

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

gineering
istant Professor
i

OBJECTIVES:

2000

Ι	Understand the concepts of magnetic circuits and illustrate the theory of electromechanical energy conversion and the concept of co-energy
Π	Understand the operation of dc machines
III	Analyze the differences in operation of different dc machine configurations
IV	Analyze single phase and three phase transformers circuits

DEFINITIONS AND TERMINOLOGY QUESTION BANK:

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
		MODULE- I				
1	Define Magnetomotive Force?	The current flowing in an electric circuit is due to the existence of electromotive force similarly magnetomotive force (MMF) is required to drive the magnetic flux in the magnetic circuit. The magnetic pressure, which sets up the magnetic flux in a magnetic circuit is called Magnetomotive Force. The SI unit of MMF is Ampere-turn (AT), and	Remember	CO1	CL01	AEEB11.01
2	Define magnetic flux.	Magnetic flux is a measurement of the total magnetic lines of force which passes through a given area	Remember	CO1	CLO1	AEEB11.01
3	Define magnetic flux density.	The flux per unit area is called as magnetic flux density.	Understand	CO1	CLO1	AEEB11.01
4	What is the unit of magnetic field?	Magnetic Field Units. A smaller magnetic field unit is the Gauss (1 Tesla = 10,000 Gauss). The magnetic quantity B which is being called "magnetic field" here is sometimes called "magnetic flux density". An older unit name for the Tesla is Webers per meter squared, with the Weber being the unit of magnetic flux.	Remember	CO1	CL01	AEEB11.01

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
5	What is difference between magnetic field and magnetic flux?	Difference Between Magnetic Field & Magnetic Flux. The most significant difference between the magnetic field and the magnetic flux is that the magnetic field is the region around the magnet where the moving charge experiences a force, whereas the magnetic flux shows the quantity or strength of magnetic lines produced by the magnet.	Understand	CO1	CLO1	AEEB11.01
6	Describe magnetic reluctance.	The obstruction offered by a magnetic circuit to the magnetic flux is known as reluctance. As in electric circuit, there is resistance similarly in the magnetic circuit, there is a reluctance, but resistance in an electrical circuit dissipates the electric energy and the reluctance in magnetic circuit stores the magnetic energy. Also in an electric circuit, the electric field provides the least resistance path to the electric current. Similarly, the magnetic field causes the least reluctance path for the magnetic flux. It is denoted by S.	Understand	CO1	CLO1	AEEB11.01
7	What is a magnetic energy?	Magnetic energy is the energy within a magnetic field. This energy results in various metals either repelling or attracting each other.	Understand	CO1	CL01	AEEB11.01
8	Define mutual induction?	mutual induction. The production of an electromotive force in a circuit resulting from a change of current in a neighboring circuit. n. (General Physics) the production of an electromotive force in a circuit by a current change in a second circuit magnetically linked to the first.	Understand	CO1	CLO1	AEEB11.01
9	Explain the difference between inductor and inductance.	Difference Between Capacitor and Inductor. Inductor is simply a coil and it stores energy as a magnetic field when an electric current passing through it. Inductance is a measure of an inductor's capability to store energy. Inductance is measured in unit Henry (H). When an alternative current is passing through an inductor.	Understand	CO1	CL01	AEEB11.01
10	Define self induction?	Self-inductance is a specific form of electromagnetic induction. It is defined as induction of a voltage in a current carrying wire when the current in the wire itself changing. The magnetic field created by a changing current in the circuit itself induces a voltage in the same circuit.	Remember	CO1	CLO1	AEEB11.01
11	Describe the magnetic permeability of iron.	Magnetic permeability. A ferromagnetic material, such as iron, does not have a constant relative permeability. As the magnetizing field increases, the relative permeability increases, reaches a maximum, and then decreases. Purified iron and many magnetic alloys have	Understand	CO1	CLO3	AEEB11.03

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		maximum relative permeabilities of 100,000 or more				
12	What is the meaning of energy?	Energy is defined as the capacity of a physical system to perform work. However, it's important to keep in mind that just because energy exists, that doesn't mean it's necessarily available to do work.	Remember	CO1	CLO3	AEEB11.03
13	Define stored energy?	Stored energy, or potential energy, is the amount of energy an object has due to its position in space.	Remember	CO1	CLO3	AEEB11.03
14	What is electric permittivity?	Permittivity, also called electric permittivity, is a constant of proportionality that exists between electric displacement and electric field intensity. This constant is equal to approximately 8.85 x 10 -12 farad per meter (F/m) in free space (a vacuum). In other materials it can be much different, often substantially greater than.	Understand	CO1	CLO3	AEEB11.03
15	What is Magnetic Permeance?	Definition: It is the measure of the ease with which flux can be set up in a material. In other words, it measures the magnitude of the flux for the number of turns in an electric circuit. The permeance is analogous to the conductance in an electrical circuit. It is reciprocal of the reluctance (S) of the material in a magnetic circuit. It is denoted by P and measured in Weber per ampere turns (Wb/AT) or Henry (H).	Understand	CO1	CLO3	AEEB11.03
16	What is singly excited system?	well a machines which has only one electrical supply either to stator and to rotor is a single excited machine like induction motor where we supply only to the stator and emf induces in rotor by induction and lenzs law causes machine to run so it has only one electrical supply so its singly excited machines	Remember	CO1	CLO3	AEEB11.03
17	What is field energy?	The energy density (energy per volume) is denoted by w, and has units of V A s m^{-3} or J m^{-3} . This translates the electric field energy, magnetic field energy, and electromagnetic field energy to. Transmission of field energy is also possible without a medium through empty space.	Remember	CO1	CLO2	AEEB11.02
18	What is energy in electric field?	The energy of an electric field results from the excitation of the space permeated by the electric field. It can be thought of as the potential energy that would be imparted on a point charge placed in the field.	Understand	CO1	CLO2	AEEB11.02

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
19	What are the types of energy conversion?	Energy conversion: Transformation of one form of energy into another, usually to convert the energy into a more useful form. first law of thermodynamics: Energy can neither be created nor destroyed. form of energy, Forms of energy include heat, light, electrical, mechanical, nuclear, sound and chemical.	Remember	CO1	CLO2	AEEB11.02
20	Do electric fields carry energy?	Electromagnetic waves can transport this field energy through space. Electromagnetic waves are changing electric and magnetic fields, carrying energy through space.	Understand	COI	CLOI	AEEB11.01
21	What is energy density formula?	Energy Density is defined as the total amount of energy in a system per unit volume. For example, the amount of calories per gram of food.Therefore, the formula of energy density is the sum of the energy density of electric and magnetic field.	Remember	CO1	CL01	AEEB11.01
22	Can an electric field exist without a magnetic field?	Electric fields can exist without a magnetic field - consider a stationary point charge. Magnetic fields cannot exist without any E field component because there are no magnetic monopoles. A stationary electric charge creates an electric field. A changing electric field creates a magnetic field.	Understand	CO1	CL01	AEEB11.01
23	What kind of energy is stored in an electromagnet?	The energy associated with motion is called kinetic energy. The energy associated with position is called potential energy. Potential energy is not "stored energy". Energy can be stored in motion just as well as it can be stored in position.	Remember	CO1	CL01	AEEB11.01
24	What are the three types of energy conversions?	Well, there are a lot of types of energy. There's kinetic (or movement) energy, gravitational potential (or stored) energy, elastic potential energy, chemical energy, light energy, sound energy, nuclear energy, mechanical energy, heat energy and many more.	Remember	CO1	CL01	AEEB11.01
25	What are the methods of energy conversion?	Thermoelectric (Heat \rightarrow Electric energy) Geothermal power (Heat \rightarrow Electric energy) Heat engines, such as the internal combustion engine used in cars, or the steam engine (Heat \rightarrow Mechanical energy) Ocean thermal power (Heat \rightarrow Electric energy).	Remember	CO1	CL01	AEEB11.01
26	Are electric fields and magnetic fields the same?	Similarities between magnetic fields and electric fields: Magnetic fields are associated with two magnetic poles, north and south, although they are also produced by charges (but moving charges). Like poles repel; unlike poles attract. Electric field points in the direction of the force experienced by a positive charge	Remember	CO1	CLO2	AEEB11.02

