

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	ELECTROMAGNETIC FIELDS
Course Code	:	AEEB10
Program	:	B.Tech
Semester	:	III
Branch	:	Electrical And Electronics Engineering
Section	:	A&B
Academic Year	:	2019 - 2020
Course Faculty	:	Dr. B. Muralidhar Nayak, Assisstant Professor, EEE Mr.T. Anil Kumar, Assisstant Professor, EEE

COURSE OBJECTIVES:

The	course should enable the students to:
Ι	Demonstrate the concept of electrostatic field intensity and electric potential.
II	Illustrate polarization of dielectrics and the behavior of conductors and dielectrics in an electric field.
III	Understand the concept of field intensity and flux density in magnetic fields.
IV	Discuss forces in magnetic fields and laws of electromagnetic induction
V	Summarize the concept of time varying field and analyze propagation of electro-magnetic waves.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODU	ILE-I			
1	Define dot product in vector analysis.	The dot product, also called the scalar product, of two vectors is a number obtained by performing a specific operation on the vector components. The dot product has meaning only for pairs of vectors having the same number of dimensions. The symbol for dot product is a heavy dot (•).	Remember	CO 1	CLO 1	AEEB10.1
2	Define cross product in vector analysis.	The cross product a × b is defined as a vector c that is perpendicular (orthogonal) to both a and b, with a direction given by the right-hand rule and a magnitude equal to the area	Remember	CO 1	CLO 1	AEEB10.1

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		of the parallelogram that				
		the vectors span.				
3	Write the	Mass of , electron $M_e =$	Remember	CO 1	CLO 1	AEEB10.1
	mass of	9.109390 x 10 ⁻³¹ kg				
	electron and	Proton M _p = 1.672623 x				
	proton.	10 ⁻²⁷ kg				
4	Define	A charge with smallest	Remember	CO 1	CLO 1	AEEB10.1
	point	dimensions on the body				
	charge.	compare to other charges				
	-	is called as point charge.				
5	Discuss	The ability of a substance or	Understand	CO 1	CLO 2	AEEB10.2
	about	medium to store electrical				
	permittivity	energy in an electric field.				
	of medium.					
6	Define	It is the region around the	Remember	CO 1	CLO1	AEEB10.1
	electric field.	point and group charges in				
		which another charge				
		experiences force is called as				
		electric field.				
7	Define	Electric field intensity	Remember	CO 1	CLO 1	AEEB10.1
	electric field	is defined as force				
	intensity	experienced by point				
	mathematical	charge.				
	ly.	E = F/q				
8	Name types	The types of charge	Remember	CO 1	CLO 1	AEEB10.1
	of charge	distribution are : Line				
	distributions	charge, Surface charge				
	•	and volume charge.				
9	Write the	Work done to move point	Remember	CO 1	CLO 2	AEEB10. 2
	expression	charge through the	- AL			
	for work	$w = a \vec{F} dl$		_		0
	done in	w – -q) L ui	-	-	1.00	7
	electric				1	
10	fields.			00.1	CT O 1	
10	State	The strokes theorem says	Remember	COT	CLO I	AEEB10. I
	STOKE's	that surface integral of any			h	
	theorem.	function is equal to volume		6	1 C	
		integral of divergence of		$\sim \sim$		
		same function.		<u> </u>		
		$Q = \int_{S} D ds = \int_{V} (\mathbf{\nabla} . D) dv$	0	24		
11	Resolve unit	Unit vector in terms of	Remember	CO 1	CLO 1	AEEB10.1
	vector	distance vector is,				
	(direction	$\hat{a}_1 = \vec{p} / p$				
	vector) in	^{ω1} Λ/Κ				
	terms of					
	distance					
	vector.		_			· · · · · · · · · · · · · · · · · · ·
12	Write	Dot product,	Remember	CO1	CLO 1	AEEB10.1
	mathematica	$A.B = \ A\ .\ B\ .\cos\Theta.$				
	l expression	Where, A and $B =$				
	of dot	vectors.				
	product.					
13	Convert	Cylindrical co-ordinates	Understand	CO 1	CLO 1	AEEB10.1

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	Cartesian	,(r, θ, z)				
	co-ordinates					
	to	$r = \sqrt{x^2 + y^2}$, $\Theta = \tan^2$				
	cylindrical	$^{1}(y/x)$, z = z				
	со-					
	ordinates.					
14	Convert	Spherical co-ordinates	Understand	CO 1	CLO 1	AEEB10.1
	Cartesian	$,(\rho,\Theta,\phi)$				
	co-ordinates					
	to spherical	$\rho = \sqrt{x^2 + y^2 + z^2} ,$				
	co-	$\Theta = \tan^{-1}(y/x) ,$				
	ordinates.	$\phi = \tan^2(\sqrt{x^2 + y^2} / z)$				
15	Convert	Spherical co-ordinates,	Understand	CO 1	CLO 1	AEEB10.1
	cylindrical	(ρ, Θ, ϕ)				
	co-ordinates	$\rho = \sqrt{r} + Z$, $\Theta = \tan^{-1}(y/y)$				
	to spherical	$O = tan^{-1}(r/z)$				
	co-	$\varphi = \tan 1(1/2)$				
16	ordinates.		D 1	00.1		
16	Define unit	A unit vector has a function to	Remember	COT	CLO I	AEEB10.03
	find unit vector	magnitude is always unity				
	along a	indgintude is arways unity.				
	particular			_		
	vector?					
