

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad - 500 043

## **CIVIL ENGINEERING**

## DEFINITIONS AND TERMINOLOGY QUESTION BANK

| Course Name    |   | : | ENGINEERING MECHANICS        |
|----------------|---|---|------------------------------|
| Course Code    |   | : | AMEB03                       |
| Program        |   | : | B. Tech                      |
| Semester       |   | : | Ш                            |
| Branch         | _ | : | Civil Engineering            |
| Section        |   | : | A & B                        |
| Academic Year  |   | : | 2019 - 2020                  |
| Course Faculty |   | : | Dr. U Vamsi Mohan, Professor |

## **COURSE OBJECTIVES:**

| The | course should enable the students to:                                                                                                                                                                                           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ι   | Ability to work comfortably with basic engineering mechanics concepts required for analyzing static structures                                                                                                                  |
| Π   | Identify an appropriate structural system to studying a given problem and isolate it from its environment, model the problem using good free-body diagrams and accurate equilibrium equations                                   |
| III | Identify and model various types of loading and support conditions that act on structural systems, apply pertinent mathematical, physical and engineering mechanical principles to the system to solve and analyze the problem. |
| IV  | Understand the meaning of center of gravity (mass)/centroid and moment of Inertia using integration methods and method of moments                                                                                               |

## **DEFINITIONS AND TERMINOLOGY QUESTION BANK**

| S.No | QUESTION             | ANSWER                                                                                                                                  | <b>Blooms Level</b> | СО  | CLO   | CLO Code  |
|------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|-------|-----------|
|      |                      | MODUL                                                                                                                                   | E-I                 |     |       |           |
| 1    | What is mechanics?   | Engineering mechanics is the<br>study of forces that act on<br>bodies and the resultant motion<br>that those bodies experience.         | Remember            | CO1 | CLO 1 | AMEB03.01 |
| 2    | What is statics?     | Statics is a branch of<br>Engineering Mechanics which<br>deals with the forces acting on<br>the rigid bodies that are at rest.          | Understand          | CO1 | CLO 1 | AMEB03.01 |
| 3    | What is<br>dynamics? | Dynamics is that branch of<br>Engineering Mechanics which<br>deals with the forces acting on<br>the rigid bodies that are in<br>motion. | Remember            | CO1 | CLO 1 | AMEB03.01 |

| S.No | QUESTION                                | ANSWER                                                                                                                                                                                                                                                                                            | <b>Blooms Level</b> | CO  | CLO   | CLO Code  |
|------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|-------|-----------|
| 4    | Define<br>kinematics?                   | Kinematics is that branch of<br>Dynamics which deals with the<br>geometry of motion without<br>considering the forces causing<br>the motion.                                                                                                                                                      | Remember            | CO1 | CLO 1 | AMEB03.01 |
| 5    | Define kinetics?                        | Kinetics is that branch of<br>Dynamics which deals with the<br>motion of rigid bodies along<br>with the forces causing the<br>motion                                                                                                                                                              | Understand          | CO1 | CLO 1 | AMEB03.01 |
| 6    | Define Force                            | Any action that tends to<br>maintain or alter the motion of<br>a body or to distort it is said to<br>be force.                                                                                                                                                                                    | Understand          | CO1 | CLO 1 | AMEB03.01 |
| 7    | Define Moment                           | Moment is the measure of the<br>capacity or ability of the force<br>to produce twisting or turning<br>effect about an axis,<br>perpendicular to the plane<br>containing the line of action of<br>the force.                                                                                       | Remember            | CO1 | CLO 2 | AMEB03.02 |
| 8    | Define<br>Momentum                      | Momentum of a force is defined<br>as the product of the mass of<br>the object and its velocity.<br>Mathematically,<br>Momentum = mass x velocity =<br>my                                                                                                                                          | Remember            | CO1 | CLO 2 | AMEB03.02 |
| 9    | Define Impulse                          | Impulse is the change of<br>momentum of an object when<br>the object is acted upon by a<br>force for an interval of time.                                                                                                                                                                         | Understand          | CO1 | CLO 2 | AMEB03.02 |
| 10   | What is a Rigid<br>body?                | A body is said to be rigid, if the<br>distance between any two given<br>points in the body remains<br>constant, even under the action<br>of external force system                                                                                                                                 | Remember            | CO1 | CLO 1 | AMEB03.01 |
| 11   | State Newton's<br>First Law             | Newton's First Law states that<br>an object will remain at rest or<br>in uniform motion in a straight<br>line unless acted upon by an<br>external force.                                                                                                                                          | Understand          | CO1 | CLO 1 | AMEB03.01 |
| 12   | State Newton's<br>Second Law            | The second law states that the<br>rate of change of momentum of<br>a body is directly proportional<br>to the force applied, and this<br>change in momentum takes<br>place in the direction of the<br>applied force.                                                                               | Remember            | CO1 | CLO 1 | AMEB03.01 |
| 13   | State Newton's<br>Third Law             | The third law states that, for<br>every action, there is an equal<br>and opposite reaction                                                                                                                                                                                                        | Remember            | CO1 | CLO 1 | AMEB03.01 |
| 14   | State Newton's<br>Law of<br>gravitation | Newton's law of universal<br>gravitation states that every<br>particle attracts every other<br>particle in the universe with a<br>force which is directly<br>proportional to the product of<br>their masses and inversely<br>proportional to the square of the<br>distance between their centers. | Understand          | CO1 | CLO 1 | AMEB03.01 |

