TO CATALON ENR LIBERT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name		:	HEAT TRANSFER
Course Code		:	AME016
Program		:	B.Tech
Semester		:	VI
Branch	_	:	Mechanical Engineering
Section		:	A & B
Academic Year		:	2019 – 2020
Course Faculty		:	Dr. Ch. Sandeep, Associate Professor, ME

OBJECTIVES:

I	Understand the basic modes of heat transfer like conduction, convection and radiation with and without phase change in solid liquids and gases.
II	Design and analyze thermal fluidic components in engineering systems to energy mechanisms (in the form of heat transfer) for steady and unsteady state.
III	Conduct experiments in laboratories and analyze the results with theoretical ones to evolve research oriented projects in the field of heat transfer as well as propulsion.
IV	Apply the concepts of heat transfer with convective mode in internal and external flows involved in engineering components and work in real time problems in Industry.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
		UNIT - I			
1	What is Heat transfer?	Transmission of energy from one region to another as a result of "Temperature Gradient"	Understand	CO1	AME016.01
2	What is Heat?	The energy in transit is termed as "Heat" represented by "Q"	Understand	CO1	AME016.01
3	What are the Modes of Heat Transfer?	(1) Conduction(2) Convection(3) Radiation	Remember	CO1	AME016.01
4	Define Conduction?	Transfer of Heat from one part of a substance to another part of the substance (or) from one substance to another in physical contact whit it, with appreciable displacement of the substance.	Understand	CO1	AME016.02
5	Define a Fourier's Law of Conduction?	The rate of flow of heat through a simple homogeneous solid is directly proportional to the area measured normal to the direction of heat flow and to the temperature gradient in that direction	Understand	COI	AME016.02

	QUESTION	ANSWER	Blooms Level	CO	CO Code
		$\begin{split} Q &= -AdT/dx;\\ Where, A is Area in m^2.\\ dT &/ dx - Temperature gradient,\\ K/m;\\ k - Thermal conductivity, W/mK \end{split}$			
	Define Thermal conductivity?	Thermal conductivity is defined as the ability of a substance to conduct heat. Represented by "K":Units: W/mK	Understand	CO1	AME016.02
7	What are factors affecting the Thermal Conductivity?	a. Moisture b. Density of material c. Pressure d. Temperature e. Structure of material	Remember	CO1	AME016.03
	What is meant by Natural Convection and Forced Convection?	It is fluid motion is produced due to change in density resulting from temperature gradients, the mode of heat transfer is said to be free or natural convection. If the Fluid motion is artificially created by means of an external agency like blower or Fan, the heat transfer is termed as Forced Convection. Q = hA(T _s -T _f) Where Q is Rate of Heat Transfer h — Heat Transfer Coefficient (W/m ² K). T _s - Fluid Temperature T _f - Surface Temperature	Remember	CO1	AME016.03
9	What is Newton's Law of Cooling?	The rate equation for the convective heat transfer between a surface and adjacent fluid is prescribed by Newton's Law of Cooling	Understand	CO1	AME016.02
10	Define Radiation Define Stefan-Boltzmann law?	Radiation is the transfer of heat through space or matter by means other than conduction or convection Radiation is an Electromagnetic Wave Phenomenon It depends only on the Temperature and on the optical properties of the emitter $Q = F\sigma A \in (T_1^4 - T_2^4)$ Where ' σ ' is Stefan-Boltzmann Constant \in : emissivity F: View Factor It is defined as the total radiant heat energy emitted from a surface is proportional to the fourth power of its absolute temperature	Understand	CO1	AME016.02 AME016.02
12	Define Emissivity?	Emissivity is defined as the ratio of emissive power of anybody to the	Understand	CO1	AME016.02

