

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

DEFINITIONS AND TERMINOLOGY

Course Name		:	ELECTRICAL CIRCUIT
Course Code		:	AEEB03
Program		:	B.Tech
Semester		:	II
Branch	~	:	EEE, ECE
Section	1	:	ALL
Academic Year		:	2019-2020
Course Faculty		:	A SRIKANTH, Assistant Professor, EEE

OBJECTIVES:

The course should enable the students to:

Ι	Classify circuit parameters and apply Kirchhoff's laws for network reduction.
II	Apply mesh analysis and nodal analysis to solve electrical networks.
	We want the back of the standard back to the state of the
III	Illustrate single phase AC circuits and apply steady state analysis to time varying circuits.

DEFINITIONS AND TERMINOLOGYQUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code				
	UNIT-I (INTRODUCTION TO ELECTRICAL CIRCUITS)									
1	Define Voltage	Voltage,also calledelectromotiveforce, is a quantitative expression of the potential difference in charge between two points in an electrical field. Voltage is measured in Volts and represented by the letter 'V'	Remember	CO 1	CLO 2	AEEB03.02				
2	Define flow of charge	Current is the rate at which an electric charge flows in a conductor. It is the number of electrons passing a given point in a second. This means that if more electrons pass by a given point, the current is greater. The symbol for current is the letter "I". Electrical current is measured in Amperes or "amps".	Remember	CO 1	CLO 2	AEEB03.02				
3	Define Power	The rate at which the work is being done in an electrical circuit is called an electric	Remember	CO 1	CLO 2	AEEB03.02				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		power. In other words, the electric power is defined as the rate of the transferred of energy. The electric power is produced by the generator and can also be supplied by the electrical batteries. It gives a low entropy form of energy which is carried over long distance and it is converted				
		into various other forms of energy like motion, heat energy, etc				
4	State Ohm's Law	Ohm's law states that the current through a conductor between two points is directly proportional to	Understand	CO 1	CLO 3	AEEB03.03
		the potential difference across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equation that describes this relationship:I=V/R				
5	State Kirchhoff [°] s current Law	KCL or Kirchhoffs current law or Kirchhoffs first law states that the total current in a closed circuit, the entering current at node is equal to the current leaving at the node or the algebraic sum of current	Understand	CO 1	CLO 3	AEEB03.03
	E	at node in an electronic circuit is equal to zero.	- 11	-1		2
6	State Kirchhoff's voltage Law	KVLor Kirchhoff's voltage law or Kirchhoff's secondlaw states that, the algebraic sum of the voltage in a closed circuit is equal to zero or the algebraic sum of the voltage at node is equal to zero. Hence, the sum of the voltage differences across all the elements in a	Understand	CO 1	CLO 3	AEEB03.03
7	Explain Energy Sources (Independent)	circuit is always zero. Independent sources are that which does not depend on any other quantity in the circuit. They are two terminal devices and has a constant value, i.e. the voltage across the two terminals remains constant irrespective of all circuit conditions. The strength of voltage or current is not changed by any variation in the connected network the source is said to be either independent voltage or independent current source.	Remember	CO 1	CLO 2	AEEB03.02

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		In this, the value of voltage or current is fixed and is not adjustable				
8	Explain Energy Sources (Dependent)	The sources whose output voltage or current is not fixed but depends on the voltage or current in another part of the circuit is called Dependent or Controlled source. They are four terminal devices. When the strength of voltage or current changes in the source for any change in the connected network, they are called dependent sources. The dependent sources are represented by a diamond shape. (VCVS, VCCS,	Remember	CO 1	CLO 2	AEEB03.02
9	Differentiate active and passive elements	CCCS, CCVS) Active components are those who delivers or produce energy or power in the form of a voltage or current. Active components can provide the power gain, whereas the passive components are not capable of providing the power gain. Passive elements include resistances, capacitors, and coils (also called inductors)	Remember	CO 1	CLO 2	AEEB03.07
10	Formula for Star to delta transformation	Star to Delta (Y to Δ) Resist Conversion Formula V_1 V_1 V_1 V_1 V_2 R_3 V_2 V_3 V_3 V_3 V_3 Z_3 $R_a = \frac{R_1R_2 + R_1R_3 + R_2R_3}{R_1}$ $R_b = \frac{R_1R_2 + R_1R_3 + R_2R_3}{R_2}$ $R_c = \frac{R_1R_2 + R_1R_3 + R_2R_3}{R_3}$	R	CO 1	CLO 4	AEEB03.04