| S.No | QUESTION                                      | ANSWER                                                                                                                                                                                                                                   | <b>Blooms Level</b> | CO  | CLO   | CLO Code  |
|------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|-------|-----------|
| 15   | What is a Force system?                       | Several forces acting<br>simultaneous on a body<br>constitutes a force system.                                                                                                                                                           | Understand          | CO1 | CLO 2 | AMEB03.02 |
| 16   | What is a Particle?                           | A particle is a matter having<br>considerable mass but<br>negligible dimensions.                                                                                                                                                         | Understand          | CO1 | CLO 1 | AMEB03.01 |
| 17   | What is meant by<br>Resolution of a<br>force? | The process of<br>breaking(resolving) the force<br>into number of components<br>which produce the same effect<br>as that of the given force.                                                                                             | Understand          | CO1 | CLO 2 | AMEB03.02 |
| 18   | What is meant by<br>Composition of<br>forces? | The replacement of two or more<br>forces acting on a body by a<br>single force, known as resultant<br>force.                                                                                                                             | Understand          | CO1 | CLO 2 | AMEB03.02 |
| 19   | Define a Couple                               | The moment produced by two<br>equal and opposite non-<br>collinear parallel forces is said<br>to be Couple.                                                                                                                              | Understand          | CO1 | CLO 3 | AMEB03.03 |
| 20   | What are<br>Concurrent<br>forces?             | A number of concentrated<br>forces passing through a<br>common point of intersection<br>are said to be concurrent forces.                                                                                                                | Remember            | CO1 | CLO 2 | AMEB03.02 |
| 21   | What are<br>Coplanar forces?                  | A number of forces having their<br>lines of action in the same plane<br>are said to be coplanar forces.                                                                                                                                  | Remember            | CO1 | CLO 2 | AMEB03.02 |
| 22   | State Varignon's theorem.                     | Varignon's theorem states that<br>the algebraic sum of the<br>moments of all the forces in a<br>system about any point is equal<br>to the moment of their resultant<br>force about the same point.                                       | Remember            | CO1 | CLO 4 | AMEB03.04 |
| 23   | Define<br>Equilibrium                         | If the resultant of a number of<br>forces, acting on a body is zero,<br>then that body is said to be in<br>equilibrium.                                                                                                                  | Understand          | CO1 | CLO 3 | AMEB03.03 |
| 24   | State Lami's<br>Theorem                       | Lami's theorem states that, if<br>any body is in equilibrium<br>under the action of only three<br>coplanar concurrent forces then<br>each force is directly<br>proportional to the sine of the<br>angle between the other two<br>forces. | Remember            | CO1 | CLO 2 | AMEB03.02 |
| 25   | What is a Free<br>Body Diagram?               | Pictorial representation of a<br>body which isolated from the<br>all the contact surfaces<br>(supports) and considering the<br>reaction at contact surfaces<br>along with external forces.                                               | Understand          | CO1 | CLO 2 | AMEB03.02 |
| 26   | What is<br>Equilibrant?                       | The force which brings the<br>system of forces into a<br>equilibrium is called an<br>equilibrant. It is equal in<br>magnitude and opposite in<br>direction to the resultant.                                                             | Understand          | CO1 | CLO 4 | AMEB03.04 |