17	State coulombs	Coulombs law states that force	Remember	CO 1	CLO 1	AEEB10.01
	law	between the two point charges		_		
		Q1 and Q2				
		Acts along the line joining the				
		Is directly proportional to the				
		product of the two charges.	_			
	CO	Is inversely proportional to the	-			C
	0	square of the distance between			1	
	· · ·	them.				2
18	Find the force	We Know that 1 stat coulomb	Understand	CO 1	CLO 1	AEEB10.01
	of interaction	$= 1/(3 \times 109) C$			~	
	between 60 stat	Then $E = (1.008 \times 1.2488 \times 10)$		r	100	
	37 5 stat	$\Gamma = (1.998 \times 1.2488 \times 10^{-1})/(4\Pi \times 8.854 \times 10^{-12})$				
	coulomb spaced	$2.2 \times (7.5 \times 10^{-2})^2 = 1.815$		~ ~ ~	C	
	7.5cm apart in	X 10-4 N.		N		
	transformer	Therefore Force = 1.815 X		0.1		
	oil(ɛr=2.2) in	10-4 N.	a \ \			
	10-4 N		N ~			
19	Define the effect	The force of two charges	Remember	CO 1	CLO 1	AEEB10.01
	of charge Q2 on	with respect with each other				
	Q1.	is given by F1 and F2. Thus				
		F1 + F2 = 0 and $F1 = -F2$.			~~~~	
20	Define scalar	A field is a system in	Remember	COT	CLO 2	AEEB10.01
	neld.	which a particular				
		physical function has a				
		value at each and every				
		point in that region. The				
		distribution of a scalar				
		quantity with a defined				
		position in a space is				
1		called scalar field.	1	1		

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
21	Define	This is nothing but,	Remember	CO 1	CLO 1	AEEB10.03
	scaling	multiplication of a scalar				
	of a	with a vector. Such a				
	vector.	multiplication changes				
		the magnitude of a vector				
		but not the direction.				
22	What are co-	The vectors which lie in	Understand	CO 1	CLO 1	AEEB10.01
	planar vector.	the same plane are called				
		co-planar vectors				
23	Name three	1) Cartesian or rectangular	Remember	CO 1	CLO 1	AEEB10.01
-0	coordinate	coordinate system.	Remember	001	CLO I	111111111111
	systems used in	2) Cylindrical coordinate				
	electromagnetic	system.	-	_		
	engineering?	3) Spherical coordinate				
	engineering:	system.			11	
24	What are	dr-differential length in r	Remember	CO 1	CLO 2	AEEB10.01
	the	direction				
	differentia	$rd\theta$ -differential length in				
	l elements	θ direction				
	in	dz-differential length in z				
	cylindrica	direction				
	l system	direction				
25	Give the types of	1 Line charge	Remember	CO 1	CLO 1	AEEB10.01
	charge	2 Point charge	1.0.1.0.0.1	001	0201	111111111111
	distribution	3 Surface charge				
		4. Volume charge				
26	Define point	A point charge means that	Remember	CO 1	CLO 1	AFEB10.03
20	charge	electric charge which is	Kemember	COT	CLUI	ALLD10.05
	churge.	separated on a surface or				
		space whose geometrical				
	00	dimensions are very small				_
	-	compared to other	-			
	0	dimensions, in which the			- C	
	1	effect of electric field to be				7
	100	studied.				
27	What is an	The total number of lines of	Remember	CO 1	CLO 1	AEEB10.01
	electric flux.	force in any particular		· .	100	
		electric field is called electric		1.1		
		flux. It is represented by the		2.7	C	
		symbol (ψ) . Similar to the		. V.		
		also Coulomb		S		
28	State the	1) The Gauss's law can be	Remember	CO 1	CLO 1	AEEB10.01
20	application of	used to find E and D for	rememor	001	0201	
	Gauss's law	symmetrical charge				
	Gauss s law	distributions				
		2) It is used to find the				
		2) It is used to find the				
		charge enclosed of the flux				
		passing through the closed				
20	Dafina	Surface.	Domomhor	CO 1		AEER10.02
29	potential	defined as the work done in	Kennember			AEED10.02
	difference	moving a unit positive				
		charge from one point to				
		another point in an electric				
		field.				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
30	State the	The integral of the normal	Remember	CO 1	CLO 1	AEEB10.03
	Divergence	component of any vector				
	theorem.	field over a closed surface is				
		divergence of this vector				
		field throughout the volume				
		enclosed by that closed				
		surface				
		MODUL	.Е-Ш			
1	Define	Two opposite charges +q and	Remember	CO 2	CLO 5	AEEB10.5
	electric	-q separated by some				
	dipole.	distance d forms the electric				
		dipole.				
2	Explain	The distance travelled by the	Understand	CO 2	CLO 5	AEEB10.5
	electric	point charge is defined as	Charlotante			1111111111
	dipole	dipole moment (or) the				
	moment.	product of charge and				
		distance travelled by it is				
		called as electric dipole.				