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
		emissive power of a blackbody. For gray body emissivity varies between 0 to 1, & for black body emissivity is 1.			
	Define a black surface	A black surface is defined by three criteria:			
13		 it absorbs all radiation that is incident on it it emits the maximum energy possible for a given temperature and wavelength of radiation (according to Planck's law) 	Understand	CO1	AME016.02
		• the radiation emitted by a blackbody is not directional (it is a diffuse emitter) A black surface is the perfect emitter and absorber of radiation. It is an idealized concept (no surface is exactly a black surface), and the characteristics of real surfaces are compared to that of an ideal black			
		surface.			
14	What is Steady State process?	A steady process is one which is not depend on time, that is, the rate of heat transfer does not vary with time.	Remember	CO1	AME016.03
15	What is meant by One – Dimensional Heat Conduction?	If the temperature varies only in the x-direction, then the Laplacian operator takes the form d ² T/dx ² in all directions	Remember	CO1	AME016.03
16	Write the three dimensional heat conduction equation in Cartesian coordinates	The general three dimensional heat conduction equation in Cartesian $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{\dot{q}}{k} = \frac{1}{\alpha} \cdot \frac{\partial T}{\partial \tau}$ coordinate is	Remember	CO1	AME016.03
	Write the three dimensional heat	The general three dimensional heat conduction equation in cylindrical coordinates is		4	
17	conduction equation in cylindrical coordinates	$\frac{1}{r}\frac{\partial}{\partial r}\left(kr\frac{\partial T}{\partial r}\right) + \frac{1}{r^2}\frac{\partial}{\partial \Phi}\left(k\frac{\partial T}{\partial \Phi}\right) + \frac{\partial}{\partial z}\left(k\frac{\partial T}{\partial z}\right) + q = \rho c$	Remember	CO1	AME016.03
18	What is meant by Thermal Diffusivity?	The physical significance of thermal diffusivity is that it tells us how fast heat is propagated or it diffuses through a material during changes of temperature with time. The larger the thermal diffusivity, the shortest is the time required for the applied heat to percent deeper into the solid	Understand	CO1	AME016.02
19	What is meant by initial and boundary conditions	The set equations derived so far describe a whole class of conduction phenomena in the most general form. The temperature distribution in a	Understand	CO1	AME016.02

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
		medium of given form and size can be determined by solving an appropriated equation are called boundary conditions			
		UNIT - II			
1	Define overall heat transfer coefficient.	The overall heat transfer coefficient is defined in terms of the total thermal resistance between two fluids. If there are a number of thermal resistances between the two fluids, the overall heat transfer coefficient is given by:	Understand	CO2	AME016.04
		$U = 1/\sum R$ R is the Total Thermal Resistanct	1 (
2	What is critical radius of insulation or critical thickness?	Addition of insulating material on a surface does not reduce the amount of heat transfer rate always. In fact under certain circumstances it actually increases the heat loss up to certain thickness of insulation. The radius of insulation for which the heat	Understand	CO2	AME016.07
2		transfer is maximum is called critical radius of insulation, and the corresponding thickness is called critical thickness. $R_c = k/h$	Chaorsana	662	11112510107
3	What is the effect of change in outer radius of the hollow cylinder on the thermal resistance of	the thermal resistance of conduction increases with increase in outer radius of the hollow cylinder	Understand	CO2	AME016.07
4	conduction? Define fins or Extended surfaces.	Heat transfer by convection between a surface and fluid surroundings it can be increased by attaching to the surface thin strips of metals called fins. The surfaces used for increasing heat transfer are also called as extended surfaces	Understand	CO2	AME016.07
5	Define Fin efficiency and effectiveness.	The efficiency of a fin is defined as the ratio of actual heat transferred to the maximum possible heat transferred by the fin $\eta_{\text{fin}} = Q_{\text{fin}}/Q_{\text{max}}$ Fin effectiveness is the ratio of heat transfer with fin to that without fin	710	CO2	AME016.07
6	What are the Common applications of finned surfaces	(i) Electrical motors (ii) Economizers for steam power plant (iii) Convectors for steam and cold water heating systems (iv) Cooling coils	Remember	CO2	AME016.06