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
11	Formula for	Delta to Star (\(\(\Delta to Y)) Resis	t Understand	CO 1	CLO 4	AEEB03.04
	delta to star transformation	Conversion Formula				
	transformation	<i>v</i> ₁ — <i>v</i> ₁ —	—			
		R _c R _b	1			
		$V_2 \longrightarrow V_2 \longrightarrow$	_			
		$\begin{array}{c} V_2 & & \\ V_2 & & \\ V_3 & & \\ \end{array} \qquad \begin{array}{c} V_2 & \\ V_3 & \\ \end{array} \qquad \begin{array}{c} V_2 & \\ V_3 & \\ \end{array}$	_			
		$R_1 = \frac{R_b R_c}{R_a + R_b + R_c}$				
		$R_2 = \frac{R_a R_c}{R_a + R_b + R_c}$				
		$R_3 = \frac{R_a R_b}{R_a + R_b + R_c}$				
10				GO 1	GT 0 1	
12	Mesh analysis definition	Mesh analysis (or the mesh	Remember	CO 1	CLO 4	AEEB03.04
	definition	current method) is a method that is used to solve planar				
		circuits for the currents (and				
		indirectly the voltages) at any				
		place in the electrical circuit.				
		Planar circuits are circuits that				
		can be drawn on a plane surface with no wirescrossing				
		each other. A more general				
		technique, called loop				
		analysis (with the				
		corresponding network				
		variables called loop currents) can be applied to any circuit,				
		planar or not. Mesh analysis				
		and loop analysis both make			·	
	50	use of Kirchhoff's voltage	_			
	-	lawto arrive at a set of			100	
	<u> </u>	equations guaranteed to be solvable if the circuit has a				2
	G	solution.			~	
13	Nodal analysis	In electric circuits	Remember	CO 1	CLO 4	AEEB03.04
	definition	analysis, nodal			1 m	
		analysis, node-voltage				
		analysis, or the branch current method is a method of				
		determining the voltage		20		
		(potential difference) between	N			
		"nodes" (points where				
		elements or branches connect)	PA			
		in an electrical circuit in terms of the branch currents.				
		In analyzing a circuit				
		using Kirchhoff's circuit laws,				
		one can either do nodal				
		analysis using Kirchhoff's				
		current law (KCL) Nodal analysis writes an				
		equation at each electrical				
		node, requiring that the				
		branch currents incident at a				
		node must sum to zero. The				
		branch currents are written in terms of the circuit node				
		terms of the circuit node				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
14	Supermesh analysis definition Super node analysis definition	voltages. Super mesh is defined as the combination of two meshes which have current source on theirboundary. Super mesh Analysis is a better technique instead of using Mesh analysis to analysis such a complex electric circuit or network, where two meshes have a current source as a common element. Super node circuit analysis instead of Node or Nodal circuit analysis to simplify such a network	Remember	CO 1	CLO 4 CLO 4	AEEB03.04 AEEB03.04
		where the assign super node, fully enclosing the voltage source inside the super node and reducing the number of none reference nodes by one (1) for each voltage source.				
		UNIT-II (AC	CIRCUITS)			
1	State the sinusoidal alternating waveform	The term AC or to give it its full description of AlternatingCurrent, generally refers to a time- varying waveform with the most common of all being called a Sinusoid better known as a Sinusoidal Waveform. Sinusoidal	Understand	CO 2	CLO 5	AEEB03.05
	5	waveforms are more generally called by their short description as Sine Waves.	1	=7	ć	2
2	Main difference between ac and dc current	Alternating current describes the flow of charge that changes direction periodically. As a result, the voltage level also reverses along with the current. Direct current is a bit easier to understand than alternating current. Rather than oscillating back and forth, DC provides a constant voltage or current In direct current (DC), the electric charge (current) only flows in one direction. Electric charge inalternating current (AC), on the other hand, changes direction periodically. The voltage in ACcircuits also periodically reverses because	Remember	CO 2	CLO 5	AEEB03.05
3	Define peak value	thecurrent changes direction. Peak Value: The maximum value attained by an alternating quantity	Remember	CO 2	CLO 5	AEEB03.05

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		during one cycle is called its Peak value. It is also known as the maximum value or amplitude or crest value. The sinusoidal alternating quantity obtains its peak value at 90 degrees				
4	Define average value	Average value: The average value is defined as "the average of all instantaneous values during one alternation". That is, the ratio of the sum of all considered instantaneous values to the number of instantaneous values in one alternation period.	Remember	CO 2	CLO 5	AEEB03.05
5	Define R.M.S value	RMS (Root Mean Square) value: The Root Mean Square (RMS) value is "the square root of the sum of squares of means of an alternating quantity".	Remember	CO 2	CLO 5	AEEB03.05
6	Define mean factor	The ratio of the root mean square value to the average value of an alternating quantity (current or voltage) is called Form Factor. The average of all the instantaneous values of current and voltage over one complete cycle is known as the average value of the	Remember	CO 2	CLO 5	AEEB03.05
	0	alternating quantities.				>
7	Define peak factor	Peak Factor is defined as the ratio of maximum value to the R.M.S value of an alternating quantity. The alternating quantities can be voltage or current. The maximum value is the peak value or the crest value or the amplitude of the voltage or current.	Remember	CO 2	CLO 5	AEEB03.05
8	Define reactive power	In electric power transmission and distribution, volt- ampere reactive (var) is a unit by which reactive power is expressed in an ACelectricpowersystem. Reactive power exists in an AC circuit when the current and voltage are not in phase. We know that reactive loads such as inductors and capacitors di ssipate zero power, yet the fact that they drop voltage and draw current	Remember	CO 2	CLO 5	AEEB03.05

