

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY

Course Name	:	FLEXIBLE ALTERNATING CURRENT TRANSMISSION SYSTEM
Course Code	:	AEE524
Program	:	B.Tech
Semester	:	VIII
Branch	:	Electrical Engineering
Section	:	А
Academic Year	:	2019 – 2020
Course Faculty	:	Ms.K.Harshini, Assistant Professor

COURSE OBJECTIVES:

The c	The course should enable the students to:							
Ι	Describe the effect of series and shunt compensation using various FACTS controllers.							
Π	Static VAR compensator for voltage regulation and transient stability enhancement of system							
III	Analyse voltage source converter based FACTs controllers and their coordination.							

COURSE OUTCOME(COs):

The cou	The course should enable the students to:						
CO1	Understand the fundamentals of FACTS controllers and their role in improving power system						
	performance.						
CO2	Understand SVC for various functions viz. Transient stability Enhancement, voltage instability						
	prevention and power oscillation damping						
CO3	Analyse the use of control schemes of TCSC, TSSC, GSC in improving the power quality.						
CO4	Analyse the applications of Voltage Source Converter based FACTS Controllers						
CO5	Explain the FACTS Controllers and their co-ordination						

DEFINITIONS AND TERMINOLOGY QUESTION BANK

1.1

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		UNIT-I				
1	What is electric power system?	An electric power system is a network of electrical components deployed to supply, transfer, and use electric power.	Remember	CO 1	CLO 1	AEE524.01
2	What is a reliability in power system?	Reliability of a power system is generally designated as a measure of the ability of the system to provide customers with adequate supply	Remember	CO 1	CLO 1	AEE524.01