3	Write	The potential due to	Remember	CO 2	CLO 5	AEEB10.5
	expression	electric dipole,				
	for potential					
	due to	= Kad $\cos \Theta/(r^2 - d^2/4 \cos^2)$				
	electric	Θ				
1	dipole.	The relation between	Understand	CO 2	CLOS	AEER10.5
4	relation	electric field intensity	Understand	02	CLO J	ALLD10.5
	between	and electric potential				-
	electric field	and creedite potential,	-		- J	10 m
	intensity and	E = - ▼V			0	2
	electric					
	potential.				4	
5	Write	The torque due to electric	Remember	CO 2	CLO 5	AEEB10.5
	expressio	dipole,			100	
	n tor	T DE die O			here a	
	torque	$I = PE.sin\Theta.$		6		
	electric	0.		2.1		
	dipole.	VN E	- N			
6	Define	If an piece if dielectric or	Remember	CO 2	CLO 4	AEEB10.4
	polarization.	insulator placed between the				
		charges plates of condenser,				
		then center of gravity of				
		negative charges is				
		concentrated towards positive				
		plate and center of gravity of				
		positives charges concentrated				
		towards negative plate, this				
		process of separation opposite				
		charges is called a				
		polarization.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
7	Define	Dielectric constant is defined	Remember	CO 2	CLO 6	AEEB10.6
	dielectric	as ratio capacitance of				
	constant.	capacitor with dielectric to				
		the capacitance of capacitor				
		without dielectric.				
8	Define	Electric susceptibility is	Remember	CO 2	CLO 6	AEEB10.6
	electric	the ratio of polarization				
	susceptibit	and electric field intensity.				
9	Define	Capacitance of capacitor is	Remember	CO 2	CLO 6	AEEB10.6
	capacitanc	defined as charge Q				
	e of	developed between the				
	capacitor.	plates				
10	· ·	when voltage V is applied.		00.0	CT O (
10	Capacitan	Capacitance between	Remember	CO 2	CLO 6	AEEB10.6
	ce	parallel plates is $C = \epsilon A/d$.				
	between					
	parallel					
	plates is					
11			D 1			
11	Write	The expression for	Remember	CO 2	CLO 6	AEEB10.6
	for	capacitance of co-axial				
	canacitance	cable,				
	of co-axial					
	cable.	$C = 2\pi\epsilon / \ln(b/a)$				
12	Write the	The expression for	Remember	CO 2	CLO 5	AEEB10.5
	expression	energy stored in				
	for energy	capacitor,				
	stored in	1				
	capacitor.	$= CV^2/2$	-			
13	Define	Energy density of capacitor	Remember	CO 2	CLO 6	AEEB10.6
	energy	is defined energy stored per		_		0
	density in	unit volume,	-	-		7 · · · · ·
	electro-static				1	
	field.	$W_d = DE/2$			67 Q (
14	Write the	The relation between	Remember	CO 2	CLO 6	AEEB10.6
	relation	electric flux density and			h	
	between	intensity is,		- 61	1 C C	
	electric flux			S. V.		
	density and	D = EE	- · · · ·	<u> </u>		
15	Define	If abarga is distributed in the	Doment	CO 2	CLO 4	
13	Deline	n charge is distributed in the	Kemember	02	CLU 4	AEED10.4
	current	density is defined as current				
	density.	constituted In given area.				
		$J = i / A (A/mt^2)$				
16	Define current	Current density is defined as	Remember	CO 2	CLO 5	AEEB10.05
	density	the current per unit area. J=				
		I/A Amp/m2				
17	Q , , , , , , , , , , , , , , , , , , ,				01.0.7	
1/	State point form	Point form of ohms law	Remember	002	CLU 5	AEEB10.05
	or onins law.	within a conductor is				
		proportional to the current				
		density.				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		J=oE				
18	Write the boundary	i)The tangential component of electric field is continuous	Understand	CO 2	CLO 7	AEEB10.07
	conditions at the	Et1=Et2				
	interface	ii)The normal component of				
	between two	electric flux density is				
	perfect	continuous Dn1=Dn2				
	dielectrics.					
19	What are	Dielectrics are materials that	Understand	CO 2	CLO 9	AEEB10.09
	Dielectrics?	may not conduct electricity				
		infougn it but on applying				
		are produced on its faces				
		The valence electron in		_		
		atoms of a dielectric are				
		tightly bound to their			1 L	
		nucleus.				
20	What is a	A capacitor is an electrical	Understand	CO 2	CLO 9	AEEB10.09
	capacitor?	device composed of two				
		conductors which are				
		medium and which can store				
		equal and opposite charges				
		independent of whether other				
		conductors in the system are				
		charged or not.				
21	What are the	1. The permittivity of the	Understand	CO 2	CLO 5	AEEB10.05
	factors does the	dielectric used.				
	capacitance	2. The area of cross section				
	depends on?	of the plates.				
		3. The distance of				
	5	separation of the plates.				
22	What is	The multiple dielectric	Understand	CO 2	CLO 5	AEEB10.05
	meant by	capacitor is one in which the		_		0
	multiple	space between the plates is	-		1.00	7
	dielectric	filled with more than one			1	
	capacitors?	dielectrics.				
23	Define	The minimum value of the	Remember	CO 2	CLO7	AEEB10.07
	dielectric	applied electric field at				
	strength of a	which the dielectric breaks		S. C.		
	dielectric.	down is called dielectric		2. 1		
24	State the	1) To obtain notantial	Remember	CO 2	CLOS	AFFR10.05
24	applications	1) 10 obtain potential distribution over the	Remember	02	CLO J	ALLD10.05
	of	region	1. C.			
	Poisson's	2) To obtain E in the				
	equation	region				
	and	3) To check whether				
	Laplace's	given region is free of				
	equation.	charge or not.				
		4) To obtain the charge				
		induced on the surface of				
		the region				
25	Define a	The current is defined as the	Remember	CO 2	CLO 7	AEEB10.07
	current and	rate of flow of charge and is				
	its unit	measured as Ampere's (A)				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	Ampere.	current of 1 Ampere is said				
		to be flowing across the				
		surface when the charge of 1				
		coulomb is passing across				
26	What is drift	Under the affect of applied	Understand	CO 2	CLOO	AEER10.00
20	velocity?	electric field the available	Understand	02	CLU 9	AEED10.09
	veroenty.	free electrons start moving.				
