TARE TO LINE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	ENERGY FROM WASTE
Course Code	:	AEE551
Program	:	B.Tech
Semester	:	VII
Branch	:	Aeronautical Engineering
Section	:	A & B
Academic Year	:	2019 – 2020
Course Faculty	:	Mr. B Bhavani, Assistant Professor

COURSE OBJECTIVES:

The	The course should enable the students to:						
ī	Understand the principles associated with effective energy management and to apply these principles						
	in the day to day life.						
II	Develop insight into the collection, transfer and transport of municipal solid waste.						
III	Explain the design and operation of a municipal solid waste landfill.						
13.7	Evaluate the main operational challenges in operating thermal and biochemical energy from waste						
IV	facilities and device key processes involved in recovering energy from wastes.						

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-I				
1	What are different types of waste?	Waste is unwanted materials (or) unusable materials which are discarded after primary use and of no use. Types of waste are solid, wet, e-waste, biomedical, and hazardous.	Remember	CO 1	CLO 2	AEE551.02
2	Define municipal solid waste?	Municipal solid waste (MSW) is commonly known as garbage or trash in united states and rubbish in united kingdom it is a waste item consisting of everyday items that are discarded by public.	Remember	CO 1	CLO 1	AEE551.01
3	Explain Municipal solid waste management?	Management of solid waste generally refers to management of waste from residential societies, public places, commercial buildings, hospitals and streets and other institutions.	Remember	CO 1	CLO 3	AEE551.03

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	Summarize	Physical properties of municipal	Remember	CO 1	CLO 2	AEE551.02
	physical	solid waste are 1) moisture				
	properties of	content, 2) specific gravity, 3)				
	municipal solid	particle size, 4)permeability (or)				
	waste?	hydraulic conductivity.		GO 1	CT O A	A PE 551 00
5	Summarize	Methods to determine chemical	Summarize	CO 1	CLO 2	AEE551.02
	chemical	content in municipal solid waste	chemical			
	properties of municipal solid	are proximate analysis-this is the method to determine	properties of			
	waste?	moisture content, fixed carbon	municipal			
	waste:	and volatile material, ultimate	solid waste?			
		analysis- In this method C,H,N	solid waste:			
		and S are converted into oxides				
		and then seperated. Fusing point	_	_		
		of ash- content of ash can be				
		found after burning of waste,				
		lignocellulogic composition-this				
		method is used to find cellulose,				
		hemicelluloses components in				
		grass, bagasse and corn stoves.				
6	Summarize	Biological properties of	Summarize	CO 1	CLO 4	AEE551.04
	biological	municipal solid waste are	biological			
	properties of	biodegradable and compostable	properties			
	municipal solid	wastes and effect on human	of			
	waste?	health.	municipal			
	D	2:	solid waste?	GO 1	GY O A	. TE 551 00
7	Discuss waste	Primary and secondary	Discuss	CO 1	CLO 3	AEE551.03
	collection	collection. In primary collection the vehicles used are carts and	waste			
	methods?		collection methods?			
		trucks. In secondary collection, the vehicles used are heavy	methous?			
		trucks, compactor trucks.				
8	Define transfer	Transfer station is a place where	Define	CO 1	CLO 3	AEE551.03
	station?	the waste is transferred from	transfer	COT	CLO 3	71LL331.03
	station.	primary and secondary vehicles	station?		100	
		and then sent to landfill and	Station	7		1
		disposal area. This station				
		reduces the cost of waste		7		
		collection by using larger trucks	- /			
		instead of using smaller trucks		-	100	
	7	to travel to land fill area.		- 0		
9	Discuss the	Waste minimization is the	Discuss the	CO 1	CLO 3	AEE551.03
	concept waste	process of reducing waste at	concept	. "		
	minimization?	source by proper packing and	waste	1		
		manufacturing of the products,	minimizatio	è		
		selective use of recyclable	n?			
10	Cummanina	waste.	Dorses 1	CO 1	CLO 2	AEE551.02
10	Summarize waste treatment	Various waste treatment methods are physical, thermal,	Remember	CO 1	CLO 3	AEE551.03
	methods?	chemical, biological treatments.				
11	Define aerobic	Microbial decomposition	Remember	CO 1	CLO 4	AEE551.04
11	composting?	of organic material in the	Kemember	CO 1	CLO 4	71LLJJ1.04
	composting:	presence of air (oxygen) and				
		water.				