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		gives the deceptive impression that they actually do dissipate power. This "phantom power" is called reactive power, and it is measured in a unit called Volt-Amps- Reactive (VAR), rather than watts. The mathematical				
		symbol for reactive power is (unfortunately) the capital letter Q.				
9	Define real power	Active power does do work, so it is the real axis. The unit for all forms of power is the watt (symbol: W), but this unit is generally reserved for active power. Apparent power is	Remember	CO 2	CLO 5	AEEB03.05
		conventionally expressed in volt-amperes (VA) since it is the product of rms voltage and rms current. The actual amount of power being used, or dissipated, in a circuit is called true power, and it is measured in watts				
		(symbolized by the capital letter P, as always).				
10	Define apparent power	The combination of reactive power and true power is called apparent power, and it	Remember	CO 2	CLO 5	AEEB03.05
	EDUC	is the product of a circuit's voltage and current, without reference to phase angle. Apparent power is measured in the unit of Volt- Amps (VA) and is symbolized by the capital letter S.	R	7	1101	
11	Formulas for True, Reactive, and Apparent Power	P = true power P = $l^2 R$ P = $\frac{E^2}{R}$ Measured in units of Watts Q = reactive power Q = $l^2 X$ Q = $\frac{E^2}{X}$ Measured in units of Volt-Amps-Reactive (VAR)	Understand	CO 2	CLO 5	AEEB03.05
		S = apparent power $S = 1^{2}Z$ $S = \frac{E^{2}}{Z}$ $S = 1E$ Measured in units of Volt-Amps (VA)				
12	Explain the phasor representation	Phasor diagrams can be drawn to represent more than two sinusoids. They can be either voltage,current or some other alternating quantity but the frequency of all of them must be the same. Allphasors are drawn rotating in an anticlockwise direction. value of the	Understand	CO 2	CLO 5	AEEB03.05

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		sinusoidal quantity rather than				
		its maximum value.				
13	Define Cosθ	Power Factor $(\cos\theta) - \cos \theta$ or P.f –	Understand	CO 2	CLO 6	AEEB03.06
		In electrical				
		engineering, power factor is				
		only and only related to AC				
		circuits i.e. there is no power				
		factor (P.f) in DC circuits				
		due to zero frequency.				
		The Cosine of angle between				
		Current and Voltage is called		_		
		Power Factor.		-		
		$P = VI \cos\theta OR$				
		$\cos\theta = P / V I OR$				
		$\cos\theta = kW/kVA \text{ OR}$ $\cos\theta = \text{True Power/ Apparent}$				
		Power				
14	Define total	Complex Power. Complex	Remember	CO 2	CLO 6	AEEB03.06
	power	power is "the complex sum of				
		real and reactivepowers". It is also termed as				
		apparent power, measured in				
		terms of Volt Amps (or) in				
		Kilo Volt Amps (kVA).				
15	Polar Form and	Polar form is where a	Remember	CO 2	CLO 6	AEEB03.06
	Rectangular	complex number is denoted				
	Form Notation for Complex	by the length (otherwise known as				
	Numbers	the magnitude, absolute				
		value, or modulus) and				100
		the angle of its vector (usually		_		
	0	denoted by an angle symbol			- C	>
	-	that looks like this: \angle).			-	
	<u> </u>	Rectangular form, on the other hand, is where a			4	
	0	complex number is denoted				
	-	by its respective horizontal			100	
	- Y	and vertical components. The		0		
		angled vector is taken to be		. 67		
		the hypotenuse of a right		0. 1		
		triangle, described by the lengths of the adjacent and		0		
		opposite sides. Rather than	2			
		describing a vector's length	1.1			
		and direction by denoting				
		magnitude and angle, it is				
		described in terms of "how				
		far left/right" and "how far up/down."				
	UNI	C-III (SINGLE PHASE AC C	CIRCUITS AN	D RESONA	ANCE)	
1	State Faraday's	FIRST LAW.	Understand	CO 3	CLO 9	AEEB03.09
	laws	First Law of Faraday's				
		Electromagnetic				
		Induction state that whenever				
		a conductorare placed in a varying magnetic field emf				
		are induced which is				
		are mouced which is				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		calledinduced emf, if the conductor circuit are closed current are also induced whichiscalled in ducedcurrent.				
2	Fleming's right-hand rule	Fleming's right-hand rule gives which direction the current flows. The right hand is held with the thumb, index finger and middle finger mutually perpendicular to each other (at right angles), as shown in the diagram. The thumb is pointed in the direction of the motion of the conductor relative to the magnetic field.	Understand	CO 3	CLO 9	AEEB03.09
3	Explain dot convention rule	The convention is that current entering a transformer at the end of a winding marked with a dot, will tend to produce current exiting other windings at their dotted ends. Maintaining proper polarity is important in power system protection, measurement and control systems.	Remember	CO 3	CLO 9	AEEB03.01
4	Self and Mutual inductance definition	In the previous tutorial we saw that an inductor generates an induced emf within itself as a result of the changing magnetic field around its own turns. When this emf is induced in the same circuit in which the current is changing this effect is called Self- induction, (L). However, when the emf is induced into an adjacent coil situated within the same magnetic field, the emf is said to be induced magnetically, inductively or by Mutual induction, symbol (M). Then when two or more coils are magnetically linked together by a common magnetic flux they are said to have the property of Mutual Inductance.	Remember	CO 3	CLO 9	AEEB03.01
5	State Zero current theorem	Zero state response. In electrical circuit theory, the zero state response (ZSR), also known as the forced response is the behavior or response of a circuit with initialstate of zero. The ZSR results only from the external inputs or driving functions of	Remember	CO 3	CLO 10	AEEB03.10