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
7	What is meant by Transient heat conduction or unsteady state conduction?	When there is a change in temperature of the body with time then it is said to transient or unsteady state	Understand	CO2	AME016.05
8	Explain the significance of Fourier Number	Biot number and Fourier number are two dimensionless number used in transient heat transfer. They are mainly used in transient heat transfer, where you want to find the time of cooling/heating of the object from a temperature to ambient temperature It is defined as the ratio of characteristic body dimensions to the temperature wave penetration depth in time.	Understand	CO2	AME016.08
9	What is Periodic heat flow?	In periodic heat flow, the temperature varies on a regular basis	Understand	CO2	AME016.05
10	What are Heisler charts?	A group of curves are used with unsteady-state case when Biot no. is greater than 0.1. The most cases that to be treated are 1- Infinite plate (plate where thickness is very small in comparison to other dimension). 2-Infinite cylinder (where the diameter is very small compared to length) 3-Sphere	Remember	CO2	AME016.06
11	What is meant by Lumped heat analysis?	In a Newtonian heating or cooling process the temperature throughout the solid is considered to be uniform at a given time. Such an analysis is called lumped heat capacity analysis	Understand	CO2	AME016.04
12	What is meant by periodic heat flow?	Periodic heat flow through building section is practically being used for air-conditioning applications. An effort has been made to combine the non-periodic transient heat flow due to instantaneous rise in outdoor temperature with periodic heat flow	Understand	CO2	AME016.05
13	What is meant by infinite solid?	A solid which extends itself infinitely in all directions of space is known as infinite solid. In infinite solids, the Biot number value is between 0.1 and 100	Understand	CO2	CAM016.04
14	What is mean by Semi- infinite solids?	A semi-infinite solid is an idealized body that has a single plane surface and extends to infinity in all directions In a semi-infinite solid, at any instant of time, there is always a point where the effect of heating or cooling at one of its boundaries is not felt at all. At this point the temperature remains unchanged. In semi-infinite solids, the Biot number value is ∞	Understand	CO2	AME016.04
15	Define Biot Number.	The ratio of the conductive heat resistance within the object to the	Remember	CO2	AME016.08

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
		convective heat transfer resistance			
		across the object's boundary The Biot number is given by:			
		Bi = hL/k			
		where			
		h = convective heat transfer			
		coefficient, k = thermal conductivity			
		L = characteristic length.			
	What is the	Biot number is used to find Lumped			
16	significance of	heat analysis, Semi infinite solids and	Remember	CO2	AME016.08
	Biot number	infinite solids If Bi< 0.1 Lumped heat analysis. Bi= 0.1 < Bi< 10 025.			
		unarysis. B1= 0.1 \ B1\ 10 025.			
		UNIT - III			
	What is	Dimensional Analysis (also called			
	dimensional	Factor-Label Method or the Unit			
1	analysis?	Factor Method) is a problem-solving method that uses the fact that any	Understand	CO ₃	AME016.10
1		number or expression can be	Officerstand	COS	AMEO10.10
		multiplied by one without changing			
	**	its value. It is a useful technique.			
	How is dimensional	Dimensional Analysis is a problem- solving method that uses the fact that			
2	analysis used	any number or expression can be	Understand	CO ₃	AME016.10
	to solve	multiplied by one without changing	Charama		11112010110
	problems?	its value. It is a useful technique.			
	Why is dimensional	It is very important to understand the			
	analysis	physical nature of the problem. Then it is only about solving simple			
3	important?	mathematical equations. Therefore the	Understand	CO3	AME016.10
		dimensional analysis is a useful	1	77	
		method for students with weaker mathematical skills too.	4 -	v .	
	State	Buckingham Pi theorem states "If		,)
	Buckingham Pi	there are n variables in a			
	Theorem	dimensionally homogeneous equation		^	
4		and if these contain m fundamental dimensions, then the variables are	Remember	CO3	AME016.09
		arranged in to (n-m) dimensionless		0	
		terms. These dimensionless terms are		16.	
		called Pi terms"		-	
	Define Reynold's	It is defined as the ratio of inertia force to viscous force. Re = Inertia	110		
5	number.	force / Viscous force	Remember	CO3	AME016.09
		$Re = \rho v d/v$			
	Define Nusselt	Nusselt number (Nu) is the ratio of			
	number	convective to conductive heat transfer			
		across (normal to) the boundary. In			
		this context, convection includes both			
6		advection and diffusion It is represented by Nu	Remember	CO3	AME016.09
		Nu = convective heat transfer/			
		conductive heat transfer			
		Nu = hL / k			
7	Define Prandtl	Prandtl group is a dimensionless,	Da	CO2	AMEO1 COO
7	number	defined as the ratio of momentum	Remember	CO3	AME016.09