12	Define	It is the process of burning the	Remember	CO 1	CLO 4	AEE551.04
	incineration?	waste without energy recovery				
		to either reduce the volume of				
		waste and / or destroy its				
		infectious properties. More and				
		more incinerators now				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		recover waste in the form of				
		electricity or thermal energy.				
		The by-products of incineration				
		(bottom ash and fly ash) are				
		processed with a view to				
		controlling the impacts of this				
		activity both on humans and on the environment.				
13	Discuss about	A furnace is essentially a	Remember	CO 1	CLO 4	AEE551.04
13	furnace type and	thermal enclosure and is	Remember	COI	CLO 4	AEE331.04
	objectives?	employed to process raw				
		materials at high temperatures				
		both in solid state and liquid				
		state. Several industries like	_	$\overline{}$		
		iron and steel making, non				
		ferrous metals production, glass	Name of Street			
		making, manufacturing, ceramic				
		processing, calcinations in				
		cement production etc. employ				
		furnace. The principle				
		objectives are a) To utilize heat efficiently so that losses are				
		minimum, and b) To handle the				
		different phases (solid, liquid or				
		gaseous) moving at different				
		velocities for different times				
		and temperatures such that				
		erosion and corrosion of the				
		refractory are minimum.				
14	Summarize	Methods for sterilization of	Remember	CO 1	CLO 4	AEE551.04
	various	medical waste / pharmaceutical				
	techniques on	waste treatment are incineration,				
	disposal of	autoclave, hydro clave, chemical	. 10			
	medical waste pharmaceutical	disinfecting.	40		-	
	waste.			_)
15	Discuss measures	In order to improve the process	Remember	CO 1	CLO 4	AEE551.04
10	to mitigate	and incineration and to	1101110111011		020 .	1122001101
	environmental	minimize environmental				
	effects due to	impacts, in particular			70	
	incineration?	atmospheric emissions, it is		- 0		
		proposed to replace single use		6		
		containers with multiple use		. ~		
		containers.	1.1	.1		
		UNIT-II				
		0N11-11				
1	Define term	Land fill is a site for the	Remember	CO 2	CLO 6	AEE551.06
	landfill?	disposal of waste materials by				
		burial. It is the oldest form				
		of waste treatment.				
2	Explain land fill	The trench method is good in	Remember	CO 2	CLO 4	AEE551.04
	method?	areas where there is relatively				
		little waste, low groundwater,				
		and the soil is over 6 ft (1.8 m)				
		deep. The area method is				
		usually used to dispose of large amounts of solid waste.				
		In the trench method, a channel				
		with a typical depth of 15 ft (4.6				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		m) is dug, and the excavated				
		soil is later used as a cover over				
		the waste. Grading in the trench				
		method must accommodate the				
		drain-off of rainwater. Another				
		consideration is the type of				
		subsurface soil that exists under				
		the topsoil. Clay is a good				
		source of soil because it is				
		nonporous. Weather and the amount of time the landfill will				
		be in use are additional				
		considerations.				
3	Discuss concept	Landfill gas is created during	Remember	CO 2	CLO 6	AEE551.06
	land fill gas?	the anaerobic decomposition of	Remember	CO 2	CLO	71LL331.00
	iuna im gus.	organic substances in municipal		$\overline{}$		
		solid waste (MSW) and				
		commercial and industrial				
		(C&I) wastes. Depending upon				
		the landfill design and its				
		management, as well as waste				
		composition, compaction,				
		moisture and several other				
		factors, thousands of landfills				
		are available worldwide to				
		collect and utilize this valuable				
		renewable energy source for				
		power generation. If landfill gas				
		is allowed to escape to				
		atmosphere, methane contained				
		within it is a powerful greenhouse gas, 21 times more				
		so than carbon dioxide.				
		Therefore, its prevention of		-0		
		escape to atmosphere and its	-41		100	
		utilization as a renewable fuel		_	_	3.
		source is a win-win situation.				
4	Listout landfill	There are two types of landfills	Remember	CO 2	CLO 4	AEE551.04
	types?	namely,				
		1) Natural attenuation landfill			700	
		and		- 0		
		2) Containment landfill.		4		
		Natural attenuation landfill is		. ~		
		similar to what has been	1 1 1	7		
		discussed in the previous				
		paragraph where there is no				
		provision below the wastes to				
		minimize the migration of harmful contaminants. The				
		unsaturated subsurface below				
		the wastes naturally attenuate				
		harmful contaminants before it				
		reaches ground water. It is				
		presumed that the contaminants				
		reaching ground water will be				
		well within the permissible				
		limit, even though in most of				
		the cases it would not be. For				
		the same reason, these types of				
		landfills are not preferred in				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		spite of its simplicity.				