8 Statereciprocity theorem Remember CO 3 CLO 10 AE 8 Statereciprocity theorem Remember CO 3 CLO 10 AE 9 Statesuperposit ion theorem Superposition theorem states that in any linear, active, bilateral network having more than one source, the response across any element is the sum of the responses obtained from each source considered separately and all other sources are replaced by their internal resistance. The superposition theorem is used to solve the network where two or more sources are present and connected. Remember CO 3 CLO 10 AE 8 Statereciprocity theorem Reciprocity Theorem states that - In any branch of a network wor circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally placed when the source is again put in the branch in which the current was originally obtained. Remember CO 3 CLO 10 AE	CLO Code
6 State Tellegen"s Tellegen's theorem states that: In any electrical network which satisfies Kirchhoff's laws, the summation of instantaneous power in all the branches is equal to zero. CO 3 CLO 10 AE 7 Statesuperposit ion theorem states that in any linear, active, bilateral network having more than one source, the response across any element is the sum of the responses obtained from each source considered separately and all other sources are replaced by their internal resistance. The superposition theorem is used to solve the network where two or more sources are present and connected. Remember CO 3 CLO 10 AE 8 Statereciprocity theorem states that: any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally placed when the source was originally blaced when the source was originally obtained. CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source concerve was originally placed when the source transformation for a network which thas a single voltage source concerve to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
theorem In any electrical network which satisfies Kirchhoff's laws, the summation of instantaneous power in all the branches is equal to zero. Remember CO 3 CLO 10 AE 7 Statesuperposition theorem Superposition theorem states that in any linear, active, bilateral network having more than one source, the response across any element is the sum of the responses obtained from each source considered separately and all other sources are replaced by their internal resistance.The superposition theorem is used to solve the network where two or more sources are present and connected. Remember CO 3 CLO 10 AE 8 Statereciprocity theorem Reciprocity Theorem states that – In any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally placed when the source is again put in the branch in which the current was originally obtained. Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source consider the case where we need to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
9 Statesciprocity 8 Statesciprocity theorem states theorem and connected. 8 Statesciprocity theorem states theorem states theorem 9 Statesciprocity theorem states source was originally obtained. 9 Statesciprocition theorem states source the response source the case where we need to apply voltage-to-current source the single source considered source conserver whinch has a single voltage source (v, sin) <td>AEEB03.10</td>	AEEB03.10
1 laws , the summation of instantaneous power in all the branches is equal to zero. Remember CO 3 CLO 10 AE 7 Statesuperposition theorem Superposition theorem states that in any linear, active, bilateral network having more than one source, the response across any element is the sum of the responses obtained from each source considered separately and all other sources are replaced by their internal resistance. The superposition theorem is used to solve the network where two or more sources are present and connected. Remember CO 3 CLO 10 AE 8 Statereciprocity theorem states that - In any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally placed when the source is again put in the branch in which the current was originally obtained. CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage-Source (V.Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source concurrent source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
9 Statevoltage shift theorem of instantaneous power in all the branches is equal to zero. Remember CO 3 CLO 10 AE 7 Statesuperpositi ion theorem Superposition theorem states that in any linear, active, bilateral network having more than one source, the response across any element is the sum of the responses obtained from each source considered separately and all other sources are replaced by their internal resistance. The superposition theorem is used to solve the network where two or more sources are present and connected. Remember CO 3 CLO 10 AE 8 Statereciprocity theorem Receiprocity Theorem states that - In any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally obtained. Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
1 the branches is equal to zero. CLO 10 AE 7 Statesuperpositi ion theorem Superposition theorem states that in any linear, active, bilateral network having more than one source, the response across any element is the sum of the responses obtained from each source considered separately and all other sources are replaced by their internal resistance. The superposition theorem is used to solve the network where two or more sources are present and connected. Remember CO 3 CLO 10 AE 8 Statercciprocity theorem Reciprocity Theorem states that - In any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally obtained. Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Reimember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source connected to a couple of impedances. Figure 1 a shows such a node, a, at which the positive terminal of the IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
ion theorem that in any linear, active, bilateral network having more than one source, the response across any element is the sum of the responses obtained from each source considered separately and all other sources are replaced by their internal resistance. The superposition theorem is used to solve the network where two or more sources are present and connected. Image: Color of the color of the response separately and all other sources are replaced by their internal resistance. The superposition theorem is used to solve the network where two or more sources are present and connected. Image: Color of the color of the response states that - In any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally placed when the source is again put in the branch in which the current was originally obtained. Image: Color of the color	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source considered segual to the current through that branch in which the current source again put in the source signally obtained. Remember CO 3 CLO 10 AE	AEEB03.10
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Consider the case where we need to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the positive	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Consider the case where we need to apply voltage-to- current source transformation for a network which thas a single voltage source (V, is shift theorem Remember CO 3 CLO 10 AE	
9 Statevoltage shift theorem Shifting of Voltage Source (V) in the network which the source is again put in the branch in which the source is again put in the branch in which the source is again put in the branch in which the source is again put in the branch in which the source is again put in the branch in which the source is again put in the branch in which the source is again put in the branch in which the source is again put in the branch in which the current twas originally obtained. Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source connected to a couple of impedances. Figure 1 a shows such a node, a, at which the positive terminal of the voltage source V, is Remember CO 3 CLO 10 AE	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Consider the case where we need to apply voltage-to- current source tansformation for a network which thas a single voltage source of an ande, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
9 Statevoltage shift theorem Statevoltage single voltage source (V-Shift) Remember connected to a couple of impedances. Figure 1a shows such a node, a, at which the yoltage source voltage so	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Consider the case where we need to a puply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1 a shows such a node, a, at which the positive terminal of the positi	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage source (V-Shift) Consider the case where we need to apply voltage-to-current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1 a shows such a node, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
8 Statereciprocity Reciprocity Theorem Remember CO 3 CLO 10 AE 8 Statereciprocity Reciprocity Theorem Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage source connected to a couple of impedances. Figure 1 a shows such a node, a, at which the positive terminal of th	
8 Statereciprocity theorem Reciprocity Theorem states that - In any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally placed when the source is again put in the branch in which the current was originally obtained. Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1 a shows such a node, a, at which the positive terminal of the voltage source, V, is <t< td=""><td></td></t<>	
9 Statevoltage shift theorem Statevoltage shift theorem Statevoltage shift theorem CO 3 CLO 10 AE 9 Statevoltage shift theorem Statevoltage shift theorem Statevoltage Source connected to a couple of impedances. Figure 1a shows such a node, a, at which the connected to the current of source was originally Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE	
8 Statereciprocity theorem Reciprocity Theorem states that - In any branch of a network or circuit, the current due to a single source of voltage (V) in the network is equal to the current through that branch in which the source was originally placed when the source is again put in the branch in which the current was originally obtained. Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is CO 3 CLO 10 AE	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Image: Source impedances imped	AEEB03.10
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Image: Source voltage source, V, is Image: Source voltage source, V, is Image: Source voltage source, V, is	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 0 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 0 statevoltage shift theorem Shifting of voltage Source (V-Shift) Remember CO 3 CLO 10 AE 0 statevoltage shift theorem Shifting of voltage Source (V-Shift) Remember CO 3 CLO 10 AE 0 statevoltage shift theorem Shifting of voltage Source (V-Shift) Remember CO 3 CLO 10 AE 0 statevoltage source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is I I I I I	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 statevoltage source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is I I I I I	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Consider the case where we need to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 1 Image: Shifting of Voltage Source connected to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Image: Shifting of the voltage source voltage source V, is	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 0 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 0 Statevoltage shift theorem Shifting of Voltage Source consider the case where we need to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Image Source Image Source Image Source Image Source	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Consider the case where we need to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
9Statevoltage shift theoremShifting of Voltage Source (V-Shift) Consider the case where we need to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, isRememberCO 3CLO 10AE	
9 Statevoltage shift theorem Shifting of Voltage Source (V-Shift) Remember CO 3 CLO 10 AE 0 Shift theorem Consider the case where we need to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is Remember CO 3 CLO 10 AE	
shift theorem (V-Shift) Consider the case where we need to apply voltage-to-current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1 a shows such a node, a, at which the positive terminal of the voltage source, V, is	AEEB03.10
need to apply voltage-to- current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is	ILLD05.10
current source transformation for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is	
for a network which has a single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is	
single voltage source connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is	
connected to a couple of impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is	
impedances. Figure 1a shows such a node, a, at which the positive terminal of the voltage source, V, is	
such a node, a, at which the positive terminal of the voltage source, V, is	
voltage source, V, is	
connected to a couple of	
impedances: Z1 to Z4. Here we can't transform the	
voltage source, V, as it has no	
impedance in series with it.	
However, we can push this	
voltage source through the	
node, a, towards the	
individual branches of the	
network. But while doing so, we have to take care that the	
current distribution through	
the circuit remains unaffected.	
Figure 1b shows the resultant	

