INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	ELEMENT OF MECHANICAL ENGINEERING
Course Code	:	AME551
Program	:	B.Tech
Semester	:	VI
Branch	:	Mechanical Engineering
Course Faculty	:	Mr. G. Sarat Raju, Assistant Professor.

OBJECTIVES:

The course should enable the students to:							
Ι	Familiarize with fundamentals of mechanical systems.						
II	Understand and appreciate the significance of mechanical engineering in different fields of engineering						
III	Understand of application and usage of various engineering materials.						

Course Outcomes:

The course s	The course should enable the students to:						
CO 1	Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.						
CO 2	CO 2 Visualize the basics of thermodynamics and components of a thermal power plant.						
CO 3	Identify engineering materials, their properties, manufacturing methods encountered in engineering practice.						
CO 4	Understand the concepts various metals cutting machines like lathe describe various driving mechanisms of lathe.						
CO 5	Identify engineering materials, their properties, manufacturing methods encountered in engineering practice.						

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S No	QUESTION	ANSWER	Blooms Level	CO's	CLO	CLO Code
		UNIT-I				
		INTRODUCTION TO ENERGY	SYSTEMS			
1	Define System?	A portion of universe which is	Remember	CO 1	CLO 01	AME551.01
	G	under investigation, e.g., portion of		1.1		
	0	test tube where reaction is taking		~	÷	
		place, is called system		-		
2	Define surroundings?	The rest of the universe which	Understand	CO 1	CLO 02	AME551.02
	1.2	might be in a position to exchange				
	10.0	energy and matter with the system	- 50			
		is called the surroundings	. 0. *			
3	What is boundary?	The system is separated from the	Remember	CO 1	CLO 01	AME551.01
		surroundings by a boundary which				
		may be real or imaginary.				

4	Define Isolated	Isolated system is one that can	Understand	CO 1	CLO 03	AME551.03
	system?	transfer neither matter nor energy				
		to and from, its surroundings				
5	Define closed system?	The boundary is sealed but not	Remember	CO 1	CLO 01	AME551.01
Ũ	Define closed system.	insulated Therefore A closed	Remember	001	020 01	11012001001
		system is one which cannot				
		transfer matter but can transfer				
		energy in the form of heat, work				
		and radiation to and from its				
		surroundings.				
6	Define open system?	An open system is one which can	Understand	CO 1	CLO 02	AME551.02
	1 5	transfer both energy and matter to				
		and from its surroundings.				
7	What is state variables	The state of a system changes with	Remember	CO 1	CLO 03	AME551.03
		the change in any of the				
		macroscopic properties, these are				
		called state variables				
8	What is state extensive	An extensive property of a system	Understand	CO 1	CLO 02	AME551.02
	property?	is that which depends upon the				
		amount of the substance or				
		substances present in the system.				
		The examples are mass, volume,				
		energy, heat capacity, enthalpy,				
		entropy, free change etc.				
9	Define Isolated	Isolated system is one that can	Remember	CO 1	CLO 02	AME551.02
	system?	transfer neither matter nor energy				
		to and from, its surroundings.				
10	What intensive	An intensive property of a system	Remember	CO 1	CLO 01	AME551.01
	property?	is that which is independent of the				
		amount of the substance present in				
		the systel'n.The examples are				
		temperature, pressure, density,				
		viscosity, refractive index, surface				
		tension and specific heat.				
11	What is a Isothermal	T remains constant): It is the	Remember	CO 1	CLO 02	AME551.02
	process?	process in which the temperature				
		of the system remains constant				
		during each step. In such a process				
		the systems are in thermal contact				
		with a constant temperature and				
		both exchange heat with				
		surroundings.				
12	What is a Zeroth law	Zeroth law of thermodynamics	Understand	CO 1	CLO 03	AME551.03
	of thermodynamics?	states that if system A is in thermal				
		equilibrium with system B, and				
		system B is in thermal equilibrium				
		with system C, then system C is				
		also in thermal equilibrium with				
12	What is a first 1 f	system A ($IA = IB = IC$).	Dor1	CO 1		AME551.01
13	what is a first law of	First law of thermodynamics states	Kemember		CLU 01	AIVIE331.01
	mermodynamics?	unat in closed system the internal				
		heat only i.e. $AU = a \pm w$				
14	Define Entropy	Entropy - A measure of molecular	Remember	CO 1	CIOO2	AME551.02
17	Entropy	disorder	Kennennber			111111111111111111111111111111111111111
L		41501401		1		