5	Discuss sitting	Considerations for site include	Remember	CO 2	CLO 6	AEE551.06
	consideration?	public opinion, traffic patterns				
		and congestion, climate, zoning				
		requirements, availability of				
		cover material and liner as well,				
		high trees or buffer in the site				
		perimeter, historic buildings,				
		and endangered species,				
		wetlands, and site land				
		environmental factors, speed				
		limits, and underpass				
		limitations, load limits on				
		roadways, bridge capacities, and				
		proximity of major roadways,				
		haul distance, hydrology and				
	D: :	detours.	D 1	GO 2	CI O C	AEE551.06
6	Discuss site	This requires the development	Remember	CO 2	CLO 6	AEE551.06
	selection of land	of a working plan – a plan, or a				
	1111	series of plans, outlining the development and descriptions				
		of site location, operation,				
7	Discuss various	engineering and site restoration Trench and area methods, along	Remember	CO 2	CLO 6	AEE551.06
/	methods of land	with combinations of both, are	Remember	CO 2	CLO	AEE331.00
	fill	used in the operation of				
	1111	landfills. Both methods operate				
		on the principle of a "cell,"				
		which in landfills comprises the				
		compacted waste and soil				
		covering for each day.				
8	Summarize	A hazardous waste landfill must	Remember	CO 2	CLO 6	AEE551.06
	preliminary	fulfill the following design	remember	002	CLO 0	1122331.00
	design of	requirements: -				
	landfills?	1. Double liner	-			
		2. Double leach ate				e.
		collection removal			. ^ _	
		systems				
		3. Leak detection system				
		4. Monitoring storm			V.	
		water run-on and run-			100	
		off - Monitoring wind				
		dispersal Absence of				
		liquid wastes	1 1 1			
		5. Cover system in place				
9	Discuss land fill	Landfill gas composition and	Remember	CO 2	CLO 4	AEE551.04
	gas composition?	production rates are primarily				
		affected by the waste that has				
		been deposited in the landfill				
		site. MSW contains 150-250 kg				
		of organic carbon per tonne				
		which micro-organisms convert				
		to landfill gas via anaerobic				
		processes. The gas formation is				
		influenced by a number of				
		factors such as waste				
		composition, landfill storage				
		height and density, air				
		temperature, atmospheric				
		pressure and precipitation				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		levels.				
10	What is	Leachate is the landfill waste	Remember	CO 2	CLO 6	AEE551.06
	leacheate?	that dissolves many compounds				
		that contain pollutants from				
		both organic substances and				
11	Analysis	heavy metal origin. Landfill Leachates consist of	Remember	CO 2	CLO 6	AEE551.06
11	characteristics	soluble organic and inorganic	Kemember	CO 2	CLO	AEE331.00
	of landfill	compounds as well as				
	leacheates	suspended particles. Depending				
	Touchoutes	on weather leachate flow can				
		increase (during rainy season)				
		or decrease (during dry/summer				
		season). The landfill leachate		$\overline{}$		
		discharge may lead to serious				
		environmental problems.	Name of Street			
		Leachate may percolate through				
		landfill liners and subsoil				
		causing pollution of ground				
		water and surface waters				
10	D' 1 1011	resources.	D 1	00.2	OI O C	AEE551.06
12	Discuss landfill leacheate	Solid-waste management facilities such as landfills can	Remember	CO 2	CLO 6	AEE551.06
	movement?					
	movement?	affect the quality of underlying groundwater and surface water.				
13	Discuss control	Leachate Control It should be	Remember	CO 2	CLO 4	AEE551.04
13	of landfill?	noted that if all infiltration is	Kemember	CO 2	CLO 4	ALL551.04
	or fandrin:	excluded and the solid waste				
		kept dry, biodegradation by				
		bacteria, fungi, and other				
		organisms will cease and the				
		solid waste will be preserved in				
		its original state. The				700
		maintenance of an optimal		\neg		
		amount of moisture in the fill,				
		as in controlled composting (an				
		aerobic process), is necessary			4	
		for biodegradation (an				
		anaerobic process in a landfill),			No.	
		methane production, final		- ^	1.76	
		stabilization, and possible future recycling of the solid waste or		\sim $^{\prime}$		
		reuse of the site.		V.		