| S.No | QUESTION                          | ANSWER                                                                                                                                                                                                          | <b>Blooms Level</b> | CO   | CLO  | CLO Code  |
|------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|------|-----------|
|      |                                   | MODULI                                                                                                                                                                                                          | E- <b>II</b>        |      |      |           |
| 1    | What is Friction?                 | When two bodies are in contact,<br>and an effort to move one body<br>over the other is resisted. This<br>resistance to motion is called<br>friction.                                                            | Remember            | CO 2 | CLO5 | AMEB03.05 |
| 2    | Define<br>Coefficient<br>Friction | A coefficient of friction is a value that shows the relationship between the force of friction between two objects and the normal reaction between the objects that are involved.                               | Remember            | CO 2 | CLO5 | AMEB03.05 |
| 3    | What is Dry<br>Friction?          | The friction that exists between<br>perfectly cleaned and dry solid<br>surfaces is called dry friction.                                                                                                         | Understand          | CO 2 | CLO5 | AMEB03.05 |
| 4    | What is Fluid<br>friction?        | The Thick layer of oil lubricant<br>is introduced between two<br>surfaces, the friction between<br>surfaces are separated by a film<br>of lubricant is called fluid<br>friction.                                | Remember            | CO 2 | CLO5 | AMEB03.05 |
| 5    | What is Non-<br>viscous friction? | The thin layer of lubricant is<br>allowed to prevent the direct<br>contact between surfaces and<br>reduces the friction. The<br>friction that exists between the<br>surfaces is called non-viscous<br>friction. | Remember            | CO 2 | CLO5 | AMEB03.05 |
| 6    | What is Limiting friction?        | The maximum friction that can<br>be generated between two<br>static surfaces in contact with<br>each other is called limiting<br>friction.                                                                      | Understand          | CO 2 | CLO5 | AMEB03.05 |
| 7    | Define Angle of friction.         | It is the angle of a plane to the<br>horizontal when a body placed<br>on the plane will just start to<br>slide.                                                                                                 | Remember            | CO 2 | CLO5 | AMEB03.05 |
| 8    | What is Angle of repose?          | Angle of repose is defined as<br>the minimum angle of an<br>inclined plane which causes an<br>object to slide down the plane.                                                                                   | Understand          | CO 2 | CLO5 | AMEB03.05 |
| 9    | What is a Beam?                   | It is a horizontal structural<br>element that primarily resists<br>loads applied transverse to the<br>beam's axis.                                                                                              | Remember            | CO 2 | CLO8 | AMEB03.08 |
| 10   | What is Static friction?          | In static friction the force<br>applied to the body is not<br>sufficient to move the body,<br>and then the friction acting on<br>the body is called static friction.                                            | Remember            | CO 2 | CLO5 | AMEB03.05 |
| 11   | What is Kinetic friction?         | The friction acting on a body<br>which is actually in motion is<br>called kinetic friction                                                                                                                      | Understand          | CO 2 | CLO5 | AMEB03.05 |