		The moving electrons strike				
		the adjacent atoms and				
		directions. This is called				
		drifting of the electrons.				
		After sometime, the				
		electrons attain the constant				
		average velocity called drift				
27	W/L	Velocity. The applied field E shifts	Understand	CO 2		AEER10.07
27	What is Polarization?	the charges inside the	Chiderstand	02	CLO /	ALLD10.07
	1 olarization.	dielectric to induce the				
		electric dipoles. This				
		process is called				
28	What is	Polarization of dielectric	Understand	CO^{2}	CLO 9	AEEB10.09
20	Polarization of	means, when an electron	Chiderstand	002		TILLD 10.09
	Dielectrics?	cloud has a centre separated				
		from the nucleus. This				
		forms an electric dipole.				
		the applied field.				
29	Write the		Remember	CO 2	CLO 9	AEEB10.09
	expression for	$C = \varepsilon 1 A 1/d + \varepsilon 2 A 2/d F$				-
	dielectric		-	_		
	boundary				C	
	normal to		_	_		20 C
30	plates. What is the	$W = \frac{1}{2} cv^2 I$	Remember	CO 2	CI O 9	AFFB10.09
50	energy stored	W = 72 CV2 J	Remember	002	CLO	TILLD 10.09
	in a capacitor?				1	
		MODUI	LE-III			
1	Define	Magneto-statics is the study	Remember	CO 3	CLO 7	AEEB10. 7
	magneto-	of magnetic field	R			
	statics.	developed by the constant				
		due to permanent magnets				
2	Name the	The behavior of constant	Understand	CO 3	CLO 7	AEEB10.7
	laws used in	magnetic field is studied by				
	magneto-	using two basic laws, they				
	statics.	are,				
		aw				
		→ Ampere's				
		circutal law.				
3	Define	This formation magnetic	Remember	CO 3	CLO 7	AEEB10.7
	magnetic	trom North pole to south				
	field.	pole la caned as magnetic				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	-	field. The direction of				
		magnetic flux in an coil is				
		Given by right hand thumb				
4	T	rule.		00.0	CT 0 7	
4	Define	Magnetic flux density is	Remember	003	CLO /	AEEB10.7
	magnetic	defined as magnetic flux				
	flux	per unit area.				
-	density.	B=\phi/A		<u> </u>	GY 0 5	
5	Explain	The force experienced by	Understand	CO 3	CLO 7	AEEB10.7
	magnetic	coll when some current				
	field	passes through it is magnetic field Intensity				
	intensity.	H = NI / 1 (AT/mt)				
6	Explain	Permeability is the inherent	Understand	CO 3	CLO 7	AEEB10.7
	permeabilit	property of core which helps	Chacistana	000	0207	111111
	v of core	in sustaining flux in the				
	y or core.	core.				
		$\mu = B / H$				
7	Write the	The relation between	Remember	CO 3	CLO 7	AEEB10.7
	relation	magnetic flux density and				
	between	intensity,				
	magnetic					
	flux density	$B = \mu H$				
	and					
	intensity.					
8	Explain	When a magnetic substance	Understand	CO 3	CLO 7	AEEB10.7
	intensity of	is placed in a magnetic field				
	magnetizatio	it experiences magnetic				
	n.	momentum. The magnetic				
		momentum per unit volume				
		of substance is intensity of	-			_
	0	magnetization.				
9	Define	The ratio intensity of	Remember	CO 3	CLO 7	AEEB10.7
	magnetic	magnetization to the			4	
	susceptibilit	called as Magnetic				
	у.	Susceptibility			100	
		K = I / H.			1 C C	
10	Give the	The range relative of	Remember	CO 3	CLO 7	AEEB10.7
	range of	permeability for different		2		
	relative	magnetic material	1.1	0		
	permeability	1 50	0			
	for different	μ r > 1, paramagnetic	P			
	magnetic	materials				
	material.	u < 1 diama anatia				
		$\mu_{\rm r}$ < 1, dramagnetic				
		$u_r = 0$ non-magnetic				
		materials				
11	State Bio-	According Rio-Savart's	Remember	CO 3	CLO 8	AEEB10.8
	Savart's	law.	Remember	200		1
	law					
	10.11.	dH α Idl (current				
		element)				
		dH $\alpha \sin \Theta$ (angle				
		between current element				
		and length joining point)				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		dH α 1 / r ² (square of				
		distance between current				
		element and point)				
12	Write the	The expression for magnetic	Remember	CO 3	CLO 8	AEEB10.8
	expression	field intensity due to infinite				
	for magnetic	straight conductor,				
	field					
	intensity due	$H = I/(2\pi d)$				
	to infinite					
	straight					
	conductor.					
13	Write the	From the guass law we can	Understand	CO 3	CLO 8	AEEB10.8
	analogous	write magnetic flux in the	-	-		
	of Gauss	given Surface is surface				
	law in	integral of Magnetic flux				
	magneto-	density.				
	statics.					
14	State	The ampere circuital law	Remember	CO 3	CLO 9	AEEB10.9
	Ampere	states line integral				
	circuital	magnetic filed intensity				
	law	around any closed path Is				
	14.00.1	equal to total current				
		enclosed in that path.				
			1.000			
15	Write the	$\int H dI = I$	I I a de meterra d	CO 2	CLOO	
15	applications	Applications of	Understand	05	CL09	AEED10.9
	of Ampere	Ampere's law :				
	circuital law.					