14	Advantages of	The waste deposited in a landfill	Remember	CO 2	CLO 6	AEE551.06
	landfill gas	gets subjected, over a period of	110111001	202	2200	1122001.00
	recovery?	time, to anaerobic conditions	100			
	J	and its organic fraction gets				
		slowly volatilized and				
		decomposed, leading to				
		production of landfill gas which				
		contains a high percentage of				
		methane (about 50%).				
		Advantages of land fill gas				
		recovery are:				
		1. Reduced GHG emissions;				
		2. Low cost means				
		for waste disposal;				
		and				
		3. The gas can be				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		utilized for power generation or as domestic fuel				
15	Discuss environmental monitoring system for land fill gases	The gas monitoring plan should also be specific to the gas measuring device, and the measuring device operating manual should be incorporated by reference into the site gas monitoring plan. Methane should be controlled because it can migrate away from a landfill and become an environmental and safety hazard.	Remember	CO 2	CLO 6	AEE551.06
		UNIT-III				
1	Define Bioenergy?	Bioenergy consists of solid, liquid, or gaseous fuels. Liquid fuels can be used directly in the existing road, railroad, and aviation transportation network stock, as well as in engine and turbine electrical power generators.	Remember	CO 3	CLO 8	AEE551.08
2	Explain bio-mass conversion?	Biomass power technologies convert renewable biomass fuels to heat and electricity using processes similar to those employed with fossil fuels. At present, the primary approach for generating electricity from biomass is combustion direct-	Remember	CO 3	CLO 8	AEE551.08
		firing. Combustion systems for electricity and heat production are similar to most fossil-fuel fired power plants. The biomass fuel is burned in a boiler to produce high-pressure steam.	4	7	710	
3	Explain biochemical conversion?	In biochemical conversion – plants are the main feedstock. Plants are made up of mostly these three parts – hemicellulose, cellulose, and lignin. Cellulose is protected in a sheath of the other two so goes through a form of pretreatment using acid or catalysts.	Remember	CO 3	CLO 8	AEE551.08
4	Define anaerobic digestion?	Anaerobic digestion is a commercially proven technology and is widely used for recycling and treating wet organic waste and waste waters. It is a type of fermentation that converts organic material into biogas, which mainly consists of methane (approximately 60%) and carbon dioxide (approximately 40%) and is	Remember	CO 3	CLO 8	AEE551.08

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		comparable to landfill gas.				
5	What is	Biodiesel can be used in pure	Remember	CO 3	CLO 5	AEE551.05
	biodiesel?	form or may be blended with				
		petroleum diesel at any				
		concentration for use in most modern diesel engines.				
		Biodiesel is raw vegetable oil				
		transformed, treated, and				
		standardized through chemical				
		processes.				
6	What is Biochar?	Biochar is a fine-grained	Remember	CO 3	CLO 7	AEE551.07
		charcoal high in organic carbon				
		and largely resistant to				
		decomposition. Biochar is				
		produced by heating biomass in the absence (or under reduction)		-		
		of air, or pyrolysis.				
7	Define	In transesterification, biodiesel	Remember	CO 3	CLO 7	AEE551.07
'	transesterification	is formed. Takes the place of	remember		CEO /	112231.07
	?	petroleum or used as a mix.				
		Takes vegetable oil, animal fat,				
	1	or grease and turns it into a fatty				
		acid methyl ester by taking the				
		alkoxy group and replacing it				
		with the alcohol. Usually this process is base or acid				
		catalyzed.				
8	Summarize	Biochemical conversion entails	Remember	CO 3	CLO 8	AEE551.08
	sources of energy	breaking down biomass to make	1101110111001		0200	122001100
	generation using	the carbohydrates available for				
	bio chemical	processing into sugars, which				
	conversion?	can then be converted into				
	620	biofuels and bio products	. 10			
		through the use of	4		300	
9	Summarize step	microorganisms and catalysts Step by step process of bio	Remember	CO 3	CLO 8	AEE551.08
9	by step process of	chemical conversion :	Kemember	CO 3	CLO 8	AEE331.06
	energy	1. Feedstock Supply,		,	1	
	conversion using	2. Pretreatment,				
	bio chemical?	3. Hydrolysis,			70	
	7	4. Biological Conversion,		Q	· .	
		5. Chemical Conversion,				
		6. Product Recovery,	. 0			
		7. Product Distribution and	1. 1.7	/		
		8. Heat & Power				
10	Discuss	Anaerobic digestion of sewage	Remember	CO 3	CLO 4	AEE551.04
10	anaerobic	is a commercially proven	Remonioei		CLO I	1122001.07
	digestion of	technology and is widely used				
	sewage	for recycling and treating wet				
		organic waste and waste waters.				