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
27	How do you measure the strength of an electromagnet?	You can create an electromagnet with a simple coil of wire and a battery. In this project, you will explore whether the strength of an electromagnet changes with the number of turns in the magnet's coil. You will measure the magnet's	Understand	CO1	CLO2	AEEB11.02
		strength by counting the number of paper clips your electromagnet can lift.	XX 1 . 1	001	CI O2	
28	What factors affect the strength of an electromagnet?	 The main factors that affect the strength of an electromagnet are: Number of turns on the coil of wire around the core. Strength of the current applied. The material of the coil. 	Understand	COI	CLO2	AEEB11.02
29	How can the strength of an electromagnet be varied?	You can make an electromagnet stronger by doing these things: wrapping the coil around a piece of iron (such as an iron nail) adding more turns to the coil. increasing the current flowing through the coil.	Understand	CO1	CLO2	AEEB11.02
30	How does the strength of an electromagnet depend on the current?	Strength of Electromagnet increases when either the "Current" or "Number of turns in a coil" increases. They are directly proportional to strength of Electromagnet. Explanation: An electromagnet is a temporary magnet; the magnetic field only survives when an electric current is running through it.	Understand	CO1	CLO2	AEEB11.02
		MODULE-II				
1	State Fardays second law of electromagnetic induction.	Faraday's second law of electromagnetic induction states that the magnitude of induced emf is equal to the rate of change of flux linkages with the coil.	Understand	CO2	CLO4	AEEB11.04
2	State Lenz's law	Lenz's law states that the current induced in a circuit due to a change or a motion in a magnetic field is so directed as to oppose the change in flux and to exert a mechanical force opposing the motion	Understand	CO2	CLO4	AEEB11.04
3	State Fleming's left hand rule	Fleming's left hand rule states that when the thumb, forefinger and the middle finger are stretched mutually perpendicular to each other such that the forefinger is in the direction of magnetic field and the middle finger is in the direction induced current, then thump represents the direction of force.	Understand	CO2	CLO4	AEEB11.04
4	State Fleming's right hand rule	Fleming's right hand rule states that when the thumb, forefinger and the middle finger are stretched mutually perpendicular to each other such that the forefinger is in the direction of magnetic field and the thumb is in the direction force, then middle finger represents the direction of induced emf or current.	Understand	CO2	CLO4	AEEB11.04
5	Define pole pitch?	The pole pitch is defined as peripheral distance between center of two adjacent poles in dc machine. This distance is measured in term of armature slots or	Understand	CO2	CLO4	AEEB11.04

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
		armature conductor come between two adjacent pole centers. This is naturally equal to the total number of armature slots divided by number of poles in the machine.				
6	Why are the field poles and armature core laminated?	Armature core is laminated to reduce eddy current losses By using thin laminations we increase resistance of eddy current path thereby reducing the eddy currents and eddy current losses	Understand	CO2	CLO4	AEEB11.04
7	What is the purpose of brushes in a DC generator?	Originally Answered: What is the exact purpose of brushes in a DC motor? The brushes in a DC motor have two purposes. They carry current to the armature (the rotating part). The brushes work with the commutator to switch the current to the proper winding of the armature as it rotates.	Understand	CO2	CLO4	AEEB11.04
8	What are the advantages of carbon brushes?	Advantages and disadvantages of carbon brushes. *If sparking occurs they damage the commutator less than with the copper brushes. *Contact resistance is high and cause a loss of about 2 V.Hence they are not suited for low voltage machines	Understand	CO2	CLO4	AEEB11.04
9	Why Interpoles are used in DC machine?	Interpoles are similar to the main field poles and located on the yoke between the main field poles. They have windings in series with the armature winding. Interpoles have the function of reducing the armature reaction effect in the commutating zone. They eliminate the need to shift the brush assembly	Remember	CO2	CLO4	AEEB11.04
10	Describe armature reaction in dc machine.	Armature Reaction in a DC Generator. Definition: The armature reaction simply shows the effect of armature field on the main field. In other words, the armature reaction represents the impact of the armature flux on the main field flux.	Remember	CO2	CLO4	AEEB11.04
11	How armature reaction in a DC generator can be minimized?	The armature reaction causes the distortion in main field flux. This can be reduced if the reluctance of the path of the cross-magnetizing field is increased. The armature teeth and air gap at pole tips offer reluctance to armature flux. Thus by increasing length of air gap, the armature reaction effect is reduced	Remember	CO2	CLO4	AEEB11.04
12	Describe GNA and MNA.	GNA is the axis of symmetry between the adjacent poles. MNA is always perpendicular to the resultant magnetic flux in the air gap ,it can be beacuse of main magnetic field and armature field. MNA is the axis along which there is no emf generated in the armature of dc machine.	Understand	CO2	CLO4	AEEB11.04
13	Why Carbon Brushes Placed along MNA in a DC Generator?	Carbon Brushes are used collect the current due to the induced emf from the armature coils in a DC Generator, as all of us know. To prevent this, brushes are positioned in such a way that the coil	Remember	CO2	CLO4	AEEB11.04

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
		being short circuited has no induced emf in it.				
14	Describe compensating winding in DC machine.	Compensating Windings or Interpoles are used for this purpose. The cross- magnetizing effect of armature reaction may cause trouble in d.c. machines subjected to large fluctuations in load. In order to neutralize the cross magnetizing effect of armature reaction, a compensating winding is used.	Remember	CO2	CLO4	AEEB11.04
15	Define commutator function?	A commutator is a rotary electrical switch in certain types of electric motors and electrical generators that periodically reverses the current direction between the rotor and the external circuit. By reversing the current direction in the rotating windings each half turn, a steady rotating force (torque) is produced.	Understand	CO2	CLO4	AEEB11.04
16	Describe the function of carbon brushes in DC motor.	In dc motors, the carbon brush makes sure the commutation process remains free from sparks and helps conduct electric current between the moving parts of the motor. A dc motor has several components, and each serves an important role in ensuring its proper function and efficient performance.	Remember	CO2	CLO4	AEEB11.04
17	Define residual magnetism?	Remanence or remanent magnetization or residual magnetism is the magnetization left behind in a ferromagnetic material (such as iron) after an external magnetic field is removed. Colloquially, when a magnet is "magnetized" it has remanence.	Understand	CO2	CLO5	AEEB11.05
18	What is the difference between commutator and slip ring?	"A split-ring commutator makes the current change direction every half- rotation, whereas a slip-ring commutator merely maintains a connection between the moving rotor and the stationary stator."	Remember	CO2	CLO4	AEEB11.04
19	Define retentivity and coercivity?	Coercivity is the intensity of the applied magnetic field required to reduce the magnetization of a given material to zero. In other words to coerce the material to surrender its magnetism. Retentivity is the capacity of an object to retain magnetism after the action of the magnetizing force has ceased.	Remember	CO2	CLO5	AEEB11.05
20	What is the importance of LPT and TPT?	leading pole tip (LPT) and trailing pole tip (TPT) are the two edges of the pole. for easy identification these terms are used. LPT and TPT are depends upon the direction of motion of the armature(in case of dc)	Understand	CO2	CLO4	AEEB11.04
21	Define demagnetising effect?	In both the generating and motoring modes, the armature carries current and a magnetic field is established, which is called the armature flux. When the main field gets distorted, it is known as a cross magnetizing effect. And when the main	Remember	CO2	CLO4	AEEB11.04

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		field flux gets reduced, it is known as the demagnetizing effect.				
22	Define cross magnetization effect?	The cross magnetizing armature reaction effect is mainly caused by armature conductors which are located under the pole arc. At high loads, this effect of armature reaction may cause excessive flux density in the trailing pole tip (in generator) and leading pole tip (in motor)	Remember	CO2	CLO5	AEEB11.05
23	Desccribe commutation period.	Commutation in DC Machine. When the brush span has two commutator segments, the winding element connected to those segments is short- circuited. The term Commutation means the change that takes place in a winding element during the period of a short circuit by a brush	Understand	CO2	CLO4	AEEB11.04
24	What do you mean by poor commutation?	A machine is said to be in poor commutation if there is sparking at the brushes and commutator surface. Poor commutation can be caused by mechanical or electrical condition	Understand	CO2	CLO4	AEEB11.04
25	What are the essential conditions of the voltage build up of a self-excited DC generator?	Field and armature winding must be correctly connected so that initial mmf adds residual flux. Resistance of field windings must be less than critical resistance	Remember	CO2	CLO5	AEEB11.05
26	Describe critical speed in DC generator?	Critical Speed: It is that speed for which the given shunt field resistance becomes the critical field resistance.	Understand	CO2	CLO5	AEEB11.05
27	What is meant by critical field resistance in DC generator?	Critical Field Resistance: It is that value of the field resistance at which the D.C. shunt generator will fail to excite.	Understand		CLO5	AEEB11.05
28	What are the reasons for non up voltage in DC generator?	 Causes of failure of voltage build-up or armature heating 1. No residual magnetism. Without any residual magnetism, voltage build-up cannot start. 2. High field circuit resistances. If field resistances is more critical resistance then the voltage will not build up. 3. Speed less than the critical speed. 	Remember	CO2	CLO5	AEEB11.05
29	Which generator has poorest voltage regulation?	During On-load conditions its Diffentially Compounded DC generator that has the poorest voltage regulation. In differential compound machine shunt and series field flux are subtracted and the net field flux is reduced	Understand	CO2	CLO5	AEEB11.05
30	How does a generator lose residual magnetism?	Residual magnetism in the generator exciter field allows the generator to build up voltage during start-up. This magnetism is sometimes lost due to shelf time or improper operation, among other reasons.	Understand	CO2	CLO5	AEEB11.05
		MODULE-III				