15	What is Extensive	Extensive Property - A property	Understand	CO 1	CLO 02	AME551.02
	Property?	dependent on the size or extent of				
		the system.				
16	What is Ideal Cycle?	Ideal Gas Law - An equation of	Remember	CO 1	CLO 01	AME551.01
	What is ideal Cycle.	state that is generally accurate only		001	020 01	
		at low pressure and/or high				
		temperature. The ideal gas law				
		states that: $PV = nRT$ where $P =$				
		pressure. $V = volume$. $n = number$				
		of moles. $R = universal gas$				
		constant, and $T = temperature$				
17	Define Ideal Rankine	Ideal Rankine Cycle - An ideal	Understand	CO 1	CLO 02	AME551.02
	Cycle?	Rankine cycle does not involve any				
	5	internal irreversibility's and				
		consists of the following four				
		processes: 1-2, isentropic				
		compression in a pump; 2-3, heat				
		addition in a boiler at constant				
		pressure; 3-4, isentropic expansion				
		in a turbine; 4-1, heat rejection in a				
		condenser at constant pressure.				
18	What is Isentropic	Internally Reversible Adiabatic	Understand	CO 1	CLO 01	AME551.01
	Process?	Process (Isentropic Process) - A				
		process that involves no heat				
		transfer (adiabatic) and no				
		irreversibility's within the system				
		(internally reversible). The entropy				
		of a fixed mass must remain				
		constant during an isentropic				
10		process.				
19	List out different of	Solar, wind, bio fuels, tidal are	Remember	CO 1	CLO 03	AME551.03
	energy systems	some of the energy systems.				
20	What are macroscopic	The properties associated with a	Understand	CO 1	CLO 02	AME551.02
	properties?	macroscopic system are called				
		macroscopic properties. These				
		properties are pressure, volume,				
		temperature, composition, density,				
		viscosity, surface tension,				
		refractive index, color.				
	S	TEAM TURBINES HVDRAULIC	MACHINES			
1	What is pure substance	Pure substance is a substance	Understand	CO 2	CLO 04	AME551.04
	pare substance	which has a fixed chemical				
		composition throughout its mass.				
2	Define Drvness fraction	It is defined as the ratio of the	Remember	CO 2	CLO 05	AME551.05
	of steam	mass of the total steam actually				
		present to the mass of the total				
		system.				
3	What are the wet and	The steam which partially	Remember	CO 2	CLO 06	AME551.06
	dry steams	evaporated and having water				
	J	particles in suspension is called				
		wet steam. he steam which fully				
		in evaporated state and is not				
		having any water particles is				
		called dry steam.				
4	What is meant by	The dry steam is further heated,	Understand	CO 2	CLO 05	AME551.05
	superheated steam and	then the process is called				
	states the uses.	superheating and steam obtained				