		➔ The magnetic field				
	1000	intensity in the				
	00	surrounding closed path	-			
	-	is always at tangential at			1.1	
		Each and every point on		_		0
	6	II.		-		
		• At each every point			A	
	0	magnetic field intensity				
		has the same value.			100	
16	State Amperes	Magnetic field intensity	Remember	CO 3	CLO 7	AEEB10.013
	Circuital Law.	around a closed path is equal		6	1. C	
		to the current enclosed by the		~~		
		path. H·dl=I		0		
17	State Biot –	It states that the magnetic flux	Understand	CO 3	CLO 7	AEEB10.013
	Savarts law.	density at any point due to	P			
		current element is proportional				
		to the current element and sine				
		of the angle between the				
		elemental length and inversely				
		proportional to the square of				
		$dB = u \Omega I dI sin A / A \pi r 2$				
18	Define Magnetic	$4D - \mu 0101 8110 / 4hr 2$	Domomhor	CO 3	CIO7	AFFB10.011
10	Vector Detertial	whose curl gives the magnetic	Kennember			ALLD10.011
	vector Potential.	flux density. B = $\tilde{N} \times A = \mu /$				
		4π J/r dv web/m2				
19	Define magnetic	The magnetic field strength (H)	Remember	CO 3	CLO 7	AEEB10.013
	field strength.	is a vector having the same				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		direction as magnetic flux				
		density. H=B/µ				
20	Write down the	i) The normal components of	Understand	CO 3	CLO 7	AEEB10.011
	magnetic	flux density B is continuous				
	boundary	across the boundary. ii) The				
	conditions.	tangential component of field				
		intensity is continuous across				
01		the boundary.	D 1	<u> </u>	01.0.7	AEED10.012
21	Define Magnetic	The total magnetic lines of	Remember	003	CLO /	AEEB10.013
	flux density.	force i.e. magnetic flux				
		crossing a unit area in a plane				
		of flux is called magnetic flux				
		density. It is denoted as B				
		.Unit Wb/m2				
22	Define Magnetic	Magnetic Field intensity at any	Remember	CO 3	CLO 7	AEEB10.015
	field Intensity.	point in the magnetic field is				
		defined as the force				
		experienced by a unit north				
		pole of one Weber strength.				
		when placed at that point.				
		Unit: N/Wb (or) AT /m.It is				
		denoted as H.				
23	What is	The region around a magnet	Understand	CO 3	CLO 7	AEEB10.013
	Magnetic Field?	within which influence of the	Chiefford		CLC /	
	8	magnet can be experienced is				
		called Magnetic Field.				
24	Define scalar	The scalar magnetic potential	Remember	CO 3	CLO 7	AEEB10.015
	magnetic	Vm can be defined for source				
	Potential.	free region where J i.e. current				
25	Cine Canaz'a	density is zero.	Deres	CO 2	CLO7	AEED10.012
23	Give Gauss's	flux density is always zero	Remember	005	CLO /	AEED10.015
	differential form	$\nabla B=0$			- C	
	for magnetic	V.B-0.				10 C
	fields					
26	State Law of	It states that, the integral B. ds	Remember	CO 3	CLO 8	AEEB10.013
	conservation of	over a closed surface is always			1000	
	Magnetic Flux.	zero.				
	8	$\int \mathbf{B} \cdot \mathbf{ds} = 0$			C	
		This is also called Gauss's law		. V.		
		in integral form for magnetic	- · · · · · · · · · · · · · · · · · · ·			
27	Stata Stalia'a	The line integral of a vector A	Domomhor	CO 3	CLOS	AFER 10 015
21	State Stoke s	around a closed path L is equal	Remember	05	CLU 8	ALLD10.015
	magnetic field	to the integral of curl of A				
	magnetic field.	vector over the open surface S				
		enclosed by the closed path L.				
28	Give the	The Stoke's theorem is	Understand	CO 3	CLO 8	AEEB10.015
	application of	applicable for the open surface				
	Stoke's theorem.	enclosed by the given closed				
		path.Any volume is a closed				
		surface and hence application				
		of Stoke's theorem to a closed				
		surface which enclosed certain				
		volume produces zero answer.				
29	What is	In magnetostatics, the B and H	Understand	CO 3	CLO 9	AEEB10.015
	permeability?	are related to each other				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code	
	_	through the property of the					
		region in which current					
		carrying conductor is placed. It					
		is called permeability denoted					
		as μ . It is the ability with					
		which the current carrying					
		conductor forces the magnetic					
		flux through the region around					
		it. Β H= μ					
30	Give any two	1) In electric circuit the current	Understand	CO 3	CLO 9	AEEB10.011	
	dissimilarities	actually flows i.e. there is a					
	between electric	movement of electrons					
	and magnetic	whereas in magnetic circuit,					
	circuits	due to m.m.t, flux gets					
		established and doesn't flow in		1000			
		flows					
		2) The electric lines of flux are					
		not closed. They start from					
		positive charge and end on					
		negative charge and the					
		magnetic lines of flux are					
		closed lines.					
		MODUI	2 E-I V				
1	Explain	When an charge Q is with	Understand	CO 4	CLO 10	AEEB10.10	
	force on	velocity \vec{V} is placed in the	ondorotand				
	moving	magnetic field of density \vec{R}					
	charge	then it Experiences force					
	01101.801	called as magnetic force.			2		
	00	C C					
	-	=QVB sinO			1.1		
2	Write	Neuman's formula,	Remember	CO 4	CLO 12	AEEB10.12	
	neuman's			_	1.00	7	
	formula.	$M = \int \int \mu dl_1 dl_2 / 4\pi r$			A		
3	Write	The limitations of moving	Understand	CO 4	CLO 10	AEEB10.10	
	limitations of	charge in the existing			100		
	moving	magnetic field,			h. 1		
	charge in			6	6.C.		
	magnetic	\rightarrow If the velocity of charge		~~~			
	field.	in the magnetic field is		0			
		zero then force					
		experienced also zero.					
