside the earth? What is fractional distillation	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher	Understand		6	
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules	Understand	CO 5	CLO13	AHSB03.13
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by the term	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules into simple, low boiling	Understand	CO 5	CLO13	AHSB03.13
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by the term	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules into simple, low boiling hydrocarbons of lower	Understand	CO 5	CLO13	AHSB03.13
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by the term	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules into simple, low boiling hydrocarbons of lower molecular masses is called as	Understand	CO 5	CLO13	AHSB03.13
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by the term cracking?	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules into simple, low boiling hydrocarbons of lower molecular masses is called as cracking.	Understand	CO 5	CLO13 CLO 13	AHSB03.13 AHSB03.13
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by the term cracking? What is meant by	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules into simple, low boiling hydrocarbons of lower molecular masses is called as cracking. Catalytic cracking is used for	Understand	CO 5	CLO13	AHSB03.13
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by the term cracking? What is meant by the catalytic	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules into simple, low boiling hydrocarbons of lower molecular masses is called as cracking. Catalytic cracking is used for cracking heavy oil fractions of	Understand	CO 5	CLO13 CLO 13	AHSB03.13 AHSB03.13
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by the term cracking? What is meant by	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules into simple, low boiling hydrocarbons of lower molecular masses is called as cracking. Catalytic cracking is used for cracking heavy oil fractions of petroleum in presence of	Understand	CO 5	CLO13 CLO 13	AHSB03.13 AHSB03.13
4	What are different varieties of coal formed inside the earth? What is fractional distillation process? What is meant by the term cracking? What is meant by the catalytic	ranges from 75-80%. Peat, lignite, bituminous coal and anthracite coal. Separation of a liquid mixture into fractions differing in boiling point (and hence chemical composition) by means of distillation, typically using a fractionating column. The decomposition of higher chain hydrocarbon molecules into simple, low boiling hydrocarbons of lower molecular masses is called as cracking. Catalytic cracking is used for cracking heavy oil fractions of	Understand	CO 5	CLO13 CLO 13	AHSB03.13 AHSB03.13

S.No	QUESTION	ANSWER	<b>Blooms Level</b>	CO	CLO	CLO Code
		produces gasoline of high				
		quality and in high yield.				
7	What is	Premature instantaneous ignition	Remember	CO 5	CLO 13	AHSB03.13
	knocking?	of fuel air mixture in an I.C.				
		engine, leading to production of				
		explosive violence is known as				
		knocking.				
8	What is meant by	The percentage of isooctane in a	Remember	CO 5	CLO 13	AHSB03.13
	octane number?	mixture of isooctane and n-				
		heptane which matches the				
		gasoline under test.				
9	What is cetane	The percentage of hexadecane in	Remember	CO 5	CLO 13	AHSB03.13
	value of a diesel?	a mixture of hexadecane and 2-				
		methyl naphthalene which				
	_	possess the same ignition				
		characteristics as the diesel fuel.				
10	What is meant by	It is the total quantity of heat	Remember	CO 5	CLO 15	AHSB03.15
	calorific value?	liberated when a unit mass or				
		volume of the fuel is burnt				
		completely in presence of				
		sufficient quantity of air or				
		oxygen.				
11	What are the	Calorie, kilo calorie, British	Remember	CO 5	CLO 15	AHSB03.15
	units of calorific	thermal unit, Centigrade heat				
	value?	unit.				
12	What is meant by	It is the total quantity of heat	Remember	CO 5	CLO 15	AHSB03.15
	gross calorific	liberated when one unit of the				
	value (GCV)?	fuel has been burnt completely			· .	
	50	and the products of combustion				
	-	have been cooled to room			100	
	<u> </u>	temperature is called gross				2
	G	calorific value.			~	
13	What is meant by	It is net heat evolved when one	Remember	CO 5	CLO 15	AHSB03.15
	net calorific	unit of the fuel has been burnt	/		Sec. 1	
	value(NCV)?	completely and the products are			1.0	
		allowed to escape is called net				
		calorific value.		1		
14	Define a	A combustible substance	Remember	CO 5	CLO12	AHSB03.12
	chemical fuel?	containing carbon as the main				
		constituent which on proper	-			
		burning liberates large amount				
		of heat which can be used				
		economically for domestic as				
		well industrial purposes.				
15	what is meant by	The lowest temperature at which	Understand	CO 5	CLO 12	AHSB03.12
	ignition	the fuel must be preheated so				
	temperature?	that it starts burning smoothly.				

## Signature of the Faculty

HOD, ECE