		is known as superheated steam.				
5	What is meant by work	It is defined as the ratio of	Remember	CO 2	CLO 05	AME551.05
	ratio?	network transfer to the positive				
		work transfer.				
6	Name the different	1-2: Isentropic expansion	Remember	CO 2	CLO 04	AME551.04
	process of Rankine	2-3: Constant pressure and				
	cycle?	temperature heat rejection				
		pressure				
		4-5: Constant pressure heat				
		addition in boiler up to saturation				
		temperature. 5-1: Constant				
		pressure and temperature in				
7	What are the different	boller.	Understand	CO^2		AME551.05
,	types of steam	1) Wet steam	Onderstand	02	CLO 05	ANILJJ1.0J
	available?	2) Dry saturated steam				
8	Define efficiency of a	5) Superneated steam	Remember	CO_2	CLO 05	AME551.05
0	Rankine cycle.	in defined as the ratio of not now	Remember	002	CEO 05	110111351105
		a defined as the fatto of het power				
9	Define enthalpy of	Entheling of steam is the sum of	Remember	CO 2	CLO 05	AME551.05
-	steam.	heat added to the water from the		002	020.00	111111001100
		freezing point to saturation				
		temperature and the heat absorbed				
		during evaporation				
10	XX71 1		Understand	CO^{2}	CIO04	AME551.04
10	What is the principle of	The Rankine cycle is an idealized	Onderstand	02	CLO 04	ANILJJ1.04
	operation of steam	anging Under this such heat				
	power plant?	engine. Under tills cycle heat				
		mechanical energy while				
		undergoing phase change The				
		heat is supplied externally to the				
		closed loop which usually uses				
		water as working fluid				
11	Which of the following	Fire clay Silica and Kaolin have	Remember	CO 2	CLO 05	AME551.05
	material is not used in	property of resisting change in				
	the boiler furnace walls?	shape, weight or physical property				
		at higher temperature. Concrete				
		have no such properties at higher				
		temperature so it is not suitable				
		for that. The construction of boiler				
		furnace varies from plain				
		refractory walls to completely				
		water cooled walls depending				
		upon the characteristics of fuel				
		used and firing methods.				
12	Which part of therma	About 54% of energy losses	Remember	CO 2	CLO 05	AME551.05
	power plant causes	soccurs in condenser. Losses in				
	maximum energy losses?	boiler and alternator are about 1%				
		and 16% because of such high				
		losses overall efficiency of				
		thermal power plant reduces to				

		29% for normal old thermal				
		power plant and 50% for modern				
		super critical pressure steam				
		power plant which employs many				
10		heat saving devices.		<u> </u>	GY 0.05	
13	What is the effect of	Thermal efficiency of steam	Understand	CO 2	CLO 05	AME551.05
	increasing steam	power plant increases with				
	temperature of thermal	increase in steam temperature				
	power plant on its	linearly. Increas in temperature of				
	thermal efficiency?	steam also causes its effect on				
		cost. So temperature of steam is				
		increased only upto a level at				
		which it is economical.				
14	Economisers are	High cost of fuel consumption,	Remember	CO 2	CLO 04	AME551.04
	necessary to use for	high load factor and high pressure				
	pressure of 70 kg/cm2?	and temperature conditions, all				
		justify the use of economiser.				
		Installation of economiser				
		involves extra cost of installation.				
		maintenance and regular cleaning				
		and additional requirement of				
		space By considering above				
		points it has been found that use				
		of economiser becomes necessary				
		for pressure above 70 kg/cm ²				
15	What is the primary	The primary objective of steam	Remember	CO 2	CLO 05	AME551.05
	objective of steam power	power plant is to produce				
	nlant?	electricity and then serving as				
	plant.	base load plant to hydel or nuclear				
		power plant comes as second				
		priority Steam power plants				
		produce 86% of electricity And				
		the efficiency of steep neuron				
		monthing turning live 220/ 480/				
16	A	Dealing systems 15 %-48%.	Understand	CO_2	CLO 05	AME551.05
10	A steam power plant	Rankine cycle is a thermodynamic	Onderstand	02	CLO 05	111112551.05
	works on which cycle.	cycle of constant pressure engine				
		that is to convert neat energy into				
		mechanical work and from that				
		following parts like adjoined				
		blades and shafts are made to run				
		to produce electricity. Otto cycle				
		is used in automobile engine and				
		Brayton cycle is used in heat				
17		engines & air jet engine.		00.0	CT O OF	
17	The quality of wet steam	In this the sample of steam is	Kemember	02	CLO 05	AME551.05
	can also be measured by	passed in steady flow through an				
	an electric calorimeter.	electric heater				
18	What is humid specific	It is the specific heat of the	Remember	CO 2	CLO 04	AME551.04
	heat?	mixture of dry air & water vapour.				