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
		diffusivity to thermal diffusivity. That			
		is, the Prandtl number is given as: $Pr = c_p \mu/k$			
		Where, c_p is specific heat			
		μ is dynamic viscosity			
		k is thermal conductivity			
	Define Grashof	It is defined as the ratio of product of			
8	number	inertia force and buoyancy force to the square of viscous force. Gr	Remember	CO3	AME016.09
0		=Inertia force x Buoyancy force /	Remember	CO3	AME010.09
		[Viscous force]2			
	Define Stanton	It is the ratio of Nusselt number to the			
9	number.	product of Reynolds number and Prandtl number	Remember	CO3	AME016.09
		Frandti number	1 (
	Define	The thickness of the boundary layer has		_	
	boundary layer	been defined as the distance from the			
10	thickness	surface at which the local velocity of	Understand	CO3	AME016.13
		temperature reaches 99% of the external velocity or temperature.			
	What is	In thermal boundary layer,			
11	thermal	temperature of fluid is less than 99%	Understand	CO ₃	AME016.13
1.1	boundary	of free stream temperature.	Understand	COS	AWILO10.13
	layer? What is	In hydrodynamic boundary layer,			
	hydrodynamic	velocity of the fluid is less than 99%			
12	boundary	of free stream velocity	Understand	CO3	AME016.13
	layer?				
	Define	The displacement thickness is the			
13	displacement thickness	distance, measured perpendicular to the boundary, by which the free	Understand	CO3	AME016.13
1.5	unckness	stream is displaced on account of	Onderstand	COS	AME010.13
	500	formation of boundary layer.			
	What is forced	If the fluid motion is artificially	4 -	,	
14	convection?	created by means of an external force like a blower or fan, that type of heat	Understand	CO3	AME016.13
14	C	transfer is known as forced	Understand		
		convection			
	What is meant	If the fluid motion is produced due to		9	
1.5	by free or	change in density resulting from	11	CO2	AME 016 12
15	natural convection?	temperature gradients, the mode of heat transfer is said to be natural	Understand	CO3	AME016.13
	convection.	convection.		-	
	What are the	Reynolds number (Re)	10		
	dimensionless	Nusselt number (Nu)	1		
16	parameters used in free	Prandtl number (Pr) Grashof number(Gr)	Understand	CO3	AME016.09
	and forced	Grasnor number(Gr)			
	convection?				
	Define	The thickness of the boundary layer			
17	boundary layer thickness	has been defined as the distance from	II. danatan d	CO3	AME016 12
1 /	unckness	the surface at which the local velocity or temperature reaches 99% of the	Understand	COS	AME016.13
		external velocity or temperature.			
	Indicate the	In the boundary layer concept the			
	concept or	flow field over a body is divided in to			
18	significance of boundary layer	two regions: A thin region near the body called the	Understand	CO3	AME016.13
	boundary rayer	boundary layer where the velocity			
		and the temperature gradients are			