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
1	What is the significance of back EMF	Back EMFis very significant in the working of a dc motor. The presence of back EMF makes the d.c. motor a self- regulating machine i.e., it makes the motor to draw as much armature current as is just sufficient to develop the torque	Understand	CO3	CLO7	AEEB11.07
		required by the load			GY OF	
2	Why back EMF is produced?	Back emf is the voltage produced (generated) in a motor as it spins. When a armature is moving in a permanent magnetic field than induced current in the coil and this current also produced magnetic field.	Understand	CO3	CL07	AEEB11.07
3	Define torque?	Torque is the turning force through a radius - with the units Nm in the SI- system and the units lb ft in the imperial system. The torque developed by an asynchronous induction motor varies when the motor accelerates from zero to maximum operating speed.	Remember	CO3	CLO7	AEEB11.07
4	What is difference between torque and speed?	Speed of a motor is the rate at which it spins and is often given in "rpm" or rotations per minute. While torque is the amount of twisting force generated by the motor (often through a shaft). Higher speed does not necessarily imply high torque. Two motors having same speed may deliver different torque values	Understand	CO3	CLO7	AEEB11.07
5	Why should a series motor never be operated without load?	This is the reason why DC series motor should never be started or Operated on light loads or No load conditions. This can be seen from the speed-armature current and the speed-torque characteristics that on low armature current and low torque condition motor shows a tendency to rotate with dangerously high speed	Understand	CO3	CLO7	AEEB11.07
6	What is the condition for maximum efficiency of a DC shunt generator?	Condition for the maximum efficiency of DC shunt motor is the core loss or the no load losses or constant loss of that DC shunt motor have to be equals to the copper loss or full load losses or variable losses of that motor.	Remember	CO3	CLO8	AEEB11.08
7	Which type of starter is used to start the DC shunt motor?	A 3 point starter is used for starting a DC shunt motor.	Remember	CO3	CLO8	AEEB11.08
8	Why iron losses are called constant losses?	Iron losses depends upon supply frequency, maximum flux density in the core, volume of the core,etc. As the supply frequency, volume for a transformer typically remains constant, so the iron losses of a transformer is constant.	Understand	CO3	CLO8	AEEB11.08
9	How can eddy current loss be reduced?	In order to reduce the eddy current loss, the resistance of the core should be increased. In devices like transformers, the core is made up of thin sheets of steel, each lamination being insulated from others by a thin layer of varnish. As	Remember	CO3	CLO8	AEEB11.08

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
		the laminations are thin, they will have				
		Totativory ingli resistance.				
10	Describe no volt	No volt release coil is basically a relay	Understand	CO3		AEEB11.08
10	release coil.	system which automatically trips off the	onderstand	005	CLOU	ALLD11.00
		motor if supply is cut off or decreased				
		beyond a limit so that it doesn't starts automatically to lowest armature				
		resistance next time when supply is				
		given.	** 1 1		GT 00	
11	Why Swinburne's test is called	Swinburne's Test is an indirect method of testing of DC machines. In this method	Understand	CO3	CLO9	AEEB11.09
	indirect test?	the losses are measured separately and				
		the efficiency at any desired load is				
		predetermined. Machines are tested for				
		temperature rise.				
12	Describe	Hopkinson's Test is also known as	Understand	CO3	CLO9	AEEB11.09
	regenerative test.	Regenerative Test, Back to Back test				
		and Heat Run Test. In Hopkinson Test, two identical shunt machines are				
		required which are coupled both				
		mechanically and electrically in parallel.				
		One is acting as a motor and another one				
13	Describe retardation	Retardation or Running Down Test. This	Understand	CO3	CLO9	AEEB11.09
	test.	method is applicable to shunt motors and				
		generators and is used for finding stray				
		losses. Then, knowing the armature and shunt Cu losses at a given load current				
		efficiency can be calculated				
14	What are the losses	The losses that occur in a DC Machine is	Remember	CO3	CLO8	AEEB11.08
	in a DC machine?	divided into five basic categories. The				
		losses (I ² R losses). Core losses or Iron				
		losses, Brush losses, Mechanical losses,				
1.5		Stray load losses	D 1	GOA	CT OO	A EEE 11.00
15	Describe efficiency	Electric motor efficiency is the ratio	Remember	CO3	CL08	AEEB11.08
	of a motor.	power input (electrical). Mechanical				
		power output is always lower than the				
		electrical power input, as energy is lost				
		mechanical) in various forms, such as				
		heat and friction				
16	What is the	Condition for Maximum Efficiency in	Remember	CO3	CLO8	AEEB11.08
	condition for	DC Machine It varies from motor to				
	efficiency in a DC	efficiency is when running at about 80				
	motor?	percent of maximum speed, driving a				
		load that is about 20 percent of the				
17	Why is the starting	maximum stall torque It's armature has very less resistance due	Remember	CO3	CL07	AEEB11.07
1/	current high in DC	to this it need more current at starting	remember			
	motor?	time. Hence DC starters are used to limit				
		the starting current of motor The				
		back EMF or counter EMF present in the				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		armature circuit because at starting counter EMF is zero				
18	How do you control the speed of a shunt DC motor?	Speed control of Shunt motor 1. Flux control method. 2. Armature control method 3. Voltage Control Method 4. Flux control method 5. Variable resistance in series with armature 6. Series-parallel control	Understand	CO3	CLO7	AEEB11.07
19	How does voltage affect motor speed?	Input Voltage: For a fixed load, the speed of the motor is affected by applied voltage. Increase in voltage = increase in speed. Load Torque: For a fixed voltage, the speed of the motor is inversely affected by the load. Increase in load torque = decrease in speed.	Understand	CO3	CLO7	AEEB11.07
20	How can the direction of rotation of a DC electric motor be changed?	The direction of current is controlled by the polarity of the voltage. So in order to change the direction of rotation, we can simply reverse the voltage, causing the current to flow in the opposite direction, changing the force by 180 degrees and the motor to be driven 'backwards'.	Understand	CO3	CLO7	AEEB11.07
21	How can the direction of rotation of a series motor be reversed?	Direction reversal of separately excited DC Motor: From Equation(1), it is clear that the direction of the torque and the speed can be reversed by changing the direction of either the field current or armature current by changing the polarity of the DC voltage	Understand	CO3	CLO7	AEEB11.07
22	What happens when a DC motor is connected across an AC supply?	When A.C. supply is given to a D.C. motor: 1)In case of Series connection of armature winding and field winding, it may run. 2)But, In case of parallel connection, it won't rotate at all and will start humming and will create vibrations, as a torque produced by positive and negative cycle will cancel out each other.	Understand	CO3	CLO7	AEEB11.07
23	At what condition a DC motor will develop maximum power?	Condition for Maximum Power. Thus maximum efficiency of a dc motor occurs when back EMF is equal to half the applied voltage.	Remember	CO3	CLO8	AEEB11.08
24	Describe speed regulation of a DC motor?	The speed regulation of a DC Motor is defined as the change in speed from no load to full load. It is expressed as a fraction or a percentage of the full load speed	Remember	CO3	CLO7	AEEB11.07
25	How is torque developed in dc motor?	Torque Equation of DC Motor. When a DC machine is loaded either as a motor or as a generator, the rotor conductors carry current. These conductors lie in the magnetic field of the air gap Hence torque is produced at the circumference of the rotor and rotor starts rotating.	Remember	CO3	CLO7	AEEB11.07
26	What will happen if the field winding of a running DC motor is opened?	In DC shunt motor if field winding supply is removed the motor back emf will drop to zero, hence the armature will draw more current to make up the emf this results in blowing up of fuse.	Understand	CO3	CLO7	AEEB11.07