19	Define dew Pt	.It is defined as the temperature at	Understand	CO 2	CLO 05	AME551.05
	temperature ?	which atmospheric water vapour				
	tomperature .	starts to condense				
20	List out different type	scochran lancashira habcock and	Understand	CO 2	CLO 05	AME551.05
	of boilors	Wilcov boiler				
	of bollers	wheek boller				
					NDITIO	
1	INTERNAL COMBSU	TION ENGINES, REFRIGERAT	TION AND AL	R-CO		NING
1	What is refrigeration	Refrigeration may be defined as the	Remember	CU 3	CLO 07	AME551.07
		process of achieving and				
		maintaining a temperature below				
		that of the surroundings, the aim				
		being to cool some product or				
		space to the required temperature				
2	Refrigeration efficiency	Refrigeration efficiency denoted	Understand	CO 3	CLO 08	AME551.08
	defines with?	with COP, coefficient of				
3		performance.	Domombon	CO^{2}		AME551.07
5			Kennennber	005	CLO 07	
4	Explain principle of air	Air cycle refrigeration works on	Understand	CO 3	CLO 08	AME551.08
	cycle refrigeration	the principle of reverse Brayton or				
		Joule cycle		~ ~ ~		
5	Explain TOR (ton of	The amount of heat removed from	Remember	CO 3	CLO 08	AME551.08
	refrigeration	2000kg water at 0°C to convert into				
		ice at 0°C in 24 hours.				
6	Define Stroke in IC	Movement distance of the piston	Remember	CO 3	CLO 09	AME551.09
	engines	from one extreme position to the				
		other: TDC to BDC or BDC to				
		TDC.				
7	Define Combustion	The end of the cylinder between	Understand	CO 3	CLO 08	AME551.08
	chamber	the head and the piston face where				
		combustion occurs. The size of the				
		combustion chamber continuously				
		changes from a minimum volume				
		when the piston is at TDC to a				
		maximum when the piston is at				
		BDC. The term cylinder is				
		sometimes synonymous with				
		combustion chamber				
8	Define Cooling fins	Metal fins on the outside surfaces	Remember	CO 3	CLO 08	AME551.08
		of cylinders and head of an air				
		cooled engine. These extended				
		surfaces cool the cylinders by				
		conduction and convection.				
9	What are Valves	Valves are mainly used in 4 stroke	Remember	CO 3	CLO 09	AME551.09
		reciprocating diesel/petrol engines.				
		Valves need a cam and rocker arm				
		mechanism for opening and closing				
		of valves				
10	What is meant by Ports	Port is the best and simplest one to	Understand	CO 3	CLO 08	AME551.08
	-	suck the air or air-fuel mixture to				

		cylinder and kick the exhaust out.				
		Ports are used in two stroke				
		reciprocating petrol engines and				
		also in rotary engines.				
11	What is 4 stroke IC	A four-stroke cycle engine is an	Remember	CO 3	CLO 08	AME551.08
	engine?	internal combustion engine that				
	engine :	utilizes four distinct piston strokes				
		(intake compression power and				
		(intake, complete one operating				
		explain the piston makes two				
		cycle. The piston makes two				
		complete passes in the cylinder to				
12		complete one operating cycle	Domomhor	CO 3	CI O 00	AME551.00
12	What does a refrigerant	tRefrigerant is required for the	Kemember	05	CLO 09	AME551.09
	do?	proper functioning of a refrigerator.				
13	Coefficient of	Coefficient of performance is the	Remember	CO 3	CLO 09	AME551.09
	performance(COP) is	performance parameter used in a				
	defined as	refrigerator cycle.				
14	The thermal efficiency	Does not depends upon the	Understand	CO 3	CLO 09	AME551.09
	of theoretical Otto	pressure ratio				
15	cycle	The mean offerstive analysis of an	Domombor	CO_{2}		AME551.00
15	ressure of an Otto	Otto Cycle is directly proportional	Kemember	05	CLO 09	AMEJJ1.09
	Cycle increases with	to its compression ratio so it				
	an increase in	increases with an increase in				
		compression ratio.				
16	What is an Diesel cycle	Diesel cycle is also known as	Remember	CO 3	CLO 09	AME551.09
		constant pressure cycle as pressure				
		is constant in this cycle.				
17	Define internal	The internal combustion engine	Understand	CO 3	CLO 09	AME551.09
	combustion engine ?	(IC) is a heat engine that converts				
		chemical energy in a fuel into				
		available on a rotating output				
		shaft. Chemical energy of the fuel				
		is first converted to thermal				
		energy by means of combustion or				
		oxidation with air inside the				
		engine				
18	Define Fuel injector ?	A pressurized nozzle that sprays	Remember	CO 3	CLO 08	AME551.08
		tuel into the incoming air on SI				
		engines or into the cylinder on Cl				
		injectors are located at the intake				
		valve ports on multipoint port				
		injector systems and upstream at				
		the intake manifold inlet on				
		throttle body injector systems. In a				
		few SI engines, injectors spray				
		directly into the combustion				
10		chamber	D :	00.0	01.0.00	
19	Define Carburetor?	Carburetor 1s device to prepare the	Kemember	03	CLO 08	AME551.08
		Tair file mixture in right proportion		1		
		and supply at right time				