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		circuit obtained by the push through mechanism of the voltage source. At this instant, we observe that, after V-shift, the voltage source is made to appear at every branch of the electrical network in series with the impedances present in each of them.				
10	StateThevinin" s theorem	In electrical circuit theory, Thevenin's theorem for linear electrical networks states that any combination of voltage sources, current sources and resistors with two terminals is electrically equivalent to a single voltage source V and a single series resistor R.	Remember	CO 3	CLO 11	AEEB03.11
11	StateNorton"s theorem	Norton's Theorem states that it is possible to simplify any linear circuit, no matter how complex, to anequivalent circuit with just a single current source andparallel resistance connected to a load	Remember	CO 3	CLO 11	AEEB03.11
12	Statemaximum power transfer theorem	The maximum power transfer theorem states that the maximum amount of power will be delivered to the load resistance when the load resistance is equal to the Thevenin /Norton resistance of the network supplying the power.	Remember	CO 3	CLO 10	AEEB03.10
13	StateMilliman" s theorem	The Millman's Theorem states that – when a number of voltage sources (V1, V2, V3 Vn) are in parallel having internal resistance (R1, R2, R3Rn) respectively, the arrangement can replace by a single equivalent voltage source V in series with an equivalent series resistance R. In other words; it determines the voltage across the parallel branches of the circuit, which have more than one voltage sources, i.e., reduces the complexity of the electrical circuit.	Remember	CO 3	CLO 11	AEEB03.11
14	Statecompensat ion theorems theorem	In Compensation Theorem, the source voltage (VC) opposes the original current.	Remember	CO 3	CLO 10	AEEB03.10