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
27	What is CRGO full	It is used for the cores of power and	Remember	CO3	CLO7	AEEB11.07
	form?	distribution transformers, cold-rolled				
		to CRGO CRGO is usually supplied by				
		the producing mills in coil form and has				
		to be cut into "laminations", which are				
		then used to form a transformer core,				
		which is an integral part of any				
28	Which motor is	Series-wound DC motors That means	Remember	CO3	CL07	AEEB11.07
20	used in train?	current flows through the armature, then	Remember	005	CL07	
		through the fields. They have high				
		starting torque, favorable for starting a				
20	Why DC motor is	train There are two main reasons for using DC	Understand	CO2	CL O7	AEED11.07
29	used in traction?	series motor for traction purpose. They	Understand	COS	CLO/	ALLBII.07
		are: It has high starting torque which is				
		important in traction system. It requires				
		less power for high torque production				
		because torque production is directly				
		armature current.				
30	Why do series	For any dc motor, torque is directly	Remember	CO3	CLO7	AEEB11.07
	motors have high	proportional to the flux and armature				
	starting torque?	current. Hence torque is directly				
		current. So as current during starting is				
		1.5 times the rated so starting torque is				
		higher for series motor.				
		MODULE-IV				
1	Define principle	A transformer consists of two	Remember	CO4	CLO10	AEEB11.10
	of transformer?	electrically isolated coils and operates				
		induction" in which an EME is induced				
		in the transformers secondary coil by the				
		magnetic flux generated by the voltages				
		and currents flowing in the primary coil				
2	What are the two	Winding.	Pamamhar	CO4	CI 010	AEER11 10
2	main types of	transformers (VT): electromagnetic.	Kemember	C04	CLUIU	ALLBII.IU
	transformers?	capacitor, and optical. The				
		electromagnetic voltage transformer is a				
		wire-wound transformer. The capacitor				
		potential divider and is used at higher				
		voltages due to a lower cost than an				
		electromagnetic VT.				
3	Describe ideal	An ideal transformer is an imaginary	Understand	CO4	CLO10	AEEB11.10
	transformer?	transformer which has no copper				
		loss in core - no leakage flux. In other				
		words, an ideal transformer gives output				
		power exactly equal to the input power.				
4	Can transformer	So in that sense, yes, a transformer	Understand	CO4	CLO10	AEEB11.10
	work on DC?	"works" with DC. But no, you cannot				
		primary to secondary as you can with				
		AC. As transformer works on the				
		Principle of Electro-Magnetic Induction,				
		which is produced by Alternating Current				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		(AC) and not by Direct Current (DC).				
5	Why are transformers rated in kVA?	Copper losses (I ² R)depends on Current which passing through transformer winding while Iron Losses or Core Losses or Insulation Losses depends on Voltage. So the Cu Losses depend on the rating current of the load so the load type will determine the powerfactor P.F, Thats why the rating of Transformer in kVA,Not in kW.	Understand	CO4	CLO10	AEEB11.10
6	Which type of oil is used in transformer?	Transformer oil or insulating oil is an oil that is stable at high temperatures and has excellent electrical insulating properties. It is used in oil-filled transformers, some types of high-voltage capacitors, fluorescent lamp ballasts, and some types of high-voltage switches and circuit breakers.	Remember	CO4	CLO10	AEEB11.10
7	What is the importance of equivalent circuit?	An equivalent circuit is a very useful way of understanding or predicting the operation and behaviour of an electrical circuit or apparatus. It requires the deconstruction of the circuit into ideal simple circuit elements – e.g. resistors, inductor, capacitors, rectifiers, voltage and current sources.	Understand	CO4	CLO10	AEEB11.10
8	Which gas is used in transformer?	Gas is used as an insulating and cooling agent in gas insulated transformers. Sulphur hexafluoride (SF_6) is the main gas used in these types of transformer at present although other gases are under developmen	Remember	CO4	CLO10	AEEB11.10
9	Why Buchholz relay is used in a transformer?	Buchholz relay is used for the protection of transformers from the faults occurring inside the transformer. Short circuit faults such as inter turn faults, incipient winding faults, and core faults may occur due to the impulse breakdown of the insulating oil or simply the transformer oil.	Understand	CO4	CLO10	AEEB11.10
10	Why conservator is used in transformer?	Function of Conservator Tank of a Transformer. When transformer is loaded and when ambient temperature rises, the volume of oil inside transformer increases. A conservator tank of transformer provides adequate space to this expanded transformer oil. It also acts as a reservoir for transformer insulating oil.	Understand	CO4	CLO10	AEEB11.10

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
11	Why is silica gel used in transformers?	Function of Silica Gel Breather. Most of the power generation companies use silica gel breathers fitted to the conservator of oil filled transformers. The purpose of these silica gel breathers is to absorb the moisture in the air sucked in by the transformer during the	Understand	CO4	CLO10	AEEB11.10
12	What is standard for BDV of transformer oil?	For measuring BDV of transformer oil, portable BDV measuring kit is generally available at site. Minimum breakdown voltage of transformer oil or dielectric strength of transformer oil at which this oil can safely be used in transformer, is considered as 30 KV	Remember	CO4	CLO10	AEEB11.10
13	Why tap are provided on HV side of transformer?	Why tappings are provided on the high voltage side of the transformer? There are some reasons for tapping on the high voltage side of the large transformer which are, In large transformers, the high voltage(HV) winding is generally wound over the low voltage (LV)winding for insulation saving purpose.	Understand	CO4	CLO10	AEEB11.10
14	What is the use of bushing in transformer?	In electric power, a bushing is an insulated device that allows an electrical conductor to pass safely through a grounded conducting barrier such as the case of a transformer or circuit breaker. Bushings are typically made from porcelain; though other insulating materials are also possible, generally porcelain is used	Understand	CO4	CLO10	AEEB11.10
15	How does a transformer MOG work?	MOG (magnetic oil gauge) of Transformer. The MOG (Magnetic Oil Gauge) is a device by which we can supervise the level of liquid/oil inside the tank or conservator of power transformer and also gives us an alert low oil level indication with making mercury switch.	Understand	CO4	CLO10	AEEB11.10
16	How many types of transformer oil are there?	There are two types of oil used: Type I and Type II. Type I oil is used in equipment that does not require much oxidation resistance; Type II oil offers greater protection against oxidation.	Remember	CO4	CLO10	AEEB11.10
17	What are the qualities of good transformer oil?	Synthetic transformer oil like chlorinated diphenyl has excellent properties like chemical stability, non-oxidizing, good dielectric strength, moisture repellant, reduced risk due to fire and explosion	Remember	CO4	CLO10	AEEB11.10
18	What are the different methods of cooling?	Based on the coolant used the cooling methods can be classified into: Air cooling. Oil and Air cooling. Oil and Water cooling.	Remember	CO4	CLO10	AEEB11.10
19	What is the function of radiator in transformer?	Radiator is a bank of hollow pipe line which is used to transfer the thermal energy from one medium to another for the purpose of cooling. Some Bank are used at the power transformer for cooling the transformer oil as well as reduces the winding temperature under loading	Understand	CO4	CLO10	AEEB11.10

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		condition.				
20	Descibe explosion vent in transformer.	Explosion Vent. The explosion vent is used to expel boiling oil in the transformer during heavy internal faults in order to avoid the explosion of the transformer.	Understand	CO4	CLO10	AEEB11.10
21	Define All day efficiency?	All Day Efficiency is defined as the ratio of total energy output for 24 hrs i.e. for the whole day to the total energy input for the same day. All Day Efficiency is basically Energy Efficiency of Transformer calculated for a period of 24 hrs.	Remember	CO4	CLO10	AEEB11.10
22	What is the maximum efficiency condition for transformer?	Transformer efficiency is denoted by Π . Efficiency is maximum in a transformer when Copper losses = Iron losses.	Remember	CO4	CLO10	AEEB11.10
23	Which transformer has high efficiency?	Transformers are in general highly efficient, and large power transformers (around 100 MVA and larger) may attain an efficiency as high as 99.75%. Small transformers such as a plug-in used to power small consumer electronics may be less than 85% efficient. Hence Generator/Motor has less efficiency than transformers.	Remember	CO4	CLO10	AEEB11.10
24	Why the efficiency of transformer is high as compared to DC machine?	The efficiency of transformer is greater than any other electrical machines. This is due to transformer is a static device and there is no any mechanical losses in transformers. While if you say DC machine then there is a rotational part so their losses is greater than the transformer	Understand	CO4	CLO10	AEEB11.10
25	What are the conditions of parallel operation?	 There are various conditions that must fulfilled for the successful operation of transformers as follows. 1. The line voltage ratio of two transformers must be equal. 2. The per unit impedance of each transformer should be equal and they should have same ratio of equivalent leakage reactance to the equal resistance(X/R). 	Remember	CO4	CLO13	AEEB11.13
26	What will happen if two transformers are connected in parallel with wrong polarity?	An incorrect polarity connection of these transformers will result in dead short circuit. Explanation: If the percentage impedances of the two transformers which are working in the parallel are different, then parallel operation is still possible, but load sharing will not be in the ratio of their kVA loads.	Understand	CO4	CLO13	AEEB11.13
27	What will happen if two transformer are connected in parallel with unequal impedance?	when two transformer are connected in parallel condition, and the polarity of transformer are opposite to each other then a large circulating current flow through out the winding, therefore a very small current flow thro, the load .therefore lifespan of transformer will be reduced.	Understand	CO4	CLO13	AEEB11.13