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
		large. The region outside the boundary layer			
		where the velocity and temperature			
		gradients are very nearly equal to			
		their free stream velocity values			
	D (1) D (1)	UNIT - IV	T T		
	Define Boiling	The change of phase from liquid to vapour state is known as boiling. It			
1		occurs when is heated to boiling	Understand	CO4	AME016.14
		point.			
	What is meant	The change of phase from vapour to			
2	by condensation?	liquid state is known as condensation. A pure substance condenses at a	Understand	CO4	AME016.15
	condensation?	temperature equal to its boiling point.	-		
	Give the	Boiling and condensation process			
	application of	finds wide applications as	-		
	boiling and	mentioned below:			
3	condensation.	 Thermal and nuclear power plants 	Understand	CO ₄	AME016.14
3		Refrigerating systems	Oliderstalld	CO4	AMEU10.14
		Process of heating and			
		cooling			
	***	Air conditioning systems			
	What is mean by nucleate	Nucleate boiling is a type of boiling that takes place when the surface			
	pool boiling?	temperature is hotter than the			
	F	saturated fluid temperature by a			
4		certain amount but where the heat	Understand	CO4	AME016.14
		flux is below the critical heat flux.			
		The critical heat flux is the peak on the curve between nucleate boiling			
		and transition boiling			
	What is meant	Pool boiling is the process in which	11		-
	by pool boiling?	the heating surface is submerged in a large body of stagnant liquid. The	9 _		
5	bolling:	relative motion of the vapor produced	Understand	CO4	AME016.14
		and the surrounding liquid near the			
	0	heating surface is due primarily to the			
	What are the	buoyancy effect of the vapor There are three modes of		- 7	
	modes of	condensation:			
6	condensation?	Filmwise condensation	Understand	CO4	AME016.15
		Dropwise condensation	. 0.		
	What is meant	Direct contact condensation The liquid condensate wets the solid	110		
	by Filmwise	surface, spreads out and forms a			
7	condensation?	continuous film over the entire	Understand	CO4	AME016.16
		surface is known as film wise			
	What is meant	condensation In dropwise condensation, the vapor			
	by dropwise	condenses into small liquid droplets		~~ :	
8	condensation?	of various sizes which fall down on	Understand	CO4	AME016.15
		the surface in random fashion.			
	What is meant	It occurs when vapor is brought into			
	by Direct contact	contact with a cold liquid. As in jet condensers, the cooling water is			
9	condensation?	sprayed on the exhaust steam and	Understand	CO4	AME016.15
		there is direct contact between the			
		exhaust steam and cooling water.			

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
10	What is Nucleate boiling?	Nucleate boiling is a type of boiling that takes place when the surface temperature is hotter than the saturated fluid temperature by a certain amount but where the heat flux is below the critical heat flux.	Understand	CO4	AME016.14
11	What is the purpose of boiling?	When a liquid reaches its boiling point bubbles of gas form in it which rise into the surface and burst into the air. This process is called boiling. If the boiling liquid is heated more strongly the temperature does not rise but the liquid boils more quickly	Understand	CO4	AME016.14
12	Define Emissivity?	Emissivity is defined as the ratio of the energy radiated from a material's surface to that radiated from a blackbody (a perfect emitter) at the same temperature and wavelength and under the same viewing conditions. It is a dimensionless number between 0 (for a perfect reflector) and 1 (for a perfect emitter).	Understand	CO4	AME016.17
13	What is the units of Emissivity?	In the MKS unit system, radiative flux is given in joules per second (watts) per square meter (W/m²). Emissivity () is the ratio of a surface's ability to emit radiant energy compared with the ability of a perfect black body of the same area at the same temperature	Understand	CO4	AME016.17
14	What is meant by reflectivity?	It a measure of the ability of a surface to reflect radiation, equal to the reflectance of a layer of material sufficiently thick for the reflectance not to depend on the thickness. Symbol is ρ	Understand	CO4	AME016.17
15	What is meant by absorptivity?	Absorptivity is defined as the ratio between radiation absorbed and incident radiation. Symbol is α	Understand	CO4	AME016.18
16	State Stefan- Bolzmann law	The emissive power of a blackbody is proportional to the fourth power of absolute temperature $Q = AT^4$	Remember	CO4	AME016.18
17	State Wien's displacement law.	The Wien's law gives the relationship between temperature and wavelength corresponding to the maximum spectral emissive power of the black body at that temperature	Remember	CO4	AME016.18
18	State Kirchoff's law of radiation.	This law states that the ratio of total emissive power to the absorptivity is constant for all surfaces which are in thermal equilibrium with the surroundings	Remember	CO4	AME016.18
19	What is the difference between the Stefan Boltzmann law and Wien's law	The Stefan-Boltzmann law says that the total energy radiated from a blackbody is proportional to the fourth power of its temperature, while Wien's law is the relationship between the wavelength of maximum intensity a blackbody emits and its	Remember	CO4	AME016.18