20	Define Otto cycle	Otto cycle is a is a combination of	Understand	CO 3	CLO 09	AME551.09
		4 thermodynamic processes used				
		as a basis of all the spark ignition				
		engines. It consists of a constant				
		volume heat addition process				
		along with suction, exhaust and				
		heat removal processes.				
21	What is 2- stroke IC	A two-stroke (or two-cycle)	Understand	CO 3	CLO 09	AME551.09
	engine?	engine is a type of internal				
		combustion engine which				
		completes a power cycle with two				
		strokes (up and down movements)				
		of the piston during only one				
		crankshaft revolution				
		UNIT-IV				I
		MACHINE TOOLS AND AUTO	OMATION			
1	What Metal Cutting ?	Metal cutting or machining is the	Remember	CO 4	CLO 10	AME551.10
	0	process of by removing unwanted				
		material from a block of metal in				
		the form of chips.				
2	What are the	High red hardness High wear	Understand	CO 4	CLO 10	AME551.10
	important	resistance Low frictional co-				
	characteristics of	efficient High toughness High				
	materials used for	thermal conductivity				
	cutting tools	thermal conductivity				
3	What are the different	The four main types of lathes are	Remember	CO 4	CLO 10	AME551 10
	types of lathe	Speed Lathes Engine Lathes Tool	Remember	001	CLO IO	11012331.10
	machines?	Room Lathes and Turret Lathes				
4	What are the different	The engine lathe is an accurate and	Remember	CO4	CLO 10	AME551 10
·	types on Lathe	versatile machine on which many	Remember	004	CLO IU	71012551.10
	operations	operations can be performed				
	operations	These operations are: Plain				
		Turning Step Turning Eacing				
		Parting Drilling Reaming Boring				
		Knurling Grooving Threading				
		Forming, Orooving, Threading				
5	What is the difference	Drilling and tanning are two	Understand	CO 4	CLO 10	AME551 10
5	between tenning and	distinct actions Drilling refers to	Onderstand	04		AWIE551.10
	drilling?	areating a smooth hole in a				
	ummg?	metarial with a drill and motor				
		Tapping is the action that creates a				
		thread into the side of the hole				
6	What is Latha	Applications of Latha Machine are	Remember	COA	$CI \cap 11$	AME551 11
0	what is Laule	Applications of Latte Machine are	Kemember	04	CLU II	AME 331.11
	machine application?	as follows. Metalworking, wood				
		Spinning, Actylic Spinning, Metal				
		Spinning, Thermai Spraying				
7	What are the marte of -	Pod Tool post Church Hand stark	Domember	CO 4	CLO 10	AME551 10
	what are the parts of a	Tell stock, Lood server, Lood	Kennennber		CLU 10	ANIESS1.10
	Taute machine?	Corrigoe				
		Carriage.				
8	Define the term	"A programmable multifunctional	Understand	CO 4	CLO 10	AME551.10
	Robot.	manipulator designed to move				
		material, parts, or specialized				
		devices through variable				
		programmed motions for the				
		performance of a variety of tasks."				