		\rightarrow If the velocity direction					
		and magnetic field					
		direction are parallel to					
		each other then force					
		\rightarrow To say that moving					
		charge in the magnetic					
		field experiences force					
		velocity and field must be					
		normal to each other.					
4	Write the	The expression for	Understand	CO 4	CLO 10	AEEB10.10	
	expression	torque due to moving					
	for torque	charge,					
	due to						

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	moving					
	charge.			GO 4	GT 0 10	
5	Write the	The Lorentz force 1s,	Remember	CO 4	CLO 10	AEEB10.10
	Lorentz force	$\rightarrow \rightarrow \rightarrow$				
	equation.	$= \mathbf{Q}(E + (VXB))$				
6	Write the	The expression for force	Remember	CO 4	CLO 10	AEEB10.10
	expression	due to parallel straight				
	for force due	conductors,				
	to parallel					
	straight	$(F / I) = \mu_0 I_1 I_2 / 2IId$				
7	conductors.		D 1	<u> </u>	CL 0 11	
/	Define	when two opposite magnetic	Remember	004	CLO II	AEEB10.11
	magnetic	charges are separated by				
	dipole.	distance $1.Q_{m}$			11	
8	Write the	The expression for	Remember	CO 4	CLO 11	AEEB10.11
	expression	magnetic dipole moment,				
	for magnetic					
	dipole	$m = Q_m l.$				
	moment.					
9	Define	Moment per unit volume	Remember	CO 4	CLO 10	AEEB10.10
	magnetizatio	is called as magnetization.				
	n.					
10	Write the	The expression for torque	Remember	CO 4	CLO 10	AEEB10.10
	expression	due to magnetic dipole,				
	for torque					
	due to	$\vec{T} = \vec{m} \times \vec{B}$				
	magnetic					
11	dipole.	The units of scalar	Description	CO 4	CLO 10	AEED10.10
11	Give the	magnetic potential is	Remember	004	CL0 10	AEED10.10
	units of	Ampere			1	
	magnetic	imperet		_		2
	notential	the second s	and the second data			
12	Write the	The relation between	Remember	CO 4	CLO 10	AEEB10.10
	relation	magnetic field intensity	rtemenioer			
	between	and current density.				
	magnetic				C	
	field	$\mathbf{\nabla} \mathbf{x} \mathbf{H} = \mathbf{J}$		S .		
	intensity and	0		0.7		
	current	- N E C	0.11			
	density.	- A O				
13	What is	The divergence of curl	Remember	CO 4	CLO 10	AEEB10.10
	divergence	of any vector is zero.				
	of curl of					
	vector?				or o i t	
14	Give the	The expression for self	Remember	CO 4	CLO 12	AEEB10.12
	expression	inductance of solenoid,				
	tor self	$\mathbf{L} = \cdots \mathbf{N}^2 \mathbf{A} / \mathbf{I}$				
	inductance	$L = \mu_0 \ln A / I$				
15	OI SOLENOID.	The evenesis of fra	Democratica	CO 4	CL 0 12	AEED10.12
15	Give the	i ne expression for	Kemember	0.04	CLU 12	AEEB10.12
	for magnetic	if B and A are known				
	flux in N	II B and A are known,				
	Hux in in					

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	turns if B	$\phi = NBA$				
	and A are					
	known.					
16	What is	The field produced due to the	Understand	CO 4	CLO 10	AEEB10.10
	Magnetization?	movement of bound charges is				
		called Magnetization				
		represented by M.				
17	Define	Reluctance R is defined as the	Remember	CO 4	CLO 12	AEEB10.12
	Reluctance.	ratio of the magneto motive				
		force to the total flux.				
		$R=em/\Phi$ And it is measured as				
10	D <i>C</i>	Ampere-turn/Weber.	D	~~ I	GT 0 10	
18	Define	The Magnetic dipole moment	Remember	CO 4	CLO 10	AEEB10.10
	Magnetic dipole	of a current loop is defined as				
	moment.	the been and the area of the				
		the loop and the area of the				
		ourrent loop				
10	What are	The existence of Magnetic	Understand	CO 4	CL 0 10	AFER10.10
19	Magnetic Lines	Field can be experienced with	Understand	0.04		ALLD10.10
	of Force?	the help of compass field				
	0110100	Such a field is represented by				
		imaginary lines around the				
		magnet which are called				
		Magnetic Lines of Force				
20	Distinguish	Solenoid is a cylindrically	Remember	CO 4	CLO 10	AEEB10.10
	between	shaped coil consisting of a				
	solenoid and	large number of closely				
	toroid.	spaced turns of insulated wire				
		wound usually on a non				
		magnetic frame. If a long				
		slender solenoid is bent into				-
		the form of a ring and there by		_		
		closed on itself it becomes a		_	1	
21	W	toroid. $I = \frac{1}{2} $	Demensher	CO 4	CL O 10	AEED10.10
21	write the	$L = \mu N 2 A / (2\pi R) H$	Remember	CO 4	CLO 10	AEEB10.10
	inductance of a				-	
	toroid			× .	- C	
22	What is Lorentz	Lorentz force equation relates	Remember	CO 4	CLO 10	AEEB10.10
22	force equation?	mechanical force to the	Remember	004	CLO IU	7122D10.10
	ioree equation.	electrical force. It is given as		- 6	1 C C	
		the total force on a moving		~ ~ <i>_</i> _		
		charge in the presence of both		0		
		electric and magnetic fields.	0			
		F = Fe + Fm				
23	What is	In magnetostatics, the B andH	Understand	CO 4	CLO 10	AEEB10.10
	permeability?	are related to each other				
		through the property of the				
		region in which current				
		carrying conductor is placed.				