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
		temperature.			
20	What is difference between radiation and irradiation?	The word "irradiation" refers to the exposure of something to radiation. Radiation has a broad meaning, covering different cases of transferring energy, including electromagnetic radiation and nuclear radiation. Irradiation refers specifically to a process by which an object is exposed to radiation.	Understand	CO4	AME016.18
21	State Lambert's cosine law.	It states the total emissive power from a radiating plane surface in any direction is proportional to the cosine of the angle of emission	Remember	CO4	AME016.17
		UNIT - V			
1	Define heat exchanger?	A heat exchanger is a system designed to transfer heat between two fluids to control the temperature of one of the fluids. A heat exchanger could remove thermal energy from a fluid used in an air-conditioning system or add thermal energy to a system where processes require a certain temperature to work properly	Understand	CO5	AME016.19
2	What are the types of heat exchangers?	irect contact heat exchangers ndirect contact heat exchangers urface heat exchangers arallel flow heat exchangers ounter flow heat exchangers ross flow heat exchangers hell and tube heat exchangers	Understand	CO5	AME016.19
3	What is difference between heat exchanger and condenser?	ompact heat exchangers Condenser is also a heat exchanger. The main difference between these two are that in heat exchanger only heat is transferred without phase change and in condenser heat is transferred along with the phase change.	Understand	CO5	AME016.19
4	What is mean by open and COsed heat exchanger?	An open system is defined as a "system in exchange of matter with its environment, presenting import and export, building-up and breaking-down of its material components." COsed systems, on the other hand, are held to be isolated from their environment.	Understand	CO5	AME016.19
5	What is mean by Recuperators?	The is the most common type of heat exchangers in which the hot and cold fluid do not come into direct contact	Understand	CO5	AME016.19