| S.No | QUESTION                                   | ANSWER                                                                                                                                                                                                                                                                              | <b>Blooms Level</b> | СО   | CLO   | CLO Code  |
|------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|-----------|
| 12   | What is a Truss?                           | A structural that is made of<br>straight slender bars that are<br>joined together at their ends by<br>frictionless pins to form a<br>pattern of triangle is called<br>truss.                                                                                                        | Remember            | CO 2 | CLO7  | AMEB03.07 |
| 13   | What are the Types of beams?               | Cantilever, simple supported,<br>over-hanged, continuous, fixed<br>and propped cantilever.                                                                                                                                                                                          | Remember            | CO 2 | CLO8  | AMEB03.08 |
| 14   | What is a<br>Cantilever beam?              | A beam with one end fixed(built in) and other end free.                                                                                                                                                                                                                             | Remember            | CO 2 | CLO8  | AMEB03.08 |
| 15   | What is a<br>Continuous<br>beam?           | A beam with more than one span.(two or more)                                                                                                                                                                                                                                        | Remember            | CO 2 | CLO8  | AMEB03.08 |
| 16   | What is a Simply supported beam?           | A beam with one end hinged and other end on rollers.                                                                                                                                                                                                                                | Remember            | CO 2 | CLO8  | AMEB03.08 |
| 17   | What is a Fixed beam?                      | A beam with both the ends fixed (builtin)                                                                                                                                                                                                                                           | Remember            | CO 2 | CLO8  | AMEB03.08 |
| 18   | What is a<br>Propped<br>cantilever?        | A beam with one end fixed and<br>the other end simply supported.                                                                                                                                                                                                                    | Remember            | CO 2 | CLO8  | AMEB03.08 |
| 19   | What is a<br>Determinate<br>beam?          | A beam which can be analysed<br>by using static equilibrium<br>equations is said to be<br>determinate.                                                                                                                                                                              | Remember            | CO 2 | CLO8  | AMEB03.08 |
| 20   | What is an<br>Indeterminate<br>beam?       | A beam which cannot be<br>analysed by using static<br>equilibrium equations is said to<br>be indeterminate.                                                                                                                                                                         | Remember            | CO 2 | CLO8  | AMEB03.08 |
| 21   | What is a Screw jack?                      | A simple lifting device                                                                                                                                                                                                                                                             | Remember            | CO 2 | CLO6  | AMEB03.06 |
| 22   | What is Lead distance?                     | The distance which the screw advances in one turn is called lead distance.                                                                                                                                                                                                          | Remember            | CO 2 | CLO6  | AMEB03.06 |
| 23   | Define the<br>Efficiency of<br>screw jack? | The efficiency of screw jack is defined as the ratio of the work output to the work input over the same period of time.<br>$\eta = \frac{tan \alpha}{tan(\alpha + \phi)}$                                                                                                           | Remember            | CO 2 | CLO6  | AMEB03.06 |
|      |                                            | MODULE                                                                                                                                                                                                                                                                              | -111                |      |       |           |
| 1    | Define Center of gravity                   | Centre of gravity is a point<br>where the whole weight of the<br>body is assumed to<br>concentrate.                                                                                                                                                                                 | Remember            | CO 3 | CLO9  | AMEB03.09 |
| 2    | Define Centroid                            | It is a point where the whole<br>area of a plane is supposed to<br>concentrate.                                                                                                                                                                                                     | Remember            | CO 3 | CLO9  | AMEB03.09 |
| 3    | State parallel<br>axis theorem             | Parallel axis theorem states that<br>the MI of a plane area with<br>respect to any reference axis in<br>its plane is equal to the sum of<br>MI with respect to a parallel<br>centroid axis and product of the<br>total area and the square of the<br>distance between the two axes. | Remember            | CO 3 | CLO10 | AMEB03.10 |