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
28	What is difference between power and	Main Differences. Power transformers are used in transmission network of	Understand	CO4	CLO13	AEEB11.13
	distribution	higher voltages for step-up and step				
	transformer?	down application (400 kV, 200 kV, 110				
		above 200MVA. Distribution				
		transformers are used for lower voltage				
		distribution networks as a means to end				
20	What is the	user connectivity.	Understand	CO4	CI 010	AEER11 10
29	significance of turns	the number of wire turns on the input	Understand	C04	CLUIU	ALLBII.IU
	ratio in a	versus the number of turns on the output.				
	transformer?	A 1:1 transformer would have the same				
		number of turns on each coil while a 1:2 transformer would have twice as many				
		on the secondary.				
30	What is an ideal	An ideal transformer is an imaginary	Understand	CO4	CLO10	AEEB11.10
	transformer?	transformer which has no copper losses				
		(no winding resistance) - no iron loss in				
		an ideal transformer gives output power				
		exactly equal to the input power.				
		MODULE-V				
1	Why do we use Star	The phase voltage is lower than line	Understand	CO5	CLO14	AEEB11.14
	and Delta	voltage in star connection, so the motors				
	Connection?	runs at lower speed as compared to delta				
		connection. Star Connection is				
		prefferable in transmission system as the				
		voltage insulation required is less. Delta				
2	What are the uses of	Three phase transformers are designed to	Understand	CO5	CLO14	AEEB11.14
-	three phase	supply electric power to three-phase	enderstand	005	CLOIT	
	transformer?	systems. These electrical devices have				
		three circuit conductors and may or may				
		power is used by electric power				
		distribution grids and to power large				
		motors and other large loads.	-	~~~	~ ~ ~ ~ ~ ~	
3	What is difference	The network formed is known as Star	Remember	CO5	CLO14	AEEB11.14
	Delta Connection?	network are connected in such a way that				
		it forms a closed loop known as Delta				
		Connection. In a star connection, the				
		starting and the finishing point ends of the three coils are connected together to a				
		common point known as the neutral				
		point.				
4	What happens if	When a three phase motor looses one of	Remember	CO5	CLO15	AEEB11.15
	one phase of a 3	Single Phasing Single Phasing a case				
	fails?	when any one phase out of the three				
		phases fails. The motor will run but				
		would not be able to drive rated load.				
		noise and vibration in motor				
5	Why distribution	Third harmonic current will be circulated	Remember	CO5	CLO14	AEEB11.14
	transformer	in transformer itself and will not be				
	secondary side is	allowed to flow into the supply lines. Star				
	arways star	secondary is more stable on undalanced				

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
	connected?	loading				
6	Which type of connection is used in distribution transformer?	There is the so called Zig-Zag connection which is used in municipal level transformers. This connection is used with a Delta as primary(Dz). In short it is better for non-symmetric loads because the load is shared between the phase conductors, which is one of the main advantages.	Remember	CO5	CLO14	AEEB11.14
7	What are the advantage of Delta Connection?	An advantage of the Delta connection is higher reliability. If one of the three primary windings fails, the secondary will still produce full voltage on all three phases. The only requirement is that the remaining two phases must be able to carry the load.	Remember	CO5	CLO14	AEEB11.14
8	What are the conditions for parallel operation of two three phase transformers?	For the satisfactory parallel operation of the transformer, the two main conditions are necessary. One is that the Polarities of the transformers must be same. Another condition is that the Turn Ratio of the transformer should be equal. The voltage at full load across the transformer internal impedance should be equal.	Remember	CO5	CLO14	AEEB11.14
9	Describe scott connection of transformer.	A Scott-T transformer (also called a Scott connection) is a type of circuit used to produce two-phase electric power (2φ , 90 degree phase rotation) from a three- phase (3φ , 120 degree phase rotation) source, or vice versa. The Scott connection evenly distributes a balanced load between the phases of the source.	Understand	CO5	CLO15	AEEB11.15
10	Describe teaser transformer.	A teaser transformer is the second transformer of a two transformer set in a Scott-T or T-T transformer bank. The teaser transformer is tapped at 86.6% of the main transformer on the HV set of windings. The two transformers convert a 3-phase input to a 2-phase, 5-wire, output	Remember	CO5	CLO15	AEEB11.15
11	Which connection is better Star or Delta?	The phase voltage is lower than line voltage in star connection, so the motors or drives connected in star connection runs at lower speed as compared to delta connection. Star Connection is prefferable in transmission system as the voltage insulation required is less. Delta connection is used in Distribution system	Remember	CO5	CLO14	CAEEB11.14
12	What is the use of Scott connection of transformer?	Scott-T transformer (also called a Scott connection) is a type of circuit used to derive two-phase power from a three- phase source or vice-versa. The Scott connection evenly distributes a balanced load between the phases of the source.	Understand	CO5	CLO15	AEEB11.15
13	What is the use of auto transformer?	The autotransformer has many uses and applications including the starting of induction motors, used to regulate the voltage of transmission lines, and can be used to transform voltages when the primary to secondary ratio is close to	Understand	CO5	CLO15	CAEEB11.15