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code
		with each other but are separated by a			
		tube wall or surface			
6	What is meant	In this type of heat exchangers, hot	** 1	G0.	13.6704.6.40
	by	and cold fluids flow alternately	Understand	CO5	AME016.19
	Regenerators? What are the	through the same space			
7	types of heat	A heat exchanger can have several different flow patterns. Counter flow,			
	exchangers	parallel flow, and cross flow are			
	according flow	common heat exchanger types. A	Understand	CO5	AME016.19
	Ü	counter flow heat exchanger is the			
		most efficient flow pattern of the			
		three			
8	What is meant	In this type, hot and cold fluids move			
	by parallel flow heat	in the same direction	Understand	CO5	AME016.19
	exchangers?		J		
9	What is meant	In this type, hot and cold fluids move			
	by counter	in parallel but in opposite directions		~~~	
	flow heat	and the second s	Understand	CO ₅	AME016.19
	exchangers?				
10	What is meant	In this type, hot and cold fluids			
	by cross flow	move at right angles to each other.	Understand	CO ₅	AME016.19
	heat		Sharistana		1201001
	exchangers?				
	What is meant by shell and	The heat exchangers have tube walls, which allow the exchange of heat			
	tube heat	between two fluids. The overall heat			
	exchangers?	transfer coefficient of the heat			
11		exchanger depends on the	Understand	CO5	AME016.19
		configuration you choose. There are			
		different types of shell and tube heat			
		exchangers, which are used in a	-		
	****	variety of different applications			
	What is the	In a two-phase heat exchanger, a liquid can be heated to the point that it	4 _		
	purpose of a shell and tube	is boiled into a gas or it may be used			J.
	heat	for the purpose of cooling a vapor so			
12	exchanger?	that it can then be condensed into a	Understand	CO5	AME016.19
	C	liquid. Such phase changes typically			
		take place on the shell side of the			
		shell and tube heat exchanger		500	
	What is meant	There are many special purpose heat	- 5		
	by compact heat	exchangers called compact heat exchangers. They are generally	. 0.		
13	exchangers?	exchangers. They are generally employed when convective heat	Understand	CO5	AME016.19
13	exchangers.	transfer coefficient associated with	Chacistana	CO3	7 HVILO10.17
		one of the fluids is much smaller than			
		that associated with the other fluid			
14	What is meant	Log Mean Temperature Difference or			
	by LMTD?	LMTD is the driving force for the			
		amount of exchanged heat by a heat			
		exchanger. LMTD($(\Delta T)_{m}$) approach is quite straight forward and simple. But			
		this approach cannot be used for the			
		cases, where phase change occurs in	Understand	CO5	AME016.20
		the heat exchanger			
		the total heat transfer rate in that heat			
		exchanger is expressed as			
		$Q = U A (\Delta T)_{m}$			

S. No	QUESTION	ANSWER	Blooms Level	CO	CO Code				
		Q – Heat duty of the heat exchanger							
		(in watts)							
		U – Heat transfer co-efficient (in							
		watts/Kelvin/Meter square)							
		A – Heat transfer area (in meter							
		square)							
15	What is meant	The fouling factor represents the							
	by fouling	theoretical resistance to heat flow due							
	factor?	to a build-up of a layer of dirt or other							
		fouling substance on the tube surfaces							
		of the heat exchanger, but they are	Understand	CO5	AME016.20				
		often overstated by the end user in an							
		attempt to minimize the frequency of							
		cleaning	7 (
		It is represented by "f".							
	What is meant	The Number of Transfer Units (NTU)							
	by NTU?	Method is used to calculate the rate of							
		heat transfer in heat exchangers							
		(especially counter current							
16		exchangers) when there is insufficient	Understand	CO ₅	AME016.20				
		information to calculate the Log-							
		Mean Temperature Difference							
		(LMTD							
		NTU = UA/C _{min}							
	What is	Effectiveness (ε), is defined as the							
	effectiveness?	ratio of the actual heat transfer rate to							
1.7		the maximum possible heat transfer	XX 1 1	G0.5	13 CE 01 6 20				
17		rate for the given flow and	Understand	CO ₅	AME016.20				
		temperature conditions							
		$\mathcal{E} = Q/Q_{\text{max}}$							
	What	The effectiveness-NTU and LMTD							
	advantage does	methods are equivalent. An advantage			100				
	the	of the effectiveness-NTU method is	7		100				
	effectiveness	its ability to predict the outlet	4 _		and the same of th				
18	NTU method	temperatures without resorting to a	Understand	CO5	AME016.20				
	have over the	numerical iterative solution of a							
	LMTD	system of nonlinear equations							
	method?	system of nonlinear equations							
	memou.	e Table		- 1					
C!	Signature of the Faculty								
Signat	ture of the Facult	У							
	Signature of HOD								
				>- 6 -1					