| S.No | QUESTION                  | ANSWER                                                            | <b>Blooms Level</b>   | СО   | CLO   | CLO Code  |
|------|---------------------------|-------------------------------------------------------------------|-----------------------|------|-------|-----------|
| 4    | State                     | Perpendicular axis theorem                                        | Remember              | CO 3 | CLO10 | AMEB03.10 |
|      | perpendicular             | states that the moment of inertia                                 |                       |      |       |           |
|      | axis theorem              | of an area with respect to an                                     |                       |      |       |           |
|      |                           | axis perpendicular to that x-y                                    |                       |      |       |           |
|      |                           | plane and passing through the                                     |                       |      |       |           |
|      |                           | origin will be equal to the sum                                   |                       |      |       |           |
|      |                           | of moment of inertia of the                                       |                       |      |       |           |
| 5    | What is Radius            | same area about x-x, y-y axis.                                    | Remember              | CO 3 | CLO10 | AMEB03.10 |
| 5    | of gyration?              | Radius of gyration is defined as<br>the distance from the axis of | Kennennber            | 05   | CLUIU | AMED05.10 |
|      | of gyradon?               | rotation to a point where the                                     |                       |      |       |           |
|      |                           | total mass of the body is                                         |                       |      |       |           |
|      |                           | supposed to be concentrated, so                                   |                       |      |       |           |
|      |                           | that the moment of inertia about                                  | -                     |      | 1     |           |
|      |                           | the axis may remain the same.                                     | 1.1                   |      |       |           |
| 6    | Define                    | It is the product of area and the                                 | Remember              | CO 3 | CLO10 | AMEB03.10 |
|      | Moment of                 | square of its moment arm about                                    |                       |      |       |           |
|      | inertia                   | a reference axis is called                                        |                       |      |       |           |
|      |                           | moment of inertia.                                                |                       |      |       |           |
| 7    | Define Mass               | It is the product of mass and the                                 | Remember              | CO 3 | CLO11 | AMEB03.11 |
|      | moment of                 | square of its moment arm about                                    |                       |      |       |           |
|      | inertia?                  | a reference axis is called mass                                   |                       |      |       |           |
| 8    | State Dannua              | moment of inertia.<br>The area of surface generated               | Remember              | CO 3 | CLO9  | AMEB03.09 |
| 0    | State Pappus-<br>Guldinus | by revolving a plane curve                                        | Keinenider            | 05   | CL09  | AMED05.09 |
|      | theorem for area.         | about non-intersecting axis in                                    |                       |      |       |           |
|      | ulcoreni for ulcu.        | the plane of the curve is equal                                   |                       |      |       |           |
|      |                           | to the length of the generating                                   |                       | _    |       |           |
|      |                           | curve times the distance                                          |                       |      |       |           |
|      |                           | travelled by the centroid of the                                  |                       |      |       |           |
|      |                           | curve in the revolution and                                       |                       |      |       |           |
|      |                           | angle of rotation.                                                |                       |      |       |           |
| 9    | State Pappus-             | The volume of a solid                                             | Understand            | CO 3 | CLO9  | AMEB03.09 |
|      | Guldinus                  | generated by revolving a plane                                    |                       |      |       | -         |
|      | theorem for volume.       | area about a non-intersecting                                     |                       | _    |       | 0         |
|      | volume.                   | axis in the plane is equal to the area of the generating plane    | and the second second | -    |       | -         |
|      |                           | times the distance travelled by                                   |                       |      | - A-  |           |
|      |                           | the centroid of the plane area                                    |                       |      |       |           |
|      |                           | and its rotation.                                                 | 1                     |      |       |           |
| 10   | Explain polar             | Moment of inertia about an axis                                   | Understand            | CO 3 | CLO10 | AMEB03.10 |
|      | moment of                 | perpendicular to the plane of an                                  |                       | 6    |       |           |
|      | inertia.                  | area is known as polar moment                                     |                       | 1 V  |       |           |
|      |                           | of inertia.                                                       | 1.1                   | 0    |       |           |
| 11   | What is the               | Virtual work is the total work                                    | Remember              | CO 3 | CLO12 | AMEB03.12 |
|      | concept of virtual        | done by the applied forces and                                    |                       |      |       |           |
|      | work?                     | the inertial forces of a                                          |                       |      |       |           |
|      |                           | mechanical system as it moves<br>through a set of virtual         |                       |      |       |           |
|      |                           | displacements. When                                               |                       |      |       |           |
|      |                           | considering forces applied to a                                   |                       |      |       |           |
|      |                           | body in static equilibrium, the                                   |                       |      |       |           |
|      |                           | principle of least action                                         |                       |      |       |           |
|      |                           | requires the virtual work of                                      |                       |      |       |           |
|      |                           | these forces to be zero.                                          |                       |      |       |           |
| 12   | What is the               | It is defined as the minimum                                      | Remember              | CO 3 | CLO12 | AMEB03.12 |
|      | Degree of                 | number of independent                                             |                       |      |       |           |
|      | freedom?                  | variables required to define the                                  |                       |      |       |           |
|      |                           | position or motion of a system                                    |                       |      |       |           |
|      |                           | is known as degree of freedom.                                    |                       |      |       |           |