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
15	Define	Insimple wordscompensationtheorem c an be stated as – the resistance of any network can be replaced by a voltage source, having the same voltage as the voltage drop across the resistance which is replaced. resonance: In	Remember	CO 3	CLO 08	AEEB03.08
	synchronous vibration.	an electrical circuit, the condition that exists when the inductive reactance and the capacitive reactance are of equal magnitude, causingelectrical energy to oscillate between the magnetic field of the inductor and the electric field of the capacitor.	0			
	-	UNIT-IV (MAGNE	ETIC CIRCUIT			
1	What do you mean by transients?	Sudden change in the system conditions from its steady state.	Remember	CO 4	CLO 12	AEEB03.12
2	What is meant by first order system?	The system which has transfer function in the form of a first order differential equation is called first order system.	Remember	CO 4	CLO 12	AEEB03.12
3	What is meant by second order system?	The system which has transfer function in the form of a second order differential equation is called second order system.	Remember	CO 4	CLO 12	AEEB03.12
4	What is a series circuit?	A series circuit is a circuit in which the same current flows through the closed path.	Understand	CO 4	CLO 12	AEEB03.12
5	Define transfer function of a system	The ratio of response to input is called transfer function.	Remember	CO 4	CLO 13	AEEB03.13
6	Explain Laplace transform approach	Laplace transform approach is an approach to solve linear differential equations which takes into consideration the initial conditions of the circuit elements.	Remember	CO 4	CLO 13	AEEB03.13
7	Define Steady State Response	steady-state response in Electrical Engineering. The poles and zeros will control the steady-state response at any given frequency. A steady-state response is the behavior ofacircuitaftera longtimewhen steady conditio ns have been reached after an external excitation	Remember	CO 4	CLO 12	AEEB03.12
8	Explain one port network	One port network consists of two terminals in which current enters oneterminal and leaves from the other terminal.	Remember	CO 5	CLO 14	AEEB03.14

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
9	Explain two	A two-port consists of four	Remember	CO 5	CLO 14	AEEB03.14
	port network	terminals in an				
		electrical network. The				
		network acts as a black box with only the four terminals				
		available for connection.				
10	What do you	Z-parameters are open circuit	Remember	CO 5	CLO 14	AEEB03.14
	mean by Z-	impedance parameters				
	parameters?	obtained by open circuiting				
		the terminals.				
11	What do you	Y-parameters are short circuit	Remember	CO 5	CLO 14	AEEB03.14
	mean by Y- parameters?	admittance parameters obtained by short circuiting				
	parameters:	the terminals.		-		
12	What do you	ABCD parameters are	Remember	CO 5	CLO 14	AEEB03.14
	mean by	transmission parameters		\sim		
	ABCD-	which gives the relation				
	parameters?	between the voltages and				
		currents at the sending end				
		with respect to receiving end voltages and currents				
13	What do you	h- parameters are hybrid	Remember	CO 5	CLO 15	AEEB03.15
15	mean by h-	parameters which provides	Remember	005		ALLDUJ.IJ
	parameters?	series connection at the input				
	-	and parallel connection at the				
		output.				
14	Explain the	The network is said to be	Understand	CO 5	CLO 15	AEEB03.15
	concept of	reciprocal if the interchange				
	reciprocity in two port	of ideal voltage source at one port with an ideal current				
	networks	source at the other port does				
		not change the ammeter				
	3	reading.				100
15	Explain the	A network is said to be	Understand	CO 5	CLO 15	AEEB03.15
	concept of	symmetrical if the input and		_		>
	symmetry in	output ports can be interchanged without change	- Co.		-	
	two port networks	in voltages and currents			A	
16	State Faraday's	FIRST LAW.	Understand	CO 3	CLO 9	AEEB03.09
	laws	First Law of Faraday's		000		
	· · · · · ·	Electromagnetic		Q		
		Induction state that whenever		163	575	
		a conductorare placed in a		0.7		
		varying magnetic field emf are induced which is	- N.N.	~		
		calledinduced emf, if the				
		conductor circuit are closed				
		current are				
		also induced whichiscalled in				
		ducedcurrent.				
17	Fleming's	Fleming's right-hand	Understand	CO 3	CLO 9	AEEB03.09
	right-hand rule	rule gives which direction the				
		current flows. The right hand is held with the thumb,				
		index finger and middle				
		finger mutually perpendicular				
		to each other (at right angles),				
		as shown in the diagram. The				
		thumb is pointed in the				
		direction of the motion of the				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		conductor relative to the				
18	Explain dot	magnetic field. The convention is that current	Remember	CO 3	CLO 9	
10	convention rule	entering a transformer at the end of a winding marked with a dot, will tend to produce current exiting other windings at their dotted ends. Maintaining proper polarity is				AEEB03.01
		important in power system protection, measurement and				
		control systems.				
19	Self and Mutual inductance definition	In the previous tutorial we saw that an inductor generates an induced emf within itself as a result of the changing magnetic field around its own turns. When this emf is induced in the same circuit in which the current is changing this effect is called Self- induction, (L). However, when the emf is induced into an adjacent coil situated within the same magnetic field, the emf is said to be induced magnetically, inductively or by Mutual induction, symbol (M). Then when two or more coils are magnetically linked together by a common magnetic flux	Remember	CO 3	CLO 9	AEEB03.01
		they are said to have the property of Mutual Inductance.	1	=7	đ	
20	State Zero current theorem	Zero state response. In electrical circuit theory, the zero state response (ZSR), also known as the forced	Remember	CO 3	CLO 10	AEEB03.10
		response is the behavior or response of a circuit with initialstate of zero. The ZSR results only from the external inputs or driving functions of the circuit and not from the initial state.	RU	9 ⁶⁸		
		UNIT-V (NETWORK TH				
1	Explain one port network	One port network consists of two terminals in which current enters oneterminal and leaves from the other terminal.	Remember	CO 5	CLO 14	AEEB03.14
2	Explain two port network	A two-port consists of four terminals in an electrical network. The network acts as a black box with only the four terminals available for connection.	Remember	CO 5	CLO 14	AEEB03.14