memory unity: memory 14 What is the difference between transformer and autotransformer? Understand CO5 CLO15 AEEB11.15 14 What is the difference between transformer is a two separate windings, i.e., the primary and the secondary which acts both as a primary and the secondary whereas the conventional insite. Whereas is the insite. When the insister is a transformer. Remember CO5 CLO15 AEEB11.15 17 Describe remerication in transformer. Transformer is is defined us the average temperature rise is defined in transformer heat up? Understand CO5 CLO15 AEEB11.15 18 Why does a transformer heat up? In there phase system the order in which in transformer is needed, and for transform	S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
14 What is the difference between ransformer and autotransformer? An autotransformer has a primary and the secondary whereas the conventional ransformer is two separate windings, i.e., the primary and the secondary winding. The auto-transformer is smaller in size, whereas the conventional transformer is larger in size. Understand CO5 CLO15 AEEB11.15 15 List out the Cooling methods for Dry type Transformer. The auto-transformer is and transformer is larger in size. Remember CO5 CLO15 AEEB11.15 16 Describe OLTC in transformer. Air Flatural (SVAN) 1. Air Flatural (ONAF) 4. OI Forced Ware Forced (OPAF) 4. OI Force			unity.				
difference between transformer and autotransformer? which acts both as a primary and the secondary whereas the conventional transformer has a two separate windings, i.e., the primary and the secondary winding. The auto-transformer is size, whereas the conventional transformer is larger in size. Remember CO5 CL015 AEEB11.15 15 List out the Cooling methods for Dry type Transformers Air Natural or Self air cooled transformer is method of transformer cooling is generally used in small transformer. Remember CO5 CL015 AEEB11.15 16 Describe OLTC in transformer. Oil Forced AV afr Forced (OFAF) 4. Oil Forced AV for Forced (OFAF) 4. Oil Forced AV for Forced (OFAF) 4. Oil Forced AV for Forced (OFAF) 4. Oil Forced AV at force (OFAF) 4. Oil Forced AV at force of the shown as On-circuit tap changer (OCTC), is a tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. Understand CO5 CL015 AEEB11.15 17 Describe transformer bas transformer heat up? Transformer temperature rise is defined transformer is the average transformer is interceptable, the winding resistance: up? Understand CO5 CL015 AEEB11.15 18 Why does a transformer heat up? In three phase system fits order in which the voltages attain the'r maximum positive value is called Phase Sequence. prositive value is called Phase Sequence. Underst	14	What is the	An autotransformer has only one winding	Understand	CO5	CLO15	AEEB11.15
Image of the secondary whereas the conventional autoransformer? secondary whoreas the conventional insize, the primary and the secondary winding. The auto-transformer is smaller in size, whereas the conventional transformer is larger in size. 15 List out the Cooling in Stransformer. This method of transformer is a Transformer. This method of transformer is uransformer. This method of transformer is larger in size. Remember CO5 CL015 AEEB11.15 16 List out the Cooling is generally used in small transformers: (upto 3 MVA) Air Plast. CO5 CL015 AEEB11.15 16 Describe OLTC in transformer. S. Oil Forced Mater Forced (OFMF) Remember CO5 CL015 AEEB11.15 17 Describe OLTC in transformer is on the supply interruption during a tap changing mechanism. Transformer tanger targer is side of the windings above the ambient (surrounding) femorphic on load tap changing mechanism. Understand CO5 CL015 AEEB11.15 18 Why does a transformer is loaded at its nameplate aring or the voltages atrain their maximum is interespted by the secondary. Understand CO5 CL014 AEEB11.15 19 Describe phase squeene in their the voltages atrain their maximum maximum is interespted by the secondary. Understand CO5 CL014 AEEB11.14 19 Describe phase squeme. For power transmission		difference between	which acts both as a primary and the				
autotransformer? transformer has a two separate windings, i.e., the primary and the secondary, winding. The auto-transformer is smaller in size, whereas the conventional transformer. This method of transformer transformer is masformer is is arger in size. Remember COS CLO15 AEEB11.15 15 List out the Cooling methods for Dry type Transformer. This method of transformer transformer (ypto 3 MVA) Remember COS CLO15 AEEB11.15 16 Describe OLTC in transformer. On-load tup changer (OLTC), also from winding a tap changer in applications where a supply interruption during a tap changer is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. COS CLO15 AEEB11.15 17 Describe intermer termerature rise is defined tap changing mechanism. The loses arise from: Winding tap changing mechanism. COS CLO15 AEEB11.15 18 Why does a transformer is loaded at is nameplate rating. In three phase system. the order in which sequence in transformer is loaded by the primary is intercepted by the secondary. Understand COS CLO15 AEEB11.14 19 Describe phase softem or positive value is called Phase Sequence. In three phase system. the order in which the voltages attain their maximum positive value is called Phase Sequence. COS CLO14 AEEB11.14 20 Describe phase is regreemed forely in trans		transformer and	secondary whereas the conventional				
ie., the primary and the secondary winding. The auto-transformer is smaller in size, whereas the conventional transformer is larger in size. Remember CO5 CLO15 AEEB11.15 15 List out the Cooling methods for Dry type Transformers. Air Natural or Self air cooled transformer. This method of transformer cooling is generally used in small transformers (upto 3 MVA) Remember CO5 CLO15 AEEB11.15 16 Describe OLTC in transformer. On-load tap changer (OLTC), also known as On-circuit tap changer ophange is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. CO5 CLO15 AEEB11.15 17 Describe transformer. Transformer temperature rise is defined transformer is loaded at pchanging mechanism. Understand CO5 CLO15 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: unservice is in a site average temperature rise of the windings above the anbient (surrounding) torquiced by the rimary is intercepted by the secondary. Understand CO5 CLO15 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: in transformer economic sing the conductors. Eddy currents: Induced current scirculate in the core and cause in resistive heating. Stray losess: Not all the magerite: field produced by the primary is intercepted by the secondary.		autotransformer?	transformer has a two separate windings,				
Image: sequence in size, whereas the conventional transformer is smaller in size, whereas the conventional transformer is larger in size. Remember COS CLO15 AEEB11.15 15 List out the Cooling methods for Dry type Transformer. Transformer. Transformer. Transformer. Transformer. Transformer. Transformer. Transformer. Transformer. So Oil Forced Air Forced (OFAF) 5. Oil Force Air Force Force Air Force Air Fo			i.e., the primary and the secondary				
In size, whereas the conventional transformer is larger in size. Remember COS CLO15 AEEB11.15 15 List out the Cooling type Transformers Air Natural or Self air cooled transformer. This method of transformer sociling is generally used in small transformers (upto 3 MVA) Remember COS CLO15 AEEB11.15 16 Describe OLTC in transformer. Oil Natural Air Natural (ONAF) 4. Oil Forced Water Forced (OFMF) Remember COS CLO15 AEEB11.15 16 Describe OLTC in transformer. On-load tap changer (DLTC), also known as On-circuit tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism Understand COS CLO15 AEEB11.15 17 Describe temperature rise in a transformer is a the average temperature rise is defined transformer. The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating. Stray losses: Not all the magnetic field produced by the sprinary is intercepted by the secondary. Understand COS CLO14 AEEB11.14 19 Describe phase in transformer is needed, and for transformer is needed, and for transformer conomic reasons star connection is used in transmission. In three phase system with the same phase eqeuence as the original sequence. COS			winding. The auto-transformer is smaller				
Image: Instructure is larger in size. Image: I			in size, whereas the conventional				
15 List out the Cooling methods for Dry type Transformer. This method of transformer cooling is generally used in small transformers (upto 3 MVA) Remember CO5 CLO15 AEEB11.15 16 Describe OLTC in transformer. Oil Natural Air Forced (ONAF) Remember CO5 CLO15 AEEB11.15 16 Describe OLTC in transformer. On-load tap charger (OLTC), also known as On-circuit tap changer in applications where a supply interruption during a tap changer in applications where a supply interruption during tap change in subcerptable, the transformer is of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate transformer is loaded at its nameplate transformer is loaded at its nameplate transformer is intercepted by the secondary. CO5 CLO15 AEEB11.15 18 Why does a transformer temperature rise of the windings causes resistive heating of the conductors. Eddy currents: Induced currents: Current flowing through the windings causes is resistive heating. Stray losses: Not all the sequence in three phase system. CO5 CLO14 AEEB11.15 18 Why does a transformer conomic consons tar connection is used in transmission. In three phase system the order in which the voltages attain their maximum positive value is called Phase Squence. CO5 CLO14 AEEB11.14 19 Describe phase in the original sequence. For power transmission higher voltages in transformer socional sareasons. To that the voltages as the original sequence			transformer is larger in size.				
methods for Dry type Transformers transformer. This method of transformer cooling is generally used in small transformers (upto 3 MVA) 1. Air Blast. Oil Natural Air Natural (ONAN) 3. Oil Natural Air Porced (ONAF) Oil Forced Air Forced (OFAF) 16 Describe O.T.C in transformer. On-load tap changer (OCTC), also know as On-circuit tap changer (OCTC), is a tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. Remember CO5 CLO15 AEEB11.15 17 Describe temperature rise in a transformer. Transformer temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate rating. Understand CO5 CLO15 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray loses: Not all the magnetic field produced by the primary is intercepted by the secondary. Understand CO5 CLO14 AEEB11.14 19 Describe phase sequence in three phase system. In three phase system the order in which the voltages arising bhase, to reduce the imbalance imposed on the source, a delta winding is generally used Understand CO5	15	List out the Cooling	Air Natural or Self air cooled	Remember	CO5	CLO15	AEEB11.15
type Transformers cooling is generally used in small transformers (upto 3 MVA) i Air Blast. 1 Air Blast. Oil Natural Air Forced (ONAF) Oil Forced Water Forced (OFNF) Image: Cooling of Section 2000 (OFNF) Coli Forced Water Forced (OFNF) 16 Describe OLTC in transformer. On-load tap changer (OLTC), also known as On-circuit tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. Remember CO5 CLO15 AEEB11.15 17 Describe temperature rise in a transformer. Transformer temperature rise is defined us da vareage temperature rise of the vinding above the ambient (surrounding) temperature, when the transformer heat up? Understand CO5 CLO15 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary. Understand CO5 CLO14 AEEB11.14 20 Describe star connection is used in transmission. For power transmission higher voltages are preferred for obvious reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the soure, a delta winding is generally used;		methods for Dry	transformer. This method of transformer				
1 Transformers (upto 3 MVA) 1. Air Blast. 2 0il Natural Air Natural (ONAN) 3. Oil Natural Air Forced (ONAF) 4. Oil Forced Water Forced (OFAF) . 16 Describe OLTC in transformer. On-load tap changer (OLTC), also known as On-circuit tap changer (OCTC), is a tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. Remember COS CLO15 AEEB11.15 17 Describe temperature rise in a transformer temperature rise is defined temperature rise in a transformer temperature rise of the winding: above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate rating. Understand COS CLO15 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: Currents: Induced at its nameplate rating. Understand CO5 CLO15 AEEB11.15 19 Describe thase sequence in three phase system the order in which the voltages statin their maximum positive value is called Phase Sequence. Understand CO5 CLO14 AEEB11.14 20 Describe star connection is used in transformer is needed, and for transformer s		type Transformers	cooling is generally used in small				
1. Air Blast. 1. Air Blast. 2. Oil Natural Air Forced (ORAF) 3. Oil Natural Air Forced (ORAF) 3. Oil Forced Wate Forced (OFAF) 5. Oil Forced Wate Forced (OFAF) 16 Describe OLTC in transformer. On-load tap changer (OLTC), also known as On-circuit tap changer in applications where a supply interruption during a tap changer in applications where a supply interruption during a tap changer in applications where a supply interruption during a tap changer is succeptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. Understand CO5 CLO15 AEEB11.15 17 Describe transformer is loaded at is nameplate raining Transformer temperature, when the transformer is loaded at its nameplate raining scauses resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary. In three phase system. CO5 CLO14 AEEB11.14 19 Describe star connection is used in transformer reconductors. Eddy currents: Induced in transformer fore conductors. Understand CO5 CLO14 AEEB11.14 20 Describe star connection is used in transformer is conded, and for masformer is conded, and for masformer is needed, and for masformer is needed, and for masformer is needed, and for masformer is conductors. Understand CO5 CLO14 AEEB11.14		V 1	transformers (upto 3 MVA)				
2. 0il Natural Air Natural (ONAN) 3. 0il Natural Air Forced (ONAF) 4. 0il Forced Air Forced (ONAF) 16 Describe OLTC in transformer. 5. 0il Forced Mater Forced (OFAF) 8. 16 Describe OLTC in transformer. 0n-load tap changer (OLTC), also known as On-circuit tap changer (OCTC), is a tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. Remember CO5 CL015 AEEB11.15 17 Describe temperature rise in a transformer is loaded at its nameplate rating. Understand CO5 CL015 AEEB11.15 18 Why does a transformer temperature rise is defined as the average temperature rise of the vindings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate rating. Understand CO5 CL015 AEEB11.15 18 Why does a transformer temperature is selenting. Straty losses: Not all the magnetic field produced by the secondary. Understand CO5 CL014 AEEB11.14 19 Describe phase system. the order in which is they parastrise of robvious reasons. To that step up transformer is needed, and for transformer is used of no dovious reasons. To that step up transformer is preferred for obvious reasons. To that step up transformer is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generaly used			1. Air Blast.				
3. Oil Natural Air Forced (ONAF) 4. Oil Forced Air Forced (OFAF) 5. Oil Forced Water Forced (OFAF) 5. Oil Forced Water Forced (OFAF) 5. Oil Forced Water Forced (OFAF) 6. Oil Forced Water Forced (OFAF) 5. Oil Forced Water Forced (OFAF) 6. Oil Accel Water Marced OFAF) 7. Oil Forced Water Forced OFAF 7. Water Marcel Water Forced OFAF 7. Oracle Water Marcel Water Marcel Water Marcel Water Forced OFAF 7. Oracle Water Marcel Wa			2. Oil Natural Air Natural (ONAN)				
16 Describe OLTC in transformer. 0.0160d tap changer (OLTC), also known as On-circuit tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. Remember CO5 CLO15 AEEB11.15 17 Describe temperature rise in a transformer. Transformer temperature rise is defined windings above the ambient (surrounding) temperature, when the transformer resistive heating of the conductors. Eddy currents: Induced currents Circuitate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary. Understand CO5 CLO14 AEEB11.15 18 Why does a transformer heat up? In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence. Understand CO5 CLO14 AEEB11.14 19 Describe phase sequence in three phase system. In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence. Understand CO5 CLO14 AEEB11.14 20 Describe positive phase system. For power transmission higher voltages are preferred for obvious reasons star connection is used in transformer conomic reasons star connection is generally used Understand CO5 CLO14 AEEB11.14 21 Describe positive phase sequence.			3. Oil Natural Air Forced (ONAF)				
S. Oil Forced Water Forced (OFWF) Remember COS CL015 AEEB11.15 16 Describe OLTC in transformer. On-load tap changer (OLTC), also known as On-circuit tap changer (OCTC), is a tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. COS CL015 AEEB11.15 17 Describe temperature rise in a transformer. Transformer temperature rise is defined transformer is loaded at pchanging mechanism. Understand COS CL015 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary. COS CL014 AEEB11.14 20 Describe phase sequence in three phase system. In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence. Understand COS CL014 AEEB11.14 21 Describe positive phase sequence. For power transmission higher voltages unaformer economic reasons star connection is used Understand COS CL014 AEEB11.14 22 Describe positive phase sequence.			4. Oil Forced Air Forced (OFAF)				
16 Describe OLTC in transformer. On-load tap changer (OLTC), also known as On-circuit tap changer (OCTC), is a tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mchanism. Remember CO5 CL015 AEEB11.15 17 Describe temperature rise in a transformer. Transformer temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate rating Understand CO5 CL015 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary. CO5 CL014 AEEB11.14 19 Describe phase sequence in three phase system. For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer is needed, and for transformer conomic reasons star connection is used in transmission. Co5 CL014 AEEB11.14 21 Describe positive phase sequence. Negative sequence: A balanced three- phase sequence. Understand CO5 CL014 AEEB11.14 <			5. Oil Forced Water Forced (OFWF)				