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
3	Define FACTS	FACTS is defined by the IEEE	Remember	CO 1	CLO 1	AEE524.01
		as "a power electronic based				
		system and other static				
		equipment that provide control				
		of one or more AC transmission				
		system parameters to enhance				
		controllability and increase				
		power transfer capability"				
4	Define	The efficiency of an entity (a	Remember	CO 1	CLO 1	AEE524.01
	efficiency in	device, component, or system)				
	System	in electronics and electrical				
		engineering is defined as useful				
		power output divided by the				
		total electrical power consumed		1		
5	What is the	A circuit breaker is an	Remember	CO 1	CLO 1	AEE524.01
	operation of	automatically operated				
	circuit breakers	electrical switch designed to				
	(CB) system?	protect an electrical circuit from				
		damage caused by excess				
		current from an overload or				
	Defin	short circuit.	Den 1	00.1		A EE 204 01
6	Define	Electric power is the rate, per	Remember	COT	CLO 3	AEE524.01
	Electrical	unit time, at which electrical				
	power?	energy is transferred by an				
		electric circuit. The SI unit of				
		power is the watt, one joule per				
7	What is the	Second.	Domomhor	CO 1	CLO 1	AEE524.01
/	what is the	Transmission Line So for the	Remember	01	CLUI	AEE524.01
	in	transmission line performance				
	III transmission	equation was presented in the				
	line system?	form of voltage and current			÷	
	fine system.	relationships between sending-				
		and receiving-ends.				100 m
8	Define HVDC	A high-voltage, direct current	Remember	CO 1	CLO 1	AEE524.01
_	transmission?	(HVDC) electric power				2. · · · ·
		transmission system uses direct	Contraction of the second			
		current for the bulk				
		transmission of electrical			-	
		power, in contrast with the			100	
		more common alternating			Page 1	
	1	current (AC) systems		6		
9	What Thyristor	A Thyristor-controlled reactor	Remember	CO 1	CLO 1	AEE524.01
	Controlled	(TCR) is a reactance connected		2		
	Reactors (TCR)	in series with a bidirectional				
		thyristor valve. Thyristor-				
		controlled reactors can be used				
		for limiting voltage rises on				
		lightly loaded transmission				
10	What are the	nnes.	Doment	CO 1		AEE524.01
10	What are the	A Low P.F. draws a higher	Remember	COT	CLO I	AEE524.01
	low power	averaging heat concreted will				
	footor	domogo on d/or shorten				
	Tactor	aguinment life. Increased				
		reactive loads can reduce output				
		voltage and damage equipment				
		sensitive to reduced voltage				
11	Define Power	the power factor of an AC	Remember	CO 1	CLO 3	AEE524 01
	factor?	electrical power system is		201	2200	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		defined as the ratio of the real				
		power absorbed by the load to				
		the apparent power				
12	What are the	The events which are favorable	Remember	CO 1	CLO 1	AEE524.01
	methods for	to one particular event in any				
	Power factor	random experiment				
1.0	Improvement?			a a i	<u> </u>	
13	Why	Reactive power (VARs) is	Understand	CO 1	CLO 1	AEE524.01
	compensation	required to maintain the voltage				
	technique is used	to deliver active power				
	in transmission	(watts)through transmission				
	system?	nower factor of the system and				
		maintain the voltage stability				
		we need to compensate reactive	1.1			
		power.				
14	Define SSSC .	static synchronous series	Remember	CO 1	CLO 2	AEE524.02
	IPFC and UPFC?	compensator (SSSC), unified				
		power flow controller (UPFC)				
		and interline power flow				
		controller (IPFC).				
15	Operation of	TSR and TCR are both	Remember	CO 1	CLO 3	AEE524.03
	TCR and TSR.	composed of the shunt				
		connected reactor, which is				
		controlled by two parallel				
		reverse connected thyristors.				
		TSR is controlled without any				
		firing angle control which				
		results in a step change in				
		reactance. TCR is controlled by				
		firing angle input, which				
		operation				
		operation.				
		UNIT-II				
1	What is SMC9		Demonstration	CO 2		AEE524.04
1	what is SVC?	A static var compensator (or SVC) is an electrical device for	Keinember	CO_2	CLO 4	AEE524.04
		providing fast acting reactive		r		
		power on high-voltage			100	
		electricity transmission				
		networks. SVCs are part of the		1.7	1	
		Flexible AC transmission		1		
		system device family,		0.0		
		regulating voltage and				
		stabilizing the system. The term				
		"static" refers to the fact that				
		the SVC has no moving parts				
2	What are the	The economic benefits of SVC	Remember	CO 2	CLO 4	AEE524.04
	economic	are				
	benefits of SVC?	1. Energy savings				
		2. Increase in productivity				
		3. Reduction in consumption of				
		electrodes				
		4. Reduction of heat losses				
		5. Increase lifetime of furnace				
		inside lining				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
3	What is TSC?	A thyristor switched capacitor	Understand	CO 2	CLO 5	AEE524.05
		(TSC) is a type of equipment				
		used for compensating reactive				
		power in electrical power				
		systems. It consists of a power				
		capacitor connected in series				
		with a bidirectional thyristor				
		valve and, usually, a current				
		limiting reactor				
4	What is transient	The ability of a synchronous	Understand	CO 2	CLO 5	AEE524.05
	stability?	power system to return to stable				
		condition and maintain its				
		synchronism following a			1	
		relatively large disturbance				
		arising from very general				
		situations like switching ON				
		and OFF of circuit elements, or				
		clearing of faults, etc. is				
		referred to as the transient				
		stability in power system				
5	What is Power	With SVC, power oscillation	Understand	CO 2	CLO 6	AEE524.06
	Oscillation	damping (POD) is achieved by				
	Damping?	dynamic control of the system				
		voltage in such a way that				
		during upward portions of the				
		power vs time profile, the SVC				
		(or SVCs) support(s) the				
		voltage, thereby acting to retard				
		the motion of the rotating				
		machines				
6	What is use of	It works as a controllable	Remember	CO 2	CLO 4	AEE524.04
	shunt	current source. A reactive				
	compensation?	current is injected into the line			1.1.1	
	0	to maintain constant voltage			- C	
		magnitude by varying shunt				
		impedance. Therefore, the			1.1	
		transmittable active power is				
		increased			-	
7	What are the	There are two methods of shunt	Remember	CO 2	CLO 4	AEE524.04
	methods of	compensations:			1 A A	