9	What is world	World coordinate system is a	Remember	CO 4	CLO 11	AME551.11
	coordinate system	coordinate system whose origin is				
		specified by a user. This system				
		enables multiple robots to use a				
		common coordinate system for				
		position designation By setting the				
		origin of the facilities to that of the				
		world coordinate system, you can				
		set positions of different robots on				
		the same acordinate system				
10	XX71 /	the same coordinate system.	D	00.4	CL 0 11	AME 551 11
10	What are geometric	Geometric constraints are the	Remember	CO 4	CLO II	AME551.11
	constraints?	constraints that can be expressed				
		solely in terms of the robot joint				
		angles, these include bounds on the				
		joint angles, avoidance of self-				
		collision and of collision with				
		obstacles, etc. These constraints				
		can thus be fully taken into account				
		in the path planning step				
11	Define NC system?	NC is defined as a form of	Understand	CO 4	CLO 11	AME551.11
		programmable automation in				
		which the process is controlled by				
		alphanumeric data.				
12	What are the	Relatively high price. More	Remember	CO 4	CLO 10	AME551.10
	limitations of using	complicated maintenance, a special				
	NC	crew is desirable. Highly skilled				
		and properly trained programmers				
		are needed.				
13	Define CNC?	CNC is defined as a NC system	Remember	CO 4	CLO 12	AME551.12
		that utilizes a dedicated stored				
		computer program to perform				
		some or the entire basic NC				
		functions				
14	Write the main	Machine tool control In-process	Understand	CO 4	CLO 11	AME551 11
	functions of CNC?	compensation Improved	Chacistana	001	02011	11012001111
		programming and operating				
		features. Diagnostics				
15	List out the types of	CNC machine can be alogified as:	Pomomhor	COA	$CI \cap 10$	AME551 10
15	CNC machine?	Machining contarg. Latha	Kellieliidei	0 -		AWIL551.10
		machines Drilling mashing				
		machines, Drilling machine				
		Turning centers, Milling				
		machines, Gear snaping, CNC gear				
10		nobbling	TT 1 / 1	CO /	α α 11	AME551 11
16	Define Automation.	Automation is the technology by	Understand		CLO II	AMESSI.II
		which a process or procedure is				
		accomplished without human				
		assistance.				
17	Define Fixed	Fixed automation is a system in	Remember	CO 4	CLO 12	AME551.12
	Automation.	which the sequence of processing				
		(or assembly) operations is fixed				
		by the equipment configuration.				
		Each of the operations in the				
		sequence is usually simple,				
		involving perhaps a plain linear or				
		rotational motion or an				
		uncomplicated combination of the				
		two.				