| S.No | QUESTION                                                                                                   | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Blooms Level</b>                | CO           | CLO                     | CLO Code                            |
|------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|-------------------------|-------------------------------------|
| 13   | Define Work<br>done.                                                                                       | The work done by a force on a<br>moving body is defined as the<br>product of the force and the<br>distance moved in the direction<br>of the force.                                                                                                                                                                                                                                                                                                                                                                                       | Remember                           | CO 3         | CLO12                   | AMEB03.12                           |
| 14   | What is Kinetic<br>energy?                                                                                 | The kinetic energy of an object<br>is the energy that it possesses<br>due to its motion. It is defined<br>as the work needed to<br>accelerate a body of a given<br>mass from rest to its stated<br>velocity.                                                                                                                                                                                                                                                                                                                             | Remember                           | CO 3         | CLO12                   | AMEB03.12                           |
| 15   | What is Potential energy?                                                                                  | Potential energy is defined as<br>mechanical energy, stored<br>energy, or energy caused by its<br>position.                                                                                                                                                                                                                                                                                                                                                                                                                              | Remember                           | CO 3         | CLO12                   | AMEB03.12                           |
| 16   | What is<br>Virtual work?                                                                                   | Virtual work is the product of<br>the force/moment and<br>corresponding virtual<br>displacement/rotation.                                                                                                                                                                                                                                                                                                                                                                                                                                | Remember                           | CO 3         | CLO12                   | AMEB03.12                           |
| 17   | State the<br>Principle of<br>virtual work.                                                                 | The principle of virtual work<br>states that for a system of<br>initially stationary rigid bodies,<br>the algebraic summation of<br>virtual work done by all<br>effective forces causing virtual<br>displacement consistent with<br>geometrical conditions, will be<br>zero.                                                                                                                                                                                                                                                             | Remember                           | CO 3         | CLO12                   | AMEB03.12                           |
|      |                                                                                                            | MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -IV                                |              |                         |                                     |
| 1    | What is motion?                                                                                            | The continuous change in<br>position of a body with respect<br>to time and relative to the                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remember                           | CO 4         | CLO13                   | AMEB03.13                           |
|      | 2                                                                                                          | reference point or observer is called motion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |              | 1.0                     | 2                                   |
| 2    | Define kinetics                                                                                            | called motion.<br>Kinetics is the branch of<br>classical mechanics that is<br>concerned with the relationship<br>between motion and its causes,<br>specifically, forces and torques.                                                                                                                                                                                                                                                                                                                                                     | Remember                           | CO 4         | CLO13                   | AMEB03.13                           |
| 2    | Define kinetics<br>Define<br>translation                                                                   | called motion.<br>Kinetics is the branch of<br>classical mechanics that is<br>concerned with the relationship<br>between motion and its causes,<br>specifically, forces and torques.<br>If a straight line drawn on the<br>moving body remains parallel<br>to its original then such motion<br>is called translation.                                                                                                                                                                                                                    | Remember                           | CO 4         | CLO13<br>CLO13          | AMEB03.13<br>AMEB03.13              |
|      | Define                                                                                                     | called motion.<br>Kinetics is the branch of<br>classical mechanics that is<br>concerned with the relationship<br>between motion and its causes,<br>specifically, forces and torques.<br>If a straight line drawn on the<br>moving body remains parallel<br>to its original then such motion                                                                                                                                                                                                                                              |                                    |              | 2                       |                                     |
| 3    | Define<br>translation<br>Explain the<br>term<br>rectilinear<br>motion?<br>Define<br>curvilinear<br>motion? | called motion.<br>Kinetics is the branch of<br>classical mechanics that is<br>concerned with the relationship<br>between motion and its causes,<br>specifically, forces and torques.<br>If a straight line drawn on the<br>moving body remains parallel<br>to its original then such motion<br>is called translation.<br>If the path followed by a point<br>is a straight line then such<br>motion is called rectilinear<br>motion.<br>If the path followed by a point<br>is a curve then such motion is<br>called a curvilinear motion. | Remember<br>Understand<br>Remember | CO 4<br>CO 4 | CLO13<br>CLO14<br>CLO14 | AMEB03.13<br>AMEB03.14<br>AMEB03.14 |
| 3    | Define<br>translation<br>Explain the<br>term<br>rectilinear<br>motion?<br>Define<br>curvilinear            | called motion.<br>Kinetics is the branch of<br>classical mechanics that is<br>concerned with the relationship<br>between motion and its causes,<br>specifically, forces and torques.<br>If a straight line drawn on the<br>moving body remains parallel<br>to its original then such motion<br>is called translation.<br>If the path followed by a point<br>is a straight line then such<br>motion is called rectilinear<br>motion.<br>If the path followed by a point<br>is a curve then such motion is                                 | Remember<br>Understand             | CO 4         | CLO13<br>CLO14          | AMEB03.13<br>AMEB03.14              |