11	Define	Hydrolysis is a enzymes (or	Remember	CO 3	CLO 4	AEE551.04
	hydrolysis?	other catalysts) enable the				
		sugars within cellulose and hemicellulose in the pretreated				
		material to be separated and				
		released over a period of several				
		days.				
1						
12	Explain direct combustion of	It is process of oxidation in	Remember	CO 3	CLO 4	AEE551.04

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	MSW-refuse	of municipal solid waste but in				
	derived solid fuel	case of two stage oxidation is				
- 10		called gasification			GT 0 0	
13	Define enzyme	Enzyme Primer	Remember	CO 3	CLO 8	AEE551.08
	primer?	1. Enzymes are proteins				
		that naturally enable				
		chemical reactions in				
		living organisms.				
		2. Many of these				
		reactions break down				
		larger molecules into smaller ones.				
14	Define Industrial	The waste generated in the	Remember	CO 3	CLO 9	AEE551.09
14	waste agro	industries after the products are	Kemember	CO 3	CLO	ALE331.09
	residues?	produced such as ash ,paints and			1	
	residues.	radioactive waste. In agricultural		$\overline{}$		
		fields the waste is dry grass.				
15	Define aerobic	This process of is also known	Remember	CO 3	CLO 5	AEE551.05
-0	digestion?	as the biogas platform, methane,				
		also known as natural gas, is				
		produced. This process of				
		decomposition uses natural				
		consortia of microorganisms to				
		break down biomass into its				
		building blocks.				
		UNIT-IV				
1	Define term	Biogas is a bio-	Remember	CO 4	CLO 8	AEE551.08
	biogas?	fuel produced from the				
		anaerobic fermentation of				
		carbohydrates in plant material			1	
		or waste (food peelings or				700
	200	manure) by bacteria.				
2	What is landfill	Landfill gas utilization is a	Remember	CO 4	CLO 8	AEE551.08
	gas utilization?	process of gathering,				
		processing, and treating the			4	
		methane gas emitted from				
		decomposing garbage to	7		No.	
		produce electricity, heat, fuels,		- 0		
		and various chemical compounds.		~ ×	*	
3	Discuss how	The gas must be continuously	Remember	CO 4	CLO 8	AEE551.08
)	landfill gases are	extracted under controlled	Remember	CO 4	CLU 6	ALE331.00
	collected?	conditions. Perforated tubes are	1. 1. 1.			
		drilled into the landfill body and				
		interconnected by a pipe work				
		system. Using a blower, the gas				
		is sucked from the landfill. A				
		well-designed gas collection				
		system will flexibly capture the				
		landfill gas from various spots				
		and handful high temperatures,				
		leach ate, condensates and air				
		content – thus ensuring a cost-				
		efficient collection as well as				
		stable landfill gas quality.				
		Several engineering companies				
		specialize in this field and offer				
		their services on a worldwide.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
4	Explain process	Bio-renewable feed stocks can	Remember	CO 4	CLO 12	AEE551.12
	of thermo	be used as a solid fuel, or				
	chemical	converted into liquid or gaseous				
	conversion?	forms for the production of				
		electric power, heat, chemicals,				
		or gaseous and liquid fuels.				
		Thermochemical conversion pro				
		cesses include three				
		subcategories: pyrolysis,				
		gasification and liquefaction.				
5	Summarize the	Pyrolysis is a process of	Remember	CO 4	CLO 14	AEE551.14
	difference	subjecting a biomass feedstock				
	between	to high temperatures (greater				
	pyrolysis and	than 430 °C) under pressurized				
	gasification?	environments and at low				
		oxygen levels. In the process,			1	
		biomass undergoes partial combustion. Processes of				
		pyrolysis result in liquid fuels and a solid residue called char,				
		or biochar.				
		The Biomass gasification				
		process is the conversion by				
		partial oxidation (i.e. more				
		oxidizing agent than for				
		pyrolysis but less than for				
		complete combustion) at high				
		temperature (>800°C) of				
		biomass into a gas.				