18	Explain	In programmable automation the	Remember	CO 4	CLO 12	AME551.12
	Programmable	production equipment is designed				
	Automation.	with the canability to change the				
		sequence of operations to				
		accommodate different product				
		accommodate unrefer product				
		configuration. The operation				
		sequence is controlled by a				
		program, which is a set of				
		instructions coded so that they can				
		be read and interpreted by the				
- 10		system.		<u> </u>		11 15 5 5 1 1 0
19	Define Flexible	Flexible automation is an extension	Understand	CO 4	CLO 12	AME551.12
	Automation.	of programmable automation. A				
		flexible automated system is				
		capable of producing a variety of				
		parts (or products) with virtually				
		no time lost for changeovers from				
		one part style to the next. There is				
		no lost production time while				
		reprogramming the system and				
		altering the physical setup (tooting,				
		fixtures, machine settings).				
20	Define Articulated	An Articulated robot can be	Remember	CO 4	CLO 12	AME551.12
	Robot.	defined as a robot with rotary joint				
		and these robots can range from				
		simple two-jointed structures to				
		systems with 10 or more				
		interacting joints				
		UNIT-V				
	EN	GINEERING MATERIALS JOIN	JINC PROCE	22		
			INO I NOCE	90		
1	The continuous phase	Composite materials contain	Remember	CO 5	CLO 13	AME551.13
1	The continuous phase of a composite	Composite materials contain mostly two phases: matrix and	Remember	CO 5	CLO 13	AME551.13
1	The continuous phase of a composite material is known as	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a	Remember	CO 5	CLO 13	AME551.13
1	The continuous phase of a composite material is known as its	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to	Remember	CO 5	CLO 13	AME551.13
1	The continuous phase of a composite material is known as its	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also	Remember	CO 5	CLO 13	AME551.13
1	The continuous phase of a composite material is known as its	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is	Remember	CO 5	CLO 13	AME551.13
1	The continuous phase of a composite material is known as its	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load	Remember	CO 5	CLO 13	AME551.13
1	The continuous phase of a composite material is known as its	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having	Remember	CO 5	CLO 13	AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter	Remember	CO 5	CLO 13 CLO 13	AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whickers?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are	Remember	CO 5	CLO 13 CLO 13	AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite silicon pitride aluminum	Remember	CO 5	CLO 13 CLO 13	AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum ovide ate Class and boron foll	Remember	CO 5	CLO 13 CLO 13	AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall	Remember	CO 5	CLO 13	AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of	Remember	CO 5	CLO 13	AME551.13 AME551.13
2	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and	Remember	CO 5	CLO 13 CLO 13	AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used	Remember	CO 5	CLO 13	AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires.	Remember	CO 5	CLO 13	AME551.13
1 2 3	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a continuous process. Staple type (up	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a continuous process. Staple type (up to 15 inches long), on the other	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a continuous process. Staple type (up to 15 inches long), on the other hand, is used as an insulating	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread?	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a continuous process. Staple type (up to 15 inches long), on the other hand, is used as an insulating material.	Remember	CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread? In sandwich	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a continuous process. Staple type (up to 15 inches long), on the other hand, is used as an insulating material. Wood, cement, and polymer can be	Remember	CO 5 CO 5 CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1 2 3 4	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread? In sandwich composites, which of	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a continuous process. Staple type (up to 15 inches long), on the other hand, is used as an insulating material. Wood, cement, and polymer can be used to fill the gap in sandwich	Remember Remember Remember Remember	CO 5 CO 5 CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1 2 3 4	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread? In sandwich composites, which of the following material	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a continuous process. Staple type (up to 15 inches long), on the other hand, is used as an insulating material. Wood, cement, and polymer can be used to fill the gap in sandwich composites.	Remember Remember Remember Remember Remember	CO 5 CO 5 CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13
1 2 3 4	The continuous phase of a composite material is known as its What are materials are commonly used for whiskers? What is the purpose of fiberglass that is made as a thread? In sandwich composites, which of the following material can be used for filling	Composite materials contain mostly two phases: matrix and dispersed phase. Matrix phase is a continuous phase which tends to bind the fibers together. It also protects them from damage and is used to transmit the load. Whiskers are single crystals having large ratios of length to diameter. The common materials are graphite, silicon nitride, aluminum oxide etc. Glass and boron fall under the category of polymers of fibers. Steel, tungsten, and molybdenum are commonly used as wires. Fiberglass is either made into a staple or thread. The thread type is used to make cloth for various applications. It is also colored and can be manufactured by a continuous process. Staple type (up to 15 inches long), on the other hand, is used as an insulating material. Wood, cement, and polymer can be used to fill the gap in sandwich composites.	Remember Remember Understand Remember Remember	CO 5 CO 5 CO 5	CLO 13 CLO 13 CLO 13	AME551.13 AME551.13 AME551.13