| S.No | QUESTION             | ANSWER                                                        | <b>Blooms Level</b> | СО   | CLO   | CLO Code    |
|------|----------------------|---------------------------------------------------------------|---------------------|------|-------|-------------|
| 8    | What is              | If a particle is freely thrown in                             | Remember            | CO 4 | CLO13 | AMEB03.13   |
|      | projectile           | air along any direction, other                                |                     |      |       |             |
|      | motion?              | than vertical it will follow a                                |                     |      |       |             |
|      |                      | curves path which is parabolic<br>in nature. This motion is a |                     |      |       |             |
|      |                      | called projectile.                                            |                     |      |       |             |
| 9    | What is meant by     | The rate of change of distance                                | Remember            | CO 4 | CLO13 | AMEB03.13   |
|      | speed?               | with respect to time is called                                |                     |      |       |             |
| 10   | Define               | speed.<br>The path traced by a projectile                     | Remember            | CO 4 | CLO15 | AMEB03.15   |
| 10   | trajectory?          | is called trajectory.                                         | Keinenidei          | CO 4 | CLOIS | AMED05.15   |
| 11   | Define time of       | The time taken by projectile to                               | Remember            | CO 4 | CLO15 | AMEB03.15   |
|      | flight?              | move from point of projection                                 |                     |      |       |             |
|      |                      | to point of target is called time                             |                     |      |       |             |
| 12   | What is              | of flight.<br>When projectile reaches to the                  | Remember            | CO 4 | CLO15 | AMEB03.15   |
| 12   | maximum              | max height where vertical                                     | remember            | 00 7 | 01015 | 11111100.10 |
|      | height?              | component of velocity is zero                                 |                     |      |       |             |
| 13   | What is range?       | It is a horizontal distance from                              | Remember            | CO 4 | CLO15 | AMEB03.15   |
|      |                      | point of projection to point of target is called a range.     |                     |      |       |             |
| 14   | Explain the term     | A body is said to be rigid, if the                            | Understand          | CO 4 | CLO14 | AMEB03.14   |
|      | rigid body?          | relative position of any two                                  |                     |      |       |             |
|      |                      | particles do not change under                                 |                     |      |       |             |
| 15   | Define the term      | the action of force.<br>It defines the rate of change of      | Remember            | CO 4 | CLO14 | AMEB03.14   |
| 15   | angular velocity?    | angular position with respect to                              | Kemember            | 04   |       | AMED03.14   |
|      |                      | time.                                                         |                     |      |       |             |
| 16   | What is              | The second law states that the                                | Remember            | CO 4 | CLO14 | AMEB03.14   |
|      | Newton's second law? | rate of change of momentum<br>of a body is directly           |                     |      |       |             |
|      | law?                 | proportional to the force                                     |                     |      |       |             |
|      |                      | applied, and this change in                                   | -                   | _    |       | -           |
|      |                      | momentum takes place in the                                   |                     |      |       | -           |
|      |                      | direction of the applied force.                               |                     | _    |       | 0           |
|      |                      | MODULI                                                        | E-V                 |      |       |             |
| 1    | Explain the          | If the body is given a small                                  | Understand          | CO 5 | CLO19 | AMEB03.19   |
|      | Vibration?           | displacement from the                                         |                     |      | 1 C   |             |
|      |                      | position, a force comes into                                  |                     | 1    | C     |             |
|      |                      | play which tries to bring the<br>body back to the equilibrium |                     | 2    |       |             |
|      |                      | point, giving rise to                                         | 1.1                 | 0    | 5     |             |
|      |                      | oscillations or vibrations                                    |                     |      |       |             |
| 2    | What is Simple       | Oscillatory motion under a                                    | Remember            | CO 5 | CLO17 | AMEB03.17   |
|      | harmonic<br>motion?  | retarding force proportional to<br>the amount of displacement |                     |      |       |             |
|      |                      | from an equilibrium position is                               |                     |      |       |             |
|      |                      | called simple harmonic motion.                                |                     |      |       |             |
| 3    | Describe             | Longitudinal waves are waves                                  | Understand          | CO 5 | CLO19 | AMEB03.19   |
|      | longitudinal         | in which the displacement of                                  |                     |      |       |             |
|      | waves.               | the medium is parallel to the direction of propagation of the |                     |      |       |             |
|      |                      | wave.                                                         |                     |      |       |             |
| 4    | What is Damped       | The oscillatory motion in which                               | Remember            | CO 5 | CLO19 | AMEB03.19   |
|      | Vibration?           | the amplitude decreases                                       |                     |      |       |             |
|      |                      | continuously with the passage of time is known as damped      |                     |      |       |             |
|      |                      | oscillation.                                                  |                     |      |       |             |
| L    |                      | 1                                                             | 1                   | 1    | I     |             |