		carrying conductor is placed. It is called permeability				
		carrying conductor is placed. It is called permeability denoted as μ . It is the ability with which the current				
		carrying conductor is placed. It is called permeability denoted as μ . It is the ability with which the current carrying conductor forces the				
		carrying conductor is placed. It is called permeability denoted as μ . It is the ability with which the current carrying conductor forces the magnetic flux through the				
		carrying conductor is placed. It is called permeability denoted as μ . It is the ability with which the current carrying conductor forces the magnetic flux through the region around it				
		carrying conductor is placed. It is called permeability denoted as μ . It is the ability with which the current carrying conductor forces the magnetic flux through the region around it $B = \mu H$				
24	What are	carrying conductor is placed. It is called permeability denoted as μ . It is the ability with which the current carrying conductor forces the magnetic flux through the region around it $B = \mu H$ The conditions of the	Understand	<u>CO 4</u>	CLO 10	AEEB10.10

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	conditions?	magnetic field existing at the				
		boundary of the two media				
		when the magnetic field				
		other are called boundary				
		conditions				
25	Give the	The tangential component of	Remember	CO 4	CLO 10	AEEB10.10
	relation	H are not continuous at the				
	between μ and	boundary. The field strengths				
	H in normal	in two media are inversely				
	component.	proportional to their relative				
		permeabilities $H/H = \mu^2/\mu^1$				
26	Give the	The tangential component of	Remember	CO 4	CLO 10	AEEB10.017
20	relation	H are continuous, while	Remember		CLO IU	7 LLD 10.017
	between μ and	tangential component of B are				
	H in tangential	discontinuous at the boundary,				
	component.	with the condition that the				
		boundary is current free.				
27	Waite the	$B_{tan1}/B_{tan2} = \mu 1/\mu 2$	Dementer	CO 4	CL 0 10	AEED10.10
27	write the	$L = \mu d/2\pi \ln (b/a) H$	Remember	004		AEEB10.10
	inductance of a					
	coaxial cable.					
28	Define	In general, inductance is also	Remember	CO 4	CLO 10	AEEB10.10
	Inductance.	referred as self inductance as the				
		flux produced by the current				
		flowing through the coil links				
		with the coil itself.				
29	What is	If there is an air gap in between	Understand	CO 4	CLO 12	AEEB10.12
	fringing	the path of the magnetic flux, it				
	effect?	spreads and bulges out. This				_
		effect is called fringing effect.			ST 0 10	
30	Write the	$L = \mu N2A/(2\pi R) H$	Remember	CO 4	CLO 12	AEEB10.012
	expression			-	1.00	7
	for				A	
	inductance			/	-	
	of a toroid.					
		MODU	LE-V			
1	How time	Time varying fields are	Understand	CO 5	CLO 14	AEEB10.14
	varying	produced due to	~ \ \			
	fields are	accelerated charges or	H			
	developed?	time varying currents.				
2	State	Faraday law of electro-	Remember	CO 5	CLO 13	AEEB10.13
	Faraday's	magnetic induction states				
	law of	if an coil experiencies				
	electro-	change in magnetic flux				
	magnetic	then emf is induced in it.				
2	Induction.	Long low states that the	Damant	CO 5	CL 0 12	AEED10.12
3	State LeffZ	Lenz law states that the	Kemember	0.05	CLU 13	AEEB10.13
	1 <i>a</i> w.	of producing it				
4	Write	Maxwell's fourth equation	Remember	CO 5	CL 0 14	AEEB10 14
	Mawell's	is.	Remember			10.17
	fourth	$\mathbf{\nabla} \mathbf{x} \mathbf{E} = -\mathbf{d} \mathbf{B}/\mathbf{d} \mathbf{t}$				
1				1	1	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	equation					
5	State Gauss	Gauss law states that	Remember	CO 5	CLO 14	AEEB10.14
	law.	surface integral of				
		electric flux density is				
		equal to charge enclosed				
-		in that surface.				
6	Name types	The types of emf induced	Understand	CO 5	CLO 13	AEEB10.13
	or emr	Dynamically induced emf				
		and Statically induced				
	con.	emf.				
7	Define	Dynamically induced emf	Remember	CO 5	CLO 13	AEEB10.13
	dynamically	is the emf induced in the	-	-		
	induced	coil when conductor cuts				
	emf.	the flux i.e conductors are	and a second sec	1000	· ·	
		rotating and flux is				
0	Dafina	Constant.	Damarchan	CO 5	CLO 12	AEED10.12
0	statically	Statically induced emi is	Remember	05	CLO 13	ALEDIU.15
	induced emf.	when flux cuts the				
		conductor i e conductors				
		are stationary and flux is				
		variable.				