	shunt	1) Shunt Capacitive				
	compensations?	Compensation		~		
		2) Shunt Inductive				
		Compensation				
8	What are the	The main purpose of series	Remember	CO 2	CLO 5	AEE524.05
	objectives of	compensation in power systems				
	series	is to decrease the reactive				
	compensation?	impedance of the transmission				
		line to reduce voltage drop over				
		long distances and to reduce the				
		Ferranti effect				
9	Define Series	Series compensation is the	Remember	CO 2	CLO 5	AEE524.05
	Compensation?	method of improving the				
		system voltage by connecting a				
		capacitor in series with the				
		transmission line. In other				
		words, in series compensation,				
		reactive power is inserted in				
		series with the transmission line				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		for improving the impedance of				
		the system.				
10	What is FC-	FC-TCR is a var generator	Remember	CO 2	CLO 5	AEE524.05
	TCR?	arrangement using a Fixed				
		capacitance with a TCR. θ The				
		current in the reactor is varied				
		by the method of firing delay				
		angle control method. (Qc) of				
		the fixed capacitor is opposed				
		by the (QL) of the TCR.		~~ *	<u> </u>	
11	What is transient	When the current in an	Remember	CO 2	CLO 6	AEE524.06
	free switching?	individual capacitor reaches a				
		natural zero-crossing, the				
		thyristors can be left unbated				
		and no further current will flow.				
		The reactive power supplied to				
		abruatly. This is known as				
		Transient Free Switching				
12	What is	Transient stability "Transient	Domomhor	CO^{2}	CLOG	AEE524.06
12	Transiont	stability is the ability of the	Remember	CO 2		AEE324.00
	stability?	power grid system to maintain				
	stability !	synchronism when subjected to				
		severe disturbances "				
13	What is Power	A power oscillation damping	Remember	CO 2	CLO 6	AEE524.06
10	Oscillation	controller (PODC) is developed		002		112221.00
	Damping?	based on swing equations to				
	2 umpmg.	damp oscillations caused by				
		disturbances in a power system.				
		The input signals of the PODC				
		can be various quantities				
		associated with the tie-line,				
		such as voltage, current, or the				_
		power flow on the tie-line.	-			
14	What is SMIB?	Single Machine Infinite Bus	Remember	CO 2	CLO 6	AEE524.06
		System (SMIB) is a test bus				
		system where one can study the			4	
		transient response of				
		Synchronous Generator and			Sec. 1	
		Effect of Faults on the				
1.7	D C CUICO	transmission line		GO 0		10000
15	Define SVC?	A static VAR compensator is a	Remember	CO 2	CLO 6	AEE524.06
		set of electrical devices for				
		providing fast-acting reactive				
		power on high-voltage				
		networks. SVCs are used in two				
		metworks. SVCs are used in two				
		the power system to regulate				
		the transmission voltage				
		the transmission voltage				
		UNIT-III				
1	Define TCSC?	A capacitive reactance	Understand	CO 3	CLO 7	AEE524 07
	20001000	compensator which consists of	Charlound	200		1
		series capacitor banks shunted				
		by a thyristor controlled reactor				
		in order to provide smoothly				
		variable series capacitive				
		reactance.				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
2	What is thyristor	An inductive reactance	Remember	CO 3	CLO 7	AEE524.07
	controlled series	compensator which consists of				
	compensation?	a series reactor shunted by a				
		thyristor controlled reactor in				
		order to provide smoothly				
		variable series capacitive				
		reactance.				
3	Differentiate	TSSC permits discrete control	Remember	CO 3	CLO 8	AEE524.08
	TSSC and	of capacitive reactance and				
	TCSC?	TCSC offers continuous control				
		of capacitive reactance				
4	What is BANG-	It is a discrete control in which	Remember	CO 3	CLO 09	AEE524.09
	BANG control	thyristors are either fully				
	IN TCSC?	switched on or fully switched				
		off. It's employed to mitigate				
		large disturbance to improve				
		the transient stability.				
5	What is multiple	The relationship between more	Remember	CO 3	CLO 8	AEE524.08
	correlations?	than two variables is known as				
		multiple correlation				
6	Compare GCSC	GCSC utilizes a smaller	Understand	CO 3	CLO 8	AEE524.08
	and TCSC?	capacitor, does not need any	-			
		reactor and, differently from the				
		TCSC, does not have an				
		intrinsic internal resonance. For				
		these reasons, the GCSC may				
		be a better solution in most	-			
		situations where controlled				
		series compensation is required.				
7	What is the firing	Bypassed thyristor mode –	Remember	CO 3	CLO 8	AEE524.08
	angle for	conduction angle of 180				
	different modes	degrees				
	of TCSC?	Blocked thyristor mode - no				
	-	firing pulses			· · · · ·	
	0	Vernier mode- varied from			- C	0
		minimum value to 180 degrees.				
8	Define Series	Series compensation is the	Understand	CO 3	CLO 7	AEE524.07
	Compensation?	method of improving the				
		system voltage by connecting a			1000	
	-7	capacitor in series with the				
		transmission line. In other				
		words, in series compensation,		Sec. 1		
		reactive power is inserted in		1. Y		
		series with the transmission line				
		for improving the impedance of				
		the system.	D 1	00.2		AFE 504.00
9	Define GIU?	A gate turn-off thyristor (GIO)	Remember	CO 3	CLO 8	AEE524.08
		is a special type of thyristor,				
		which is a high-power				
		semiconductor device. It was				
		GTOs, as opposed to normal				
		thurstore are fully controllable				
		switches which can be turned				
		on and off by their third load				
		the gate lead				
10	Why Controllad	Controlled Series	Remember	CO^{3}	CLOS	ΔEE524 08
10	Series	Compensation is used in power	Kentenibei	05		ALL324.00
	Compensation is	systems to dynamically control				
	used?	the reactance of a transmission				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		line in order to provide				
		sufficient load compensation				
11	What is Power	Power system stability involves	Remember	CO 3	CLO 8	AEE524.08
	system Stability?	the study of the dynamics of the				
		power system under				
		disturbances. Power system				
		stability implies that its ability				
		to return to normal or stable				
		operation after having been				
		subjected to some form of				
10	XX71 (1	disturbances	D 1	00.2	CI O O	AFE 504.00
12	What are the	Thyristor controlled series	Remember	CO 3	CLO 8	AEE524.08
	applications of	compensator (TCSC) is well-				
	ICSC?	known technical solution which				