6	Discuss different	Main classification of gasifiers:	Remember	CO 4	CLO 14	AEE551.14
	types of gasifiers	Basically there are two types of				
	used in	gasifiers: fixed bed and				
	gasification.	fluidized bed and further in				700
		fixed bed there are three types:		_		
		up draft gasifiers, down draft)
		gasifiers and cross draft				
7	Dofino biomoss	gasifiers.	Domombor	CO 4	CI O 13	AEE551 12
7	Define biomass briquettes and	Biomass briquettes are a biofuel substitute to coal and charcoal.	Remember	CO 4	CLO 13	AEE551.13
	why do we use	Biomass briquettes are made			*Con-	
	them?	from agricultural and forestry				
	them.	waste. The low density		> "		
		biomass(agricultural and		N.		
		forestry waste) is converted into		, ,		
		high density biomass briquettes	1 7 7			
		with the help of a briquetting	100			
		machine that uses binder less				
		technique, without using any				
		type of chemical so it is 100%				
		natural.				
		Biomass briquettes are used				
		instead of charcoal because they				
		emit less carbondioxide when				
	D' (1	they are burnt.	D 1	GC 1	OT 0.12	A E E E E E 1 1 2
8	Discuss the	The major raw material for	Remember	CO 4	CLO 13	AEE551.13
	major raw	biomass briquette are, Mustard				
	materials used in biomass	Stalks, Sawdust, Rice Husk, Coffee Husk, Coir Pitch, Jute				
	briquettes	Sticks, Sugarcane Baggasse,				
	oriquettes	Groundnut Shell, Cotton Stalks,				
		Grounding Shen, Conon Starks,				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		Caster Seed Shells / Stalk,				
		Wood Chips, Bamboo Dust,				
		Tobacco Waste, Tea Waste, maize stalks, bajra cobs, Arhar				
		stalks, Paddy Straw, Wheat				
		Straw, Sunflower Stalk, Palm				
		Husk, Soyabean Husk, Veneer				
		Residues, Barks & Straws,				
		Leafs, Pine Niddle, Seeds Cases				
		etc.				
9	What are the	Mainly two techniques are	Remember	CO 4	CLO 13	AEE551.13
	techniques used	available for making briquetted				
	to make biomass briquettes.	fuel from agro wastes. 1. Pyrolysed briquetted				
	oriquettes.	fuel:				
		2. Direct compaction				
		briquetted fuel:				
10	List out the	Biomass briquetting machines:	Remember	CO 4	CLO 13	AEE551.13
	biomass	1. Jumbo 90 briquetting				
	briquetting	machine.				
	machines	2. Super 70 briquetting				
	available?	machine.				
		3. Supreme 70 briquetting machine.				
		4. Briquetting crusher				
		machine.				
11	What are the	Advantages:	Remember	CO 4	CLO 13	AEE551.13
	advantages of	1. Biomass briquette				
	biomass	plant is made from				
	briquetting?	green waste and				
		industrial waste. So, it				
		is the clean and renewable.				
		2. When the process of	. 11			
		making briquette is	-		-	
		going on, it does not		_	_	2
		emit any harmful			. ~	
		gases.			^	
		3. Easy availability of			No.	
		biomass and other raw			1.	
		material.		. 2		
		4. From this plant, biomass is converted		V.		
		into useful biomass	. 0	, "		
		briquettes. It is also	1 1 1			
		known as white coal.				
		Government also				
		supports to this project				
		due to its eco friendly				
		features and also gives				
		subsidy to purchase this briquette plant.				
12	List out the	Biomass Briquette are widely	Remember	CO 4	CLO 13	AEE551.13
12	applications of	used for any type of thermal			02013	111111111111111111111111111111111111111
	biomass	application like steam				
	briquettes?	generation in boilers, in furnace				
		& foundries (It can be used for				
		metal heating & melting where				
		melting point is less than				
		1000d/cel.), for heating purpose				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		(Residential & Commercial				
		Heating for winter, heating in				
		Cold areas and Hotels,				
		Canteens, Cafeterias and house				
		hold kitchen appliances etc),				
		drying process and in				
		gasification plant replacing				
		conventional solid fuels like				
		Coal and Firewood and liquid				
		fuels like Diesel, Kerosene,				
10	D'	Furnace Oil (FO), etc.	D 1	GO 4	CT 0 12	A E E E E E 1 1 1 2
13	Discuss	Thermochemical conversion	Remember	CO 4	CLO 12	AEE551.12
	environmental benefits of	processes such as gasification,				
	thermo chemical	pyrolysis and incineration can remove materials from the solid			1	
	conversion.	waste stream and can also				
	conversion.	create:				
		1. Liquid fuels such as				
		biodiesel, ethanol and				
		oil.				
		2. Electricity, heat and				
		steam from				
		combustible gases				
		such as methane.				
		3. Chemicals and				
		consumer products				
		from oils and syngas.				