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
3	What do you	Z-parameters are open circuit	Remember	CO 5	CLO 14	AEEB03.14
	mean by Z-	impedance parameters				
	parameters?	obtained by open circuiting				
4	Williand die ersen	the terminals.	Remember	CO F	CLO 14	455000 44
4	What do you mean by Y-	Y-parameters are short circuit admittance parameters	Remember	CO 5	CLO 14	AEEB03.14
	parameters?	obtained by short circuiting				
	parameters:	the terminals.				
5	What do you	ABCD parameters are	Remember	CO 5	CLO 14	AEEB03.14
	mean by	transmission parameters				
	ABCD-	which gives the relation				
	parameters?	between the voltages and				
		currents at the sending end				
		with respect to receiving end				
	XX 71 / 1	voltages and currents			01.0.15	
6	What do you mean by h-	h- parameters are hybrid	Remember	CO 5	CLO 15	AEEB03.15
	parameters?	parameters which provides series connection at the input				
	parameters:	and parallel connection at the				
		output.				
7	Explain the	The network is said to be	Understand	CO 5	CLO 15	AEEB03.15
	concept of	reciprocal if the interchange				
	reciprocity in	of ideal voltage source at one				
	two port	port with an ideal current				
	networks	source at the other port does				
		not change the ammeter				
8	Explain the	reading. A network is said to be	Understand	CO 5	CLO 15	
0	concept of	symmetrical if the input and	Understand	05	CLO 15	AEEB03.15
	symmetry in	output ports can be				
	two port	interchanged without change				
	networks	in voltages and currents				
9	State Faraday's	FIRST LAW.	Understand	CO 5	CLO 14	AEEB03.09
	laws	First Law of Faraday's	- A			
		Electromagnetic Induction state that whenever				2
	6	a conductorare placed in a	-		100	
	-	varying magnetic field emf			A	
	0	are induced which is				
	-	calledinduced emf, if the	1		1.1	
	· · · · · · · · · · · · · · · · · · ·	conductor circuit are closed			1. C	
		current are				
		also induced which is called in		0.7		
10	Flominala	ducedcurrent.	Understand	CO 5	$CI \cap 15$	
10	Fleming's right-hand rule	Fleming's right-hand rule gives which direction the	Understand	CO 5	CLO 15	AEEB03.09
	right-halld full	current flows. The right				
		hand is held with the thumb,				
		index finger and middle				
		finger mutually perpendicular				
		to each other (at right angles),				
		as shown in the diagram. The				
		thumb is pointed in the				
		direction of the motion of the				
		conductor relative to the				
11	Explain dot	magnetic field. The convention is that current	Remember	CO 5	CLO 14	AEEB03.01
11	convention rule	entering a transformer at the	Kennennber		CLU 14	ALLOUS.UI
	contention rule	end of a winding marked with				
		a dot, will tend to produce				
		a dot, will tend to produce				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		current exiting other windings at their dotted ends. Maintaining proper polarity is important in power system protection, measurement and				
12	Self and Mutual inductance	control systems. In the previous tutorial we saw that an inductor generates an induced emf within itself	Remember	CO 5	CLO 15	AEEB03.01
	definition	as a result of the changing magnetic field around its own turns. When this emf is induced in the same circuit in				
		which the current is changing this effect is called Self- induction, (L). However, when the emf is	0	0		
		induced into an adjacent coil situated within the same magnetic field, the emf is said to be induced magnetically,				
		inductively or by Mutual induction, symbol (M). Then when two or more coils are magnetically linked together	1			
		by a common magnetic flux they are said to have the property of Mutual Inductance.				
13	State Zero	Zero state response. In	Remember	CO 5	CLO 14	AEEB03.10
15	current	electrical circuit theory,	Remember	05	CLO 14	ALLBUS.10
	theorem	the zero state response (ZSR),			- 2	-
	-	also known as the forced	- A			
	0	response is the behavior or response of a circuit with		_	- <	2
	6	initialstate of zero. The ZSR	- Contraction of the local division of the l	-	~	
	-	results only from the external			~	
	- C.	inputs or driving functions of		/	1 m	
		the circuit and not from the initial state.		·	Sec. 1	
14	StateTellegen"s	Tellegen's theorem states that:	Remember	CO 5	CLO 15	AEEB03.10
	theorem	In any electrical network		20		
		which satisfies Kirchhoff's	N	0		
		laws, the summation of instantaneous power in all	RV			
		the branches is equal to zero.				
15	Statesuperposit	Superposition theorem states	Remember	CO 5	CLO 14	AEEB03.10
	ion theorem	that in any linear, active,				
		bilateral network having more than one source, the response				
		across any element is the sum				