	C (on High voltage (HV) and				
		Extra high voltage (HV) and				
		main application of TCSC is a				
		nam application of TCSC is a				
		energy system sustainability				
13	Advantages of	1 Increase in Power Transfer	Remember	CO 3	CLO7	AEE524.07
15	Series	Canability	Remember	005		ALL324.07
	Compensation	2 Improvement in System				
	compensation	Stability				
		3. Load Division among				
		Parallel Line				
14	Why power	The main reason for reactive	Remember	CO 3	CLO 9	AEE524.09
	compensation is	power compensation in a				
	important in	system is:				
	Power System?	1. The voltage regulation				
	2	2. Increased system stability				
		3. Better utilization of				
	5	machines connected to				_
		the system			1.00	
	0	4. Reduction in losses			- C	
		associated with the				
	0	system				
	0	5. To prevent voltage swell				
		as well as voltage sag.				
15	What is Line	Series compensation, reactive	Remember	CO 3	CLO 7	AEE524.07
	Compensation?	power is inserted in series with			Ph	
		the transmission line for				
		improving the impedance of the		. ×		
		system.		_		
		UNIT IV				
1	Define Voltage	A voltage source converter is a	Remember	CO 4	CLO 10	AEE524.10
_	Source	device which is used to convert				
	Converter?	DC into AC. It's a converter in				
		which the de voltage always has				
		one polarity and the power				
		reversal takes place through				
		reversal of the current polarity				
2	Define FACTS	The FACTS controller is	Remember	CO 4	CLO 1	AEE524.10
	Controllers?	defined as a power electronic				
		based system and other static				
		equipment that provide control				
		of one or more AC transmission				
		system parameters				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
3	Define Static	A Static Synchronous	Remember	CO 4	CLO 10	AEE524.10
	Synchronous	Compensator (STATCOM),				
	Compensator?	also known as a static				
		synchronous condenser				
		(STATCON), is a regulating				
		device used on alternating				
		current electricity transmission				
		networks. If connected to a				
		source of power it can also				
		provide active AC power. It is a				
		member of the FACTS family				
		of devices				
4	What is Static	A Static Synchronous Series	Remember	CO 4	CLO 9	AEE524.11
	Synchronous	Compensator (SSSC) is a type				
	Series	of flexible AC transmission	· · · · ·			
	Compensator?	system which consists of a				
		solid-state voltage source				
		inverter coupled with a				
		transformer that is connected in				
		series with a transmission line.				
		This feature can provide				
		controllable voltage				
		compensation.				
5	What is	It is defined as the ability of the	Remember	CO 4	CLO 11	AEE524.11
	Transient	power system to return to its				
	Stability?	normal conditions after a large				
		disturbance. The large				
		disturbance occurs in the	and the second se			
		system due to the sudden	and the second se			
		removal of the load, line				
		switching operations; fault				
	-	occurs in the system, sudden				
		outage of a line				
6	Difference	When a FACTS device	Remember	CO 4	CLO 11	AEE524.11
	between	(STATCOM or SSSC) is				
	STATCOM and	added, the transient energy in				
	SSSC?	post fault period decreases			· · · ·	
	C * .	rapidly and that indicates the	100		-	
	-3	addition of some damping.			100	
	· · · · ·	With the SSSC, the transient			h., .	
		energy decreases at a faster rate			6 C C -	
		than that of the STATCOM and		1		
		it reaches almost zero value at	1.1			
		about 3 s.				
7	Why UPFC is	The main advantage of the	Remember	CO 4	CLO 12	AEE524.12
	used in power	UPFC is to control the active				
	systems	and reactive power flows in the				
		transmission line The UPFC				
		allows a secondary but				
		important function such as				
		stability control to suppress				
		power system oscillations				
		improving the transient stability				
		of power system				
8	Why IPFC is	The Interline Power Flow	Remember	CO 4	CLO 12	AEE524.12
	used in power	Controller (IPFC) is one of the				
	systems?	latest generation Flexible AC				
		Transmission Systems				
		(FACTS) controller used to				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		control power flows of multiple				
		transmission lines.				
9	Comparision	UPFC injects series voltage in	Remember	CO 4	CLO 12	AEE524.12
	between UPFC	line and follows reference				
	and STATCOM?	power as required. SVC and				
		STATCOM are simulated in				
		voltage regulation mode where				
		a reference voltage is given at				
		the bus to which they are				
		connected. Their voltage				
		regulation capabilities and				
		reactive power compensation				
		ability is analyzed				
10	Applications of	1. STATCOM is installed to	Remember	CO 4	CLO 12	AEE524.12
_	STATCOM?	support electrical networks that				
		have a poor power factor and				
		often poor voltage regulation.				
		2. The most common use of				
		STATCOM is for voltage				
		stability.				
		3. A STATCOM is a voltage				
		source converter (VSC) based				
		device, with the voltage source				
		behind a reactor.				
11	Applications of	1. The SSSC is used for power	Remember	CO 4	CLO 12	AEE524.12
	SSSC?	flow control, voltage stability				
		and phase angle stability.				
		2. The benefit of the SSSC over				
		the conventional controllable				
		series capacitor is that the SSSC				
		induces both capacitive and				
	-	inductive series compensating				
		voltages on a line.	-			
12	How UPF is	The control of UPFC is done	Remember	CO 4	CLO 12	AEE524.12
	controlled?	using decoupled control				
	C	strategy and is found that this			1.1	
	0	enables the device to follow the			-	
	- C	changes in reference values of			Sec. 1	
		active and reactive power				
13	How UPFC	The power flow control is done	Remember	CO 4	CLO 12	AEE524.12
	Power flow is	by the UPFC by changing the				
	controlled	injected voltage magnitude and		~		
		phase angle. The performance				
		is analyzed with different				
		power factors and load				
1.4	II INFO	conditions.		<u> </u>	CI 0 10	100504.10
14	How UPFC	UPFC Circuit is configured	Remember	CO 4	CLO 12	AEE524.12
	Circuit is	with two voltage source				
	configured	converters, one is shunt				
		converter connected via a shunt				
		transformer and another is				
		series converter connected via a				
		series transformer. The two				
		converters are connected back				
		to back with a common DC link				
		capacitor. This arrangement has				
		uree major functions namely				
1		series, snunt and phase angle	1			