	purpose?					
5	Which of the	Wear resistance increases by	Understand	CO 5	CLO 13	AME551.13
	following property can	reinforcing aluminum alloy due to				
	be enhanced by	good wear resistance property of				
	reinforcing aluminum	aluminum				
	alloy?					
6	How Pig iron can be	Iron from its ore is converted to pig	Remember	CO 5	CLO 13	AME551.13
	easily obtained by	iron in a blast furnace. Ore iron is				
	processing of iron ore	the purest form but it can not be				
7	How staal oon ha	used in this form.	Domomhor	CO 5	$CI \cap 14$	AME551 14
/	now steel call be	converted to steel in Bessemer	Kemember	05	CLU 14	AME551.14
	easily obtained.	converter As pig iron is very weak				
		in strength hence it can not be used				
		for practical purpose.				
8	How Abrasion	Titanium has very high abrasive	Understand	CO 5	CLO 14	AME551.14
	resistance of an alloy	resistance property. Titanium is				
	steel can be improved	used to improve abrasive resistance				
	using	of base metal in an alloy.				
9	How Corrosion	Chromium has very high corrosion	Remember	CO 5	CLO 14	AME551.14
	resistance of an alloy	and oxidation resistance property.				
	steel can be improved	Chromium is alloyed with base				
	by?	metal to increase its corrosion				
10		resistance.	Damaanahan	00.5	$CI \cap 14$	AN(E551.14
10	How Tensile strength	Nickel can improve tensile strength	Remember	05	CLO 14	AME551.14
	improved	It is alloyed with base metal in				
	mproved	small quantity				
11	Which of the	Vanadium induces fine grain	Understand	CO 5	CLO 14	AME551.14
	following induces fine	distribution in alloy steel. It helps				
	grain distribution in	in improving uniformity in the base				
	alloy steel?	metal.				
12	What is the Alloy of	Brass contains 50% copper and	Remember	CO 5	CLO 14	AME551.14
	copper and zinc is	50% zinc. Brass is the alloy of				
	known?	copper and zinc. It has good				
12	XX 11	property of corrosion resistance.	D 1	<u> </u>	CT 0 14	
13	What is the Alloy of	Invar contains 36% nickel and 64%	Remember	CO 5	CLO 14	AME551.14
	N1 and Fe 1s known as	and increase it has the property of				
		and non. It has the property of				
14	What is Major	Gun metal contains 83% conner	Understand	CO 5	CLO 15	AME551 15
	constituent of the gun	and 2% zinc and 10% tin Gun	enderstand	05	CLO 15	11012331.13
	metal alloy.	metal is allow of copper. zinc and				
		tin, where copper is the base metal.				
15	Which of the alloy is	Nichrome contains 80% nickel and	Understand	CO 5	CLO 15	AME551.15
	widely used in thermo	20% chromium and used in thermo				
	couples?	couples and strain gauges.				
		Nichrome is a good resistance				
1 -		material to electricity.		<u>a</u>	ar e i f	
16	Matrix constituents of	matrix constituents are generally	Remember	CO 5	CLO 15	AME551.15
	composites are softer	solier whereas reinforced				
	anu reinforced	the composites				
	composites are softer	uie composites.				
17	Which of the property	Wear resistance increases by	Understand	CO 5	CLO 15	AME551.15
	can be enhanced by	reinforcing aluminum alloy due to				

	reinforcing aluminum	good wear resistance property of				
	alloy?	aluminum.				
18	Which of property of	Improved performance at elevated	Remember	CO 5	CLO 15	AME551.15
	matrix materials	temperature, decrease in surface				
	which are modified by	hardness, modification in electrical				
	adding particulate	conductivity, improved abrasion				
	fillers?	resistance are some of the				
		properties of matrix materials				
		which are modified by adding				
		particulate fillers.				
19	Define the most	One of the most popular types of	Remember	CO 5	CLO 15	AME551.15
	popular types of core	core material used is a honeycomb				
	material used.	structure. Rest all options are not				
		used widely as core material				
		should be light-weight and high				
		corrosion resistance.				
20	List the application of	Fabrication of wings of aircrafts,	Understand	CO 5	CLO 15	AME551.15
	a sandwich panel?	design of ships, boat hulls and				
		fabrication of roofs, floors and				
		walls of buildings are some of the				
		applications of sandwich panel.				
		Conveyor belts are not the				
		application of sandwich panel.				

Prepared by: G. Sarat Raju Assistant Professor.

HOD, ME