transformer. known as Ôn-circuit tap changer (OCTC), is a tap changer in applications where a supply interruption during a tap change is unacceptable, the transformer is often fitted with a more expensive and complex on load tap changing mechanism. Understand CO5 CL015 AEEB11.15 17 Describe temperature rise in a transformer. Transformer temperature rise is defined us the average temperature, when the transformer is loaded at its nameplate rating Understand CO5 CL015 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents: induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary. CO5 CL014 AEEB11.14 19 Describe phase sequence in three phase system. In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence. Understand CO5 CL014 AEEB11.14 20 Describe star connection is used in transmission. For power transmission higher voltages unaformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally used CO5 CL014 AEEB11.14 21 Describe positive phase sequence. Negative sequence: A	16	Describe OLTC in	On-load tap changer (OLTC), also	Remember	CO5	CLO15	AEEB11.15
19 Describe phase system. In three phase system the order in which the sung losses: Not all the magnetic field produced by the primary is intercepted by the secondary. Understand CO5 CLO15 AEEB11.15 19 Describe phase sequence. In three phase system the order in which is connection is preferred. In distribution most loads are single phase, to reduce the imbaliance imposed on the source, a delta winding is generally used Understand CO5 CLO14 AEEB11.14 20 Describe phase sequence. For power transmission higher voltages are system with the same phase sequence. Understand CO5 CLO14 AEEB11.14 21 Describe pase system with the same phase sequence. For power transmission higher voltages are sequence as the original sequence. Understand CO5 CLO14 AEEB11.14 22 Describe pase impositive with the same phase sequence. Positive value is called Phase sequence. Understand CO5 CLO14 AEEB11.14 23 Describe pase impositive with the same phase system with the appositive shalance timposot that are equence as the original sequence. Understand CO5 CLO14 AEEB11.14 23 Describe zero phase Zero Sequence: Three phase system with the appositive shalance timposot that are equence as the original sequence. Understand CO5 CLO14	_	transformer.	known as On-circuit tap changer				
17 Describe Transformer temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate rating Understand CO5 CL015 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating of the secondary. Understand CO5 CL015 AEEB11.15 19 Describe phase sequence: and three phase system. In three phase system the order in which the voltages atian their maximum positive value is called Phase Sequence. Understand CO5 CL014 AEEB11.14 20 Describe phase sequence: and sare single phase, to reduce the imbalance imposed on the source, a delta winding is generally used Understand for transformer economic reasons star connection is generally used CO5 CL014 AEEB11.14 21 Describe positive phase system with the same phase sequence: A balanced three-phase system with the same phase sequence: A balanced three-phase system with the asme phase sequence. Understand CO5 CL014 AEEB11.14 22 Describe positive phase system with the same phase sequence. Describe positive sequence: A balanced three-phase system with the apposite sequence: A balanced three-phase system with the apposite sequence: Cos CL014			(OCTC), is a tap changer in applications				
17 Describe transformer. Transformer temperature rise is defined as the average temperature rise is defined transformer. Understand CO5 CLO15 AEEB11.15 17 Describe transformer. Transformer temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, when the transformer heat up? Understand CO5 CLO15 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents: Induced Understand CO5 CLO14 AEEB11.15 19 Describe phas sequence in three phase system. In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence. Understand CO5 CLO14 AEEB11.14 20 Describe star connection is used in transmission. For power transmission higher voltages are preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally used Understand CO5 CLO14 AEEB11.14 20 Describe positive phase sequence. Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence, a delta winding is generally used Understand CO5 CLO14 AEEB11.14 21<			where a supply interruption during a tap				
17Describe temperature rise in a transformer.Transformer temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate ratingUnderstandCO5CLO15AEEB11.1518Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CLO15AEEB11.1519Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe positive in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer is needed, and for transformer is needed, and for transformer is needed three- phase system with the same phase sequence.CO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CLO14AEEB11.1422Describe regative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1421Describe zero phase sequence			change is unacceptable, the transformer				
Image: 17Complex on load tap changing mechanism.UnderstandCO5CL015AEEB11.1517Describe temperature rise in a transformer.Transformer temperature rise of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate ratingUnderstandCO5CL015AEEB11.1518Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CL014AEEB11.1419Describe phase sequence in three phase system. Describe star connection is used in transmission.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CL014AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer conomic reasons star connection is generally usedUnderstandCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CL014AEEB11.1422Describe regative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.CO5CL014 <t< td=""><td></td><td></td><td>is often fitted with a more expensive and</td><td></td><td></td><td></td><td></td></t<>			is often fitted with a more expensive and				
17Describe temperature rise in a transformer.Transformer temperature rise is defined as the average temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate ratingUnderstandCO5CLO15AEEB11.1518Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CLO14AEEB11.1419Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe phase in transformer connection is used in transformer connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence. A blanced three- phase system with the oposite phase.UnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Negative sequence: A balanced three- phase system with the oposite phase sequence: A balanced three- phase sequence.UnderstandCO5CLO14AEEB11.14<			complex on load tap changing				
17 Describe temperature rise in a transformer temperature rise is defined as the average temperature rise of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate rating Understand CO5 CLO15 AEEB11.15 18 Why does a transformer heat up? The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary. Understand CO5 CLO14 AEEB11.14 19 Describe phase sequence in three phase system. In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence. Understand CO5 CLO14 AEEB11.14 20 Describe star connection is used in transmission. For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer conometic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally used Understand CO5 CLO14 AEEB11.14 21 Describe negative phase sequence. Positive Sequence: A balanced three phase sequence. Understand CO5 CLO14 AEEB11.14 22 Describe positive phase sequence. Positive			mechanism.				
temperature rise in a transformer.as the average temperature rise of the windings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate ratingUnderstandCO5CL015AEEB11.1518Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CL014AEEB11.1419Describe phase sequence in three phase system. nonection is used in transmission.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CL014AEEB11.1420Describe phase in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer conomic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CL014AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CL014AEEB11.1423Describe Zero phase sequence.Negative sequence: The	17	Describe	Transformer temperature rise is defined	Understand	CO5	CLO15	AEEB11.15
Intersectionwindings above the ambient (surrounding) temperature, when the transformer is loaded at its nameplate rating18Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents: induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CLO14AEEB11.1419Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe ptase in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer econdic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Negative sequence: The phasors that are sequence.UnderstandCO5CLO14AEEB11.1423		temperature rise in a	as the average temperature rise of the				
Image: 18 18Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CL015AEEB11.1519Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CL014AEEB11.1420Describe that connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is generally usedUnderstandCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CL014AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CL014AEEB11.1423Describe Zero phase equal in magnitude and phase.Set opposite and phase.CO5CL014AEEB11.14		transformer.	windings above the ambient				
18Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CL015AEEB11.1519Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CL014AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase sequence.UnderstandCO5CL014AEEB11.1422Describe positive phase sequence.Negative sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CL014AEEB11.1423Describe Zero phase sequence.Negative sequence: Three phases that are sequence.UnderstandCO5CL014AEEB11.14			(surrounding) temperature, when the				
18Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CL015AEEB11.1519Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CL014AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages tep up transformer is needed, and for transformer conomic reasons star connection is general. In distribution moost loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CL014AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CL014AEEB11.1423Describe Zero phase zequence.Regative and phase.Negative and phase.UnderstandCO5CL014AEEB11.14			transformer is loaded at its nameplate				
18Why does a transformer heat up?The loses arise from: Winding resistance: Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CLO15AEEB11.1519Describe phase sequence in three phase system. Describe star connection is used in transmission.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer conomic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Regative sequence: Three phasors that are sequence.UnderstandCO5CLO14AEEB11.14			rating				
transformer heat up?Current flowing through the windings causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CLO14AEEB11.1419Describe phase sequence in three phase system. positive value is called Phase Sequence.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase gequence.Zero Sequence: Three phasors that are sequence.UnderstandCO5CLO14AEEB11.14	18	Why does a	The loses arise from: Winding resistance:	Understand	CO5	CLO15	AEEB11.15
up?causes resistive heating of the conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CLO14AEEB11.1419Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are sequence.UnderstandCO5CLO14AEEB11.14		transformer heat	Current flowing through the windings				
Image: Conductors is conductors. Eddy currents: Induced currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CLO14AEEB11.1419Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phases.UnderstandCO5CLO14AEEB11.14		up?	causes resistive heating of the				
currents circulate in the core and cause it resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.Image: Condensity of the conden			conductors. Eddy currents: Induced				
Image: 19resistive heating. Stray losses: Not all the magnetic field produced by the primary is intercepted by the secondary.UnderstandCO5CLO14AEEB11.1419Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is greferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phases.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phases.UnderstandCO5CLO14AEEB11.14			currents circulate in the core and cause it				
Image is intercepted by the secondary.Image is intercepted by the secondary.19Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14			resistive heating. Stray losses: Not all the				
is intercepted by the secondary.19Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14			magnetic field produced by the primary				
19Describe phase sequence in three phase system.In three phase system the order in which the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CLO14AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14			is intercepted by the secondary.				
sequence in three phase system.the voltages attain their maximum positive value is called Phase Sequence.UnderstandCO5CL014AEEB11.1420Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CL014AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CL014AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CL014AEEB11.14	19	Describe phase	In three phase system the order in which	Understand	CO5	CLO14	AEEB11.14
phase system.positive value is called Phase Sequence.20Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14		sequence in three	the voltages attain their maximum				
20Describe star connection is used in transmission.For power transmission higher voltages are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14		phase system.	positive value is called Phase Sequence.				
connection is used in transmission.are preferred for obvious reasons. To that step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CL014AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CL014AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CL014AEEB11.14	20	Describe star	For power transmission higher voltages	Understand	CO5	CLO14	AEEB11.14
in transmission.step up transformer is needed, and for transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14		connection is used	are preferred for obvious reasons. To that				
Image: Large of transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedImage: Large of transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedImage: Large of transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedImage: Large of transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedImage: Large of transformer economic reasons star connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedImage: Large of transformer economic reasons star connection is preferred. In distribution most loads are single phase sequence.Image: Large of transformer economic reasons star connection is preferred. In distribution most loads are single phase sequence.Image: Large of transformer economic reasons star connection is preferred.Image: Large of transformer economic reasons star connection is generally usedImage: Large of transformer economic reasons star connection is generally usedImage: Large of transformer economic reasons star connection is generally usedImage: Large of transformer economic reasons star connection is generally usedImage: Large of transformer economic reasons star connection is generally usedImage: Large of transformer economic reasons star conection i		in transmission.	step up transformer is needed, and for				
connection is preferred. In distribution most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedunderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14			transformer economic reasons star				
most loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedmost loads are single phase, to reduce the imbalance imposed on the source, a delta winding is generally usedUnderstandCO5CLO14AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14			connection is preferred. In distribution				
imbalance imposed on the source, a delta winding is generally usedImbalance imposed on the source, a delta winding is generally usedImbalance imposed on the source, a delta winding is generally used21Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14			most loads are single phase, to reduce the				
winding is generally usedunderstandCO5CL014AEEB11.1421Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CL014AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CL014AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CL014AEEB11.14			imbalance imposed on the source, a delta				
21Describe positive phase sequence.Positive Sequence: A balanced three- phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14			winding is generally used				
phase sequence.phase system with the same phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1422Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14	21	Describe positive	Positive Sequence: A balanced three-	Understand	CO5	CLO14	AEEB11.14
1 1 sequence as the original sequence. 22 Describe negative phase sequence. Negative sequence: A balanced three-phase system with the opposite phase sequence. Understand CO5 CLO14 AEEB11.14 23 Describe Zero phase sequence. Zero Sequence: Three phasors that are equal in magnitude and phase. Understand CO5 CLO14 AEEB11.14		phase sequence.	phase system with the same phase				
22Describe negative phase sequence.Negative sequence: A balanced three- phase system with the opposite phase sequence as the original sequence.UnderstandCO5CLO14AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14		1 1	sequence as the original sequence.				
phase sequence.phase system with the opposite phase sequence as the original sequence.UnderstandCO5CL014AEEB11.1423Describe Zero phase sequence.Zero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CL014AEEB11.14	22	Describe negative	Negative sequence: A balanced three-	Understand	CO5	CLO14	AEEB11.14
sequence as the original sequence. 23 Describe Zero phase gequence. Equal in magnitude and phase.		phase sequence.	phase system with the opposite phase				
23Describe Zero phaseZero Sequence: Three phasors that are equal in magnitude and phase.UnderstandCO5CLO14AEEB11.14		- I ···	sequence as the original sequence.				
sequence. equal in magnitude and phase.	23	Describe Zero phase	Zero Sequence: Three phasors that are	Understand	CO5	CLO14	AEEB11.14
		sequence.	equal in magnitude and phase.				