9	Write the	The maximum value of	Remember	CO 5	CLO 13	AEEB10.13
	maximum	dynamically induced emf,				
	value of	DIV				
	dynamically	e = BIV.				
	induced					
10	emf.			GO 5	GL 0.12	
10	Give the	The expression for	Remember	005	CLO 13	AEEB10.13
	expression	statically induced emr,		_	1.1	
	101 statically	$F = N \Phi$ w cos wt				0
	induced		_	_	1.00	7 · · · · ·
	emf.				1	
11	In time	In time varying fields the	Remember	CO 5	CLO 14	AEEB10.14
	varying	expression for total current			1	
	fields write	density is equal to sum of			C	
	the	displacement current and		. °C		
	expression	conducting current,		- C		
	for total		a \ \			
	current	$\mathbf{J} = \mathbf{J}_{\mathrm{r}} + \mathbf{J}_{\mathrm{c}}$	N			
12	Define	The displacement current	Remember	CO 5	CL O 14	Δ FER 10 14
12	displacemen	density is defined as rate	Kennennber	005	CLO 14	ALED10.14
	t current	of change of electric flux				
	density.	density.				
13	Define	Conduction Current	Remember	CO 5	CLO 14	AEEB10.14
	conduction	Density refers to the				
	current	amount				
	density.	of current (charges)				
		nowing on the surface of a conductor in a time t				
14	Write the	The integral form of	Remember	CO 5	CLO 13	AEEB10.13
	integral form	farady's emf equation,				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	of farady's					
	emf	$\int H dl = (\sigma + Jw \epsilon) \int E$				
	equation.	ds				
15	State	Faraday's second law of	Remember	CO 5	CLO 13	AEEB10.13
	Faraday's	electro-magnetic induction				
	second law	states that magnitude of				
	of electro-	emf induced in coil is				
	magnetic	directly proportional to				
	induction.	rate change of flux.				
16	Mention the	At every point in space, the	Understand	CO 5	CLO 14	AEEB10.14
	properties of	electric field E and magnetic				
	uniform plane	field H are perpendicular to				
	wave.	each other.	0	-		
		ii)The fields vary				
		harmonically with time and at	1 mar 1			
		the same frequency				
17	What is called	everywhere in space.	Demension	CO 5	CL 0 12	AEED10.12
1/	what is called	F(electric field) and H	Remember	05	CLO 13	AEEB10.15
	impedance?	(magnetic field) of the wayes				
	impedance.	in either direction is called				
		intrinsic impedance of the				
		material in which wave is				
		travelling. It is denoted by η .				
18	Define	Propagation constant is a	Remember	CO 5	CLO 13	AEEB10.13
	propagation	complex number	_			
	constant.	$\gamma = \alpha + j\beta$		_		
		where γ is propagation				
		constant				
19	Define	The pointing vector is defined	Remember	CO 5	CLO 14	AEEB10.14
	Poynting	as rate of flow of energy of a				
	vector.	wave as it propagates. $P = E X$	-	_		
20	State Poyntings	The net power flowing out of	Domomhor	CO 5	$CI \cap 14$	AFEB10.14
20	Theorem.	a given volume is equal to the	Kemember	005	CLU 14	ALLD10.14
		time rate of decrease of the the				
		energy stored within the			1	
		volume- conduction losses.		×	-	
21	Explain the	Discrimination of the solution	Understand	CO 5	CLO 13	AEEB10.13
	steps in finite	region into elements.			No.	
	element	Generation of equations for		6	1 C C	
	method.	fields at each element		~~		
		iii) Assembly of all elements		0		
		iv) Solution of the resulting	0			
22	What is Normal	When a uniform plana wave	Domombor	CO 5	CL O 12	AEED10.12
22	Incidence?	incidences normally to the	Kemember	05	CLO 15	ALEDIU.15
	incluence :	houndary between the media				
		then it is known as normal				
		incidence.				
23	What is called	When a wave propagates in	Understand	CO 5	CLO 13	AEEB10.13
	attenuation	the medium, it gets attenuated.				
	constant?	The amplitude of the signal				
		reduces. This is represented by				
		attenuation constanta . It is				
		measured in neper per meter				
		(NP/m). But practically it is				
		expressed in decibel (dB).				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
24	What is phase	When a wave propagates,	Remember	CO 5	CLO 13	AEEB10.13
	constant?	phase change also takes place.				
		Such a phase change is				
		expressed by a phase				
		constant β . It is measured in				
		radian per meter (rad/m).				
25	How voltage	In general voltage minima are	Understand	CO 5	CLO 13	AEEB10.13
	maxima and	separated by one half				
	minima are	wavelength. Also the voltage				
	separated?	maxima are also separated by				
26	5 6	one half wave length.		~~ ~		
26	Define power	The power density is defined	Remember	CO 5	CLO 14	AEEB10.14
	density.	as the ratio of power to unit				
		area. Power				
27	W71 at 1 at 1	density=power/unit area.		00.5	CT O 11	AEED10.022
27	what is the	The only significant feature of	Remember	05	CLO 14	AEEB10.022
	significant	wave propagation in an				
	reature of wave	to that in a perfect dialoctric is				
	propagation in	to that in a perfect dielectric is				
	dielectric ?	the wave				
28	Define loss	Loss tangent is the ratio of the	Remember	CO 5	CLO 14	AFEB10.023
20	tangent	magnitude of conduction	Kemember	05	CLU 14	ALLD10.025
	tangent.	current density to				
		displacement current density				
		of the medium.				
29	Define	Reflection coefficient is	Remember	CO 5	CLO 14	AEEB10.021
	reflection and	defined as the ratio of the		000		
	transmission	magnitude of the reflected				
	coefficients.	field to that of the incident				
		field				
30	Define	Transmission coefficient is	Remember	CO 5	CLO 14	AEEB10.023
	transmission	defined as the ratio of the				
	coefficients	magnitude of the transmitted	-			
1	0	field to that of incident field.			- C	

RLIBER

Signature of the Faculty

HOD, EEE