		4. Activated carbon for				
		the food processing				
		industry				
14	Differentiate	Producer gas is generated in the	Remember	CO 4	CLO 14	AEE551.14
	between	low temperature gasification				
	producer gas and	process (< 1000°C) and				700
	syngas?	contains CO, H2, CH4, CxHy,				
	0	aliphatic hydrocarbons,)
		benzene, toluene, and tars				
		(besides CO2, H2O, and N2 in			4	
		case of gasification in air).				
		H2 and CO typically contain			No.	
	-0	only ~50% of the energy in the			1.76	
		gas, while the remainder is in				
		CH4 and higher (aromatic) HCs.		V.	100	
		1105.		1		
		Syngas is produced by high	1. 1.7			
		temperature (above 1200°C) or				
		catalytic gasification.				
		Under these conditions the				
		biomass is completely				
		converted into H2 and CO				
		(besides CO2, H2O, and N2 in				
		case of gasification in air).				
		Syngas is chemically similar to				
		that derived from fossil sources.				
		This gas can also be made from				
		producer gas by heating the				
		thermal cracking or catalytic				
		reforming.				
15	Discuss the advantages of	Produces a more convenient easily controllable form of	Remember	CO 4	CLO 14	AEE551.14

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	biomass	cleaner fuel for both thermal				
	gasification.	energy and electricity				
		generation, and provides a mean				
		to reduce or remove				
		conventional fossil fuels.				
		Gasification gives biomass the				
		flexibility to fuel a wide range				
		of electricity generation				
		systems: gas turbines, fuel cells,				
		and reciprocating engines.				
		A wide variety of biomass materials can be gasified, many				
		of which would be difficult to				
		burn otherwise.				
		Gasification offers one means				
		of processing waste fuels, many				
		of which can be problematic.				
		Gasification has the potential of				
		reducing emission of pollutants				
		and greenhouse gases per unit				
		energy output.				
		Projected process efficiencies				
		are higher than the direct				
		combustion systems and				
		comparable with fossil systems				
		UNIT-V				
1	What is E-waste	E-waste comprises of waste	Remember	CO 5	CLO 17	AEE551.17
	in global	electronics goods which are not				
	context?	fit for their originally intended use. Such electronics goods				
		may be television, telephones,				-
		radios, computers, printers, fax				
		machines, DVDs and CDs etc	-		100	
2	Discuss different	Solder in printed	Remember	CO 5	CLO 17	AEE551.17
	sources of E-	circuit boards, glass			. ~	
	waste.	panels, and gaskets in				
		computer monitors.	7			
		2. Chip resistors and			100	
		semi-conductors				
		3. Relays and switches,				
		and printed circuit	- 0	. "		
		boards. 4. Galvanized steel plates	1. 1.7			
		and decorator or				
		hardener for steel				
		housing.				
		5. Cabling and computer				
		housing.				
		6. Electronic equipment				
		and circuit boards.				
		7. Copper wires, Printed				
		circuit board tracks.				
		8. Nickel–cadmium				
		rechargeable batteries.				
		9. Lithium-ion battery and mother board.				
3	Listout types of	Types of E-waste:	Remember	CO 5	CLO 17	AEE551.17
	treats from E-	1. Dispose issue			02017	11111111111
		1. 2.5pose 1550c				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	waste.	2. Health and				
		environmental issue.				
		3. Illegal dumping.				
		4. Imports from Europe and America.				
4	What are the	Pollution of ground	Remember	CO 5	CLO 18	AEE551.18
'	environmental	water	Remember	003	CLO 10	7 HEE331.10
	concerns of E-	2. Acidification of soil				
	waste?	3. Air pollution				
		4. E-Waste accounts for				
		40% of lead and 75%				
		of heavy metals in landfills.				
5	What are the	1. DNA damage	Remember	CO 5	CLO 18	AEE551.18
	health hazards of	2. Lung cancer.	Remember	CO 3	CLO 10	ALL551.16
	E-waste?	3. Damage to heart, liver			1	
		and spleen.				
		4. Chronic damage to the				
		brain.				
	D' 4	5. Asthmatic bronchitis.	D 1	GO 5	CI O 10	AEE551 10
6	Discuss the current status of	For the recycling of e-waste, India heavily depends on the	Remember	CO 5	CLO 18	AEE551.18
	E-waste	unorganized sector as only a				
	management.	handful of organized e-waste				
		recycling facilities are available.				