S.No	QUESTION	ANSWER	Blooms Level	со	CLO	CLO Code
24	Which transformer is used in transmission?	Power transformers are used in transmission network of higher voltages for step-up and step down application (400 kV, 200 kV, 110 kV, 66 kV, 33kV) and are generally rated above 200MVA	Remember	CO5	CLO14	AEEB11.14
25	Causes of negative phase sequence?	A current or voltage unbalance between phases in magnitude or phase angle gives rise to negative and zero-sequence components. The negative sequence component has a rotation opposite that of the power system. The resulting eddy currents are very large and cause severe heating of the rotor	Understand	CO5	CLO14	AEEB11.14
26	Why Delta Connection is used in transmission line?	The delta winding allows third-harmonic currents to circulate within the transformer, and prevents third-harmonic currents from flowing in the supply line. Delta connected windings are not common for higher transmission voltages (138 kV and above) owing to the higher cost of insulation compared with a wye connection.	Remember	CO5	CLO14	AEEB11.14
27	Can you use a 3 phase transformer for single phase?	A 3 phase transformer can work as a single phase transformer also. Theoretically, it is possible to parallel the three phase connections at both primary and secondary side to convert it into single phase transformer. The flux in core remains sinusoidal and produces sinusoidal secondary supply voltage	Understand	CO5	CLO14	AEEB11.14
28	Why can autotransformers handle more power than conventional transformers of the same size?	An autotransformers can handle more power than conventional transformers of the same physical size. Clearly, the single winding of the autotransformer can be bigger than the two windings of a conventional transformer occupying the same physical space.	Understand	CO5	CLO15	AEEB11.15
29	How do you measure the winding temperature of a transformer?	 Temperature Rise Test of Transformer 1. First, the LV winding of the transformer is short-circuited. 2. Then one thermometer is placed in a pocket in the transformer top cover. 3. The voltage of such value is applied to the HV winding that power input is equal to no load losses plus load losses corrected to a reference temperature of 75°C. 	Understand	CO5	CLO14	AEEB11.14
30	What is the advantage of autotransformer?	Advantages of Auto transformers: Its efficiency is more when compared with the conventional one. Its size is relatively very smaller. Voltage Regulation of auto transformer is much better.	Remember	CO5	CLO15	AEEB11.15

Signature of the Faculty

Signature of HOD