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code		
		regulation to be unified in the						
		same circuit						
15	What are the	The basic modeling of FACTS	Remember	CO 4	CLO 12	AEE524.12		
	basic modeling	devices can be done in two						
	of FACTS	ways						
	devices	.i)Current Source						
		Converters(CSC)						
		ii)Voltage Source						
		Converters(VSC)						
		TINITE X						
	UNIT-V							
1	What are the	1.Steady-State Interactions	Remember	CO 5	CLO 13	AEE524.13		
	different types of	2. Electromechanical-						
	FACTS	Oscillation Interactions						
	Controllers	3. Control or Small-Signal	· · · · ·					
	Interaction	oscillations						
		4. Sub Synchronous resonance						
		Interactions						
		5. High-Frequency Interactions						
2	State the various	The various FACTS	Remember	CO 5	CLO 13	AEE524.13		
	FACTS	applications to steady state						
	applications to	power system problems are						
	steady state	1.FACTS Applications to						
	power system	Optimal Power Flow						
	problems	2 EACTS Applications to						
		Deregulated Electricity Market	-					
		Deregulated Electricity Market						
3	Define the term	In an interconnected or	Remember	CO 5	CLO 13	AEE524.13		
	coordination	coordinated power system,						
		when the controller parameters						
	-	of a dynamic device are tuned						
		to obtain the best performance						
4	State the various	The various modes of SVC –	Remember	CO 5	CLO 13	AEE524.13		
	modes of SVC –	SVC Interactions are						
	SVC Interactions	1.Uncoupled SVC buses						
_	a 1	2.Coupled SVC buses			GL 0.1.1			
5	State the various	The various issues arises due to	Understand	CO 5	CLO 14	AEE524.14		
	issues arises due	FACTS devices installation are						
	to FACTS	1. Location and Feedback			1 A A			
	devices	Signals		S. 1				
	instantation	2. Coordination among		~				
		Different Control Schemes						
		E O C						
		3. Performance Comparison						
6	What is small	Control interaction between	Understand	CO 5	CLO 14	AEE524.14		
-	signal	individual FACTS controllers						
	oscillations?	and the network or between the						
		FACTS controllers and HVDC						
		links may lead to the onset of						
		oscillations in the range of 2-15						
		Hz.						