		of the responses obtained				
		from each source considered				
		separately and all other sources are replaced by their				
		internal resistance. The				
		superposition theorem is used				
		to solve the network where two or more sources are				
		two of more sources are				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		present and connected.				
16	Statereciprocity theorem	Reciprocity Theorem states that – In any branch of a network or circuit, the	Remember	CO 5	CLO 15	AEEB03.10
		current due to a single source of voltage (V) in the network				
		is equal to the current through				
		that branch in which the				
		source was originally placed				
		when the source is again put in the branch in which the				
		current was originally				
		obtained.				
17	Statevoltage	Shifting of Voltage Source	Remember	CO 5	CLO 15	AEEB03.10
	shift theorem	(V-Shift) Consider the case where we				
		need to apply voltage-to-				
		current source transformation				
		for a network which has a				
		single voltage source connected to a couple of				
		impedances. Figure 1a shows				
		such a node, a, at which the				
		positive terminal of the				
		voltage source, V, is connected to a couple of				
		impedances: Z1 to Z4.				
		Here we can't transform the				
		voltage source, V, as it has no				
		impedance in series with it. However, we can push this				
		voltage source through the				
	100	node, a, towards the	1	_		-
	-	individual branches of the	- A			
	0	network. But while doing so, we have to take care that the		-		2
	6	current distribution through	- Constant	-	~	
	0	the circuit remains unaffected.			~	
	- C.	Figure 1b shows the resultant		/	P	
	7	circuit obtained by the push through mechanism		·		
		of the voltage source. At		. 2.3		
		this instant, we observe that,		20		
		after V-shift, the voltage		0		
		source is made to appear at every branch of the electrical	2 2			
		network in series with the				
		impedances present in each of				
10	StateThevinin"	them.	Domomhar	CO 5	CLO 14	
18	s theorem	In electrical circuit theory, Thevenin's	Remember	CO 5	CLO 14	AEEB03.11
		theorem for linear electrical				
		networks states that any				
		combination of voltage				
		sources, current sources and resistors with two terminals is				
		electrically equivalent to a				
		single voltage source V and a				
		single series resistor R.				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
19	StateNorton"s	Norton's Theorem states that	Remember	CO 5	CLO 14	AEEB03.11
	theorem	it is possible to simplify				
		any linear circuit, no matter				
		how complex, to				
		anequivalent circuit with just				
		a single current source				
		andparallel resistance connected to a load				
20	Statemaximum	The maximum power transfer	Remember	CO 5	CLO 15	AEEB03.10
20	power transfer	theorem states that the	Kememoer	05	CLO 15	ALEBUS.10
	theorem	maximum amount of				
		power will be delivered to the				
		load resistance when the load				
		resistance is equal to				
		the Thevenin /Norton				
		resistance of the network	1 mar 1			
01		supplying the power.	D 1		CL 0.15	
21	StateMilliman ["] s theorem	The Millman's Theorem states that – when a	Remember	CO 5	CLO 15	AEEB03.11
	s meorem	number of voltage sources				
		(V1, V2, V3Vn) are				
		in parallel having internal				
		resistance (R1, R2,				
		R3Rn)				
		respectively, the arrangement				
		can replace by a single				
		equivalent voltage source V				
		in series with an equivalent				
		series resistance R. In other				
		words; it determines the voltage across the parallel				
		branches of the circuit, which				
		have more than one voltage				100
	1.1	sources, i.e., reduces the	- 1			
	0	complexity of the electrical			- C	
		circuit.		· / .		<i>.</i>
22	Statecompensat	In Compensation Theorem,	Remember	CO 5	CLO 14	AEEB03.10
	ion theorems	the source voltage (VC)				
	theorem	opposes the original current.			P	
		Insimple wordscompensationtheorem c				
		an be stated as $-$ the				
		resistance of any network can		18		
		be replaced by a voltage				
		source, having the same	\sim \sim			
		voltage as the voltage drop	N ~			
		across the resistance which is				
	Def	replaced.	D. 1	<u> </u>		
23	Define	resonance: In	Remember	CO 5	CLO 14	AEEB03.08
	synchronous vibrati.	an electrical circuit, the condition that exists when the				
	v101ati.	inductive reactance and the				
		capacitive reactance are of				
		equal magnitude,				
		causing electrical energy to				
		oscillate between the				
		magnetic field of the inductor				
		and the electric field of the				
		capacitor.				
Nigna	ture of the Facult	V				HOD, EEE

Signature of the Faculty