		Over 95% of the e-waste is				
		treated and processed in the				
		majority of urban slums of the				
		country, where untrained				
		workers carry out the dangerous procedures without personal				
		protective equipment, which are				
		detrimental not only to their				700
		health but also to the	- 41 -			
	0	environment.	700			
7	List out the	Plastic, metal, glass, mercury,	Remember	CO 5	CLO 17	AEE551.17
	reusable	printed circuit board, hard			A	
	components in e- waste.	drives, ink and toner cartridges, batteries are the reusable				
	waste.	products from E-Waste.			700	
8	Discuss current	E waste recycling industries	Remember	CO 5	CLO 17	AEE551.17
	challenges in	face certain challenges like:				
	electronic	1. Exports to developing	- 0			
	recycling	nations	1 11			
	industries.	2. Less valuable materials3. Electronics are not				
		designed for recycling				
		and reuse.				
		4. Most E-waste still goes				
		to landfills.				
9	Discuss the	Collection and transportation	Remember	CO 5	CLO 16	AEE551.16
	process for	are two of the initial stages of				
	recycling electronic waste	the recycling process, including for e-waste. After collection and				
	ciccionic waste	transportation to recycling				
		facilities, materials in the e-				
		waste stream must be processed				
		and separated into clean				
		commodities that can be used to				
		make new products. After the				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		shredding, sorting and				
		separation stages have been				
		executed, the separated				
		materials are prepared for sale				
		as usable raw materials for				
		the production of new				
1.0	<u> </u>	electronics or other products.		~~-	GY 0 1 7	177551 15
10	Discuss about E-	Basel convention for regulating	Remember	CO 5	CLO 15	AEE551.15
	Waste	trans- boundary movement.				
	legislations.	The hazardous waste (management and handling)				
		rules, 1998 as amended in 2008.				
		Municipal solid waste				
		management and handling rules				
		for non- toxic content.				
		The environment protection act-				
		biomedical wastes (M &H)				
		rules 1998, batteries (M&H)				
		rules 2001,etc.				
11	List out the E-	Procedure and authorization of	Remember	CO 5	CLO 15	AEE551.15
	Waste	producers, dismantlers,				
	management and	collection agencies and				
	handling rules.	recyclers.				
		Procedure for renewal/				
		registration of recyclers.				
		Liability of producers,				
		collection agencies and				
		recyclers.				
		Reduction of hazardeous substances used in E-				
		equipment.				
12	What is global	The global waste trade is	Remember	CO 5	CLO 17	AEE551.17
12	trade in	the international	Remember	CO 3	CLO 17	71117
	hazardous waste?	trade of waste between				
		countries for				
		further treatment, disposal,				e
		or recycling. Toxic			, ~	
		or hazardous wastes are often				
		exported from developed	7			
		countries to developing			N.	
		countries, also known as			No. 1	
		countries of the Global South.				
		Therefore, the burden of the	- 0	. "		
		toxicity of wastes from Western	1 1 1			
		countries falls predominantly onto developing countries in				
		Africa, Asia, and Latin				
		America.				
13	List out any five	Protection of animals and plants	Remember	CO 5	CLO 15	AEE551.15
13	environmental	Planning for the use and				111111111111111111111111111111111111111
	protection laws.	development of land Water				
		resource management (lakes,				
		wetlands, rivers and oceans)				
		Conservation of natural and				
		cultural heritage				
		Mining, exploration and				
		extractive industries	<u> </u>			
14	What is the	One of the most common effects	Remember	CO 5	CLO 18	AEE551.18
	impact of	of E-waste on air is through air				
	hazardous E-	pollution.				
	-					

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	waste on	When electronics containing				
	environment?	heavy metals such as lead,				
		barium, mercury, lithium (found				
		in mobile phone and computer				
		batteries), etc., are improperly				
		disposed, these heavy metals				
		leach through the soil to reach				
		groundwater channels which				
		eventually run to the surface as				
		streams or small ponds of water.				
		In this way, toxic heavy metals				
		and chemicals from e-waste				
		enter the "soil-crop-food				
		pathway," one of the most				
		significant routes for heavy				
		metals' exposure to humans.	Name of Street			
15	List out measures	Checking with the local	Remember	CO 5	CLO 16	AEE551.16
	to reduce E-	government on laws and				
	waste.	regulations guiding ethical and				
		safe disposal of these waste.				
		With the donation of electronics,				
		some of the e-waste disposed				
		can actually be reused.				
		With the use of a certified E-				
		waste recycler, one can find an				
		ethical and safe recycler				
		certified through the Basel				
		Action Network (BAN), a non-				
		profit organization.				

Signature of the Faculty HOD, AE

CATION F