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
7	What is electro-	Electro-mechanical oscillation	Understand	CO 5	CLO 14	AEE524.14
	mechanical	interactions between FACTS				
	oscillation	controllers involves				
	interactions	synchronous generators,				
		compensator machines and				
		associated power system				
		stabilizer controls. The				
		oscillation include local mode				
		oscillation in the range of 0.8-2				
		Hz and inter area mode				
		0.8 Hz				
8	What is the main	1 Interruption in power supply	Understand	CO 5	CLO 12	AEE524 12
Ũ	problem with	2. Unreliability	onderstand	005		1122021112
	multiple SVCs in	3. Voltage Instability	1.1			
	a power system					
	network?					
9	What is meant by	GA is search procedures based	Understand	CO 5	CLO 15	AEE524.15
	genetic	on the mechanics of natural				
	Algorithm	selection and natural genetics.				
		They are develop to allow				
		computers to evolve solutions				
		to difficult problem such as				
		function, optimization and				
10	What is the roll	East control associated with	Understand	CO 5	CLO 13	AEE524 13
10	of Fast control	FACTS controllers provide	Onderstand	05	CLO 15	AEE324.13
	associated with	system improvements but they				
	FACTS	also can interact adversely with				
	controllers	one another				
11	What are the	These high frequency	Understand	CO 5	CLO 14	AEE524.14
	analysis methods	oscillations interactions are				
	used to	dertermined by frequency				_
	determine the	scanning programs,	-			
	control or Small	Electromagnetic Transient			C	
	Signal	Programs(EMTP's), physical		_		
	Oscillation	simulators and eigen value			4	
10	Interaction	analysis programs.	I In denoten d	COF	CL 0 14	AEE504.14
12	frequencies	Interactions	Understand	05	CLO 14	AEE324.14
	ranges of	3-3/5 Hz for Electromechanical				
	controllers	oscillations		27		
	interactions?	2-15 Hz for small signal		~		
		oscillations	1.1	5.1		
13	What are the	Controller interactions can	Understand	CO 5	CLO 13	AEE524.13
	Combinations of	occur in the following				
	FACTS	combinations:				
	Controller	1 Multiple FACTS controllers				
	Interactions	of a similar kind.				
		2. Multiple FACTS controllers				
		of a dissimilar kind.				
		3. Multiple FACTS controllers				
		and HVDC converter				
14	What is Sub	Synchronous oscillations may be	Understand	CO 5	CLO 13	AEE524 13
	Synchronous	caused by the interaction	Chaerstalla	005		11111111111111
	resonance (SSR)	between the generator torsional				
	Interactions	system and the series-				
		compensated-transmission lines,				
		the HVDC converter controls,				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		the generator excitation controls,				
		or even the SVCs. These				
		oscillations, usually in the				
		frequency range of 10–50/ 60				
		Hz, can potentially damage				
		generator shafts.				
15	What is range of	High-frequency oscillations in	Understand	CO 5	CLO 14	AEE524.14
	High –	excess of 15 Hz are caused by				
	Frequency	large nonlinear disturbances,				
	Interactions	such as the switching of				
		capacitors, reactors, or				
		transformers, for which reason				
		they are classified as				
		electromagnetic transients.	-			
		they are classified as electromagnetic transients.		0		

LIBER

Signature of the Faculty

K.Harshini, Assistant Professor

OCCATION F

HOD, EEE