| S.No | QUESTION                        | ANSWER                                                            | <b>Blooms Level</b> | СО           | CLO     | CLO Code      |
|------|---------------------------------|-------------------------------------------------------------------|---------------------|--------------|---------|---------------|
| 5    | What are                        | All free oscillations eventually                                  | Remember            | CO 5         | CLO19   | AMEB03.19     |
|      | "Forced /                       | die out because of the ever                                       |                     |              |         |               |
|      | Driven                          | present damping forces.                                           |                     |              |         |               |
|      | Vibration                       | However, an external agency can maintain these oscillations.      |                     |              |         |               |
|      |                                 | These are called forced or                                        |                     |              |         |               |
|      |                                 | driven oscillations                                               |                     |              |         |               |
| 6    | Define the term                 | It is defined as the minimum                                      | Remember            | CO 5         | CLO17   | AMEB03.17     |
| -    | degree of                       | number of independent                                             |                     |              |         |               |
|      | freedom?                        | variables required to define the                                  |                     |              |         |               |
|      |                                 | position or motion of a system                                    |                     |              |         |               |
|      | <b>E</b> 11                     | is known as degree of freedom.                                    |                     | <u> </u>     | CT 0.10 |               |
| 7    | Explain term                    | When the driving frequency is                                     | Understand          | CO 5         | CLO18   | AMEB03.18     |
|      | about<br>"Resonance"            | equal to the natural frequency<br>the oscillations can be large - |                     |              |         |               |
|      | Resolutive                      | this is called resonance                                          |                     |              |         |               |
| 8    | Recall                          | A wavelength is a measure of                                      | Remember            | CO 5         | CLO17   | AMEB03.17     |
|      | wavelength.                     | distance between two identical                                    | remember            | 000          |         | 1111111000117 |
|      | 0                               | peaks or crests.                                                  |                     |              |         |               |
| 9    | Define frequen <mark>cy.</mark> | Frequency is the number of                                        | Remember            | CO 5         | CLO17   | AMEB03.17     |
|      |                                 | occurrences of a repeating                                        |                     |              |         |               |
|      |                                 | event per unit time.                                              |                     | <b>a</b> a = |         |               |
| 10   | Define pendulum?                | A pendulum is a weight                                            | Remember            | CO 5         | CLO17   | AMEB03.17     |
|      |                                 | suspended from a pivot so that                                    |                     |              |         |               |
|      |                                 | it can swing freely. When a pendulum is displaced sideways        |                     |              |         |               |
|      |                                 | from its resting, equilibrium                                     |                     |              |         |               |
|      |                                 | position, it is subject to a                                      |                     |              |         |               |
|      |                                 | restoring force due to gravity                                    |                     |              |         |               |
|      |                                 | that will accelerate it back                                      |                     |              |         |               |
|      |                                 | toward the equilibrium position.                                  |                     |              |         |               |
| 11   | Define amplitude.               | The maximum extent of a                                           | Remember            | CO 5         | CLO17   | AMEB03.17     |
|      |                                 | vibration or oscillation,                                         | -                   |              |         |               |
|      |                                 | measured from the position of equilibrium.                        |                     |              |         | -             |
| 12   | Define time                     | It the time needed for one                                        | Understand          | CO 5         | CLO18   | AMEB03.18     |
|      | period for simple               | complete cycle of vibration to                                    | Chaorbaila          | 200          | 22010   | 1             |
|      | pendulum?                       | pass in a given point.                                            |                     |              |         |               |
| 13   | What is meant by                | A torsion pendulum is a mass                                      | Remember            | CO 5         | CLO18   | AMEB03.18     |
|      | torsional                       | suspended on a string that                                        |                     |              |         |               |
|      | pendulum?                       | rotates periodically. When the                                    |                     |              | 0       |               |
|      |                                 | mass of a torsion pendulum is                                     |                     | - 50         |         |               |
|      |                                 | rotated from its equilibrium position, the fiber resists the      |                     | Q. *         |         |               |
|      |                                 | rotation and provides a                                           | 1 1 1               |              |         |               |
|      |                                 | restoring force that causes the                                   |                     |              |         |               |
|      |                                 | mass to rotate back to its                                        |                     |              |         |               |
|      |                                 | original equilibrium position.                                    |                     |              |         |               |
| 14   | What is meant by                | Any swinging rigid body free to                                   | Remember            | CO 5         | CLO18   | AMEB03.18     |
|      | compound                        | rotate about a fixed horizontal                                   |                     |              |         |               |
|      | pendulum?                       | axis is called a compound                                         |                     |              |         |               |
| 15   | Emploin altered                 | pendulum                                                          | The decessor of     | <u> </u>     |         |               |
| 15   | Explain about<br>under-damped   | An under-damped system yields an exponentially                    | Understand          | CO 5         | CLO19   | AMEB03.19     |
|      | systems.                        | decreasing sinusoidal output in                                   |                     |              |         |               |
|      | 5,500115.                       | response to a step input.                                         |                     |              |         |               |
|      |                                 |                                                                   | 1                   |              | 1       | 1             |

| S.No | QUESTION                                        | ANSWER                                                                                                                                                                             | <b>Blooms Level</b> | CO   | CLO   | CLO Code  |
|------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|-----------|
| 16   | Describe<br>critically-damped<br>systems.       | A critically damped system the<br>minimum amount of damping<br>that will yield a non- oscillatory<br>output in response to a step<br>input.                                        | Understand          | CO 5 | CLO19 | AMEB03.19 |
| 17   | What do you<br>mean by over-<br>damped systems? | An over-damped system also<br>yields a non-oscillatory output<br>in response to a step input, but<br>has more damping than<br>necessary to achieve the non-<br>oscillatory output. | Understand          | CO 5 | CLO19 | AMEB03.19 |

