

Dundigal, Hyderabad - 500 043

COMPUTER SCIENCEAND ENGINEERING

DEFINITIONS AND TERMINOLOGY

Course Title	MICR	MICROPROCESSORS AND INTERFACING					
Course Code	AEC02	AEC021					
Programme	B.Tech	1					
Semester	V	CSE					
Course Type	Core						
Regulation	IARE	- R16					
Course Structure			Theory		Pract	ical	
	Lectu	ıres	Tutorials	Credits	Laboratory	Credits	
		3	1	4	3	2	
Chief Coordinator	Mr. V	R Sesha	agiri Rao, Assista	nt Professor			
Course Faculty	Dr. P S	S L Mur	thy, Professor				
	Mr. M	ohd.Kh	adir, Assistant Pr	ofessor			
	Ms. K	Sravani	i, Assistant Profes	ssor			
	Mrs. L	akshmi	Prasanna, Assista	ant Professor			

OBJECTIVES:

Ι	To help students to consider in depth the terminology and nomenclature used in the syllabus.
II	To focus on the meaning of new words / terminology/nomenclature

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S No	QUESTION	ANSWER	BLOOMS TAXONOMY LEVEL	СО	CLO	CLO Code
		UNIT – I				
		OVERVIEW OF 8086 MICRO	PROCESSOR			
1.	Define a microprocessor?	A processor on a single integrated circuit. In the world of personal computers, the terms microprocessor and CPU are used interchangeably	Remember	CO 1	CLO 1	AEC021.01
2.	What is a clock speed?	The clock speed determines how many instructions per second the processor can execute	Understand	CO 1	CLO 1	AEC021.01
3.	What is a RISC processor?	RISC stands for Reduced Instruction Set Computer. It is designed to reduce the execution time by simplifying the instruction set of the computer.	Remember	CO 1	CLO 1	AEC021.01

4.	What is an Input	A device that allows input of	Remember	CO 1	CLO 1	AEC021.01
4.	device?	information to a computer.	Kemember	COT	CLUI	AEC021.01
5.	What is an Interface?	Interfacing a microprocessor is to connect it with various peripherals to perform various data operations and controlling of the devices.	Remember	CO 1	CLO 1	AEC021.01
6.	What is a CISC processor?	CISC stands for Complex Instruction Set Computer. It is designed to minimize the number of instructions per program, ignoring the number of cycles per instruction.	Remember	CO 1	CLO 1	AEC021.01
7.	What is a coprocessor?	designed microprocessor, which can handle its particular function many times faster than the ordinary microprocessor.	Remember	CO 1	CLO 1	AEC021.01
8.	What are the features of processor?	The main internal hardware of processor consists, external memory, registers, control unit, and ALU. Registers are processor components that hold information and address. To execute a program, the system copies it from the external device into the internal memory. The processor executes the program instructions.	Understand	CO 1	CLO 1	AEC021.01
9.	Explain the fundamental unit in computer or processor storage?	The fundamental unit of computer storage is a bit; it could be ON (1) or OFF (0). A group of 9 related bits makes a byte, out of which eight bits are used for information and the final one is used for parity. According to the rule of parity, the number of bits that are ON (1) in each byte should always be odd. The parity bit is used to make the number of bits in a byte odd. If the parity is even, the system assumes that there had been a parity error (though rare), which might have been caused due to hardware fault or electrical disturbance.	Understand	CO 1	CLO 1	AEC021.01
10.	Define addressing modes?	The term addressing modes refers to the way in which the operand of an instruction is specified.	Understand	CO 1	CLO 4	AEC021.04
11.	Define ALU?	An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic operations.	Understand	CO 1	CLO 2	AEC021.02
12.	What is the speed of a microprocessor?	Time required executing a basic instruction	Understand	CO 1	CLO 2	AEC021.02
13.	What is an ISR?	ISR (Interrupt Service Routine) is a short program to instruct the	Understand	CO 1	CLO 4	AEC021.04

		microprocessor on how to handle the interrupt.				
14.	Define Assembler?	Assembler converts	Remember	CO 1	CLO 5	AEC021.05
1	Define Assembler.	instructions written in low-	Remember	001		11LC021.05
		level symbolic code into				
		machine code.				
15.	What is Architecture?	Architecture is the study of internal	Understand	CO 1	CLO 2	AEC021.02
		logic circuitry.				
16.	What is a Control	Provides necessary timing and	Understand	CO 1	CLO 1	AEC021.01
	Unit?	control signals to all the operation				
		of the microprocessor and				
1.5		microprocessor system		G (1		
17.	What is a Register?	The Registers are a mini-storage	Remember	CO 1	CLO 3	AEC021.03
		area for data used by the				
		Arithmetic Logic Unit (ALU) to				
		complete the tasks the Control Unit has requested.				
18.	What is a pre-fetch	The pre-fetch Unit decides when	Understand	CO 1	CLO 2	AEC021.02
10.	unit?	to order data and instructions	Onderstand	001		7HEC021.02
	unit.	from the Instruction Cache or the				
		computer's main memory based				
		on commands or the task at hand.				
19.	What is a decode unit?	The Decode Unit decodes or	Understand	CO 1	CLO 1	AEC021.01
		translates complex machine				
		language				
		instructions into a simple format				
		understood by the Arithmetic				
		Logic Unit (ALU) and the				
		Registers. This makes processing				
20	What is a flag	more efficient.	Understand	CO 1	CLO 3	AEC021.02
20.	What is a flag register?	Flag Register shows the status of the microprocessor before/after an	Understand	COT	CLU 3	AEC021.03
	legister :	operation.				
21.	What is a carry flag?	Carry Flags set if there is a carry	Understand	CO 1	CLO 3	AEC021.03
		or borrow from arithmetic	Charlound	001	0200	1120021100
		operation				
22.	What is a program	Program Counter (PC) is a	Understand	CO 1	CLO 2	AEC021.02
	counter?	register that is used to control the				
		sequencing of the execution of				
		instructions.				
		This register always holds the				
23.	What is a stack?	address of the next instruction	Remember	CO 1	CLO 2	AEC021.02
23.	what is a stack?	Stack is an area of memory identified by the programmer for	Kennennber			AEC021.02
		temporary storage of information.				
24.	What is an address	Address bus carries the address,	Understand	CO 1	CLO 2	AEC021.02
	bus?	which is a unique binary pattern	Chaelbuild	001		1
		used to identify a memory				
		location or an I/O port.				
25.	What are the	The interrupts of 8086 are INTR	Understand	CO 1	CLO 4	AEC021.04
	hardware	and NMI. The INTR is general				
	interrupts of	maskable interrupt and NMI is				
	8086?	non-maskable interrupt.				
26.	What is a segment	The segment registers stores	Understand	CO 1	CLO 2	AEC021.02
	register?	segment base address of the				
		memory segment.				

27.	What is a ready signal	This is the acknowledgment from	Understand	CO 1	CLO 2	AEC021.02
		the slow devices (or) memory that				
		they have completed the data				
		transfer.				
28.	What is ALE?	ALE -Address Latch Enable: This	Remember	CO 1	CLO 2	AEC021.02
		signal indicates the availability of				
		the valid address on the address /				
		data lines.				
29.	What is DEN signal?	DEN signal indicates the	Understand	CO 1	CLO 2	AEC021.02
		availability of valid data over the				
		address / data lines.				
30.	What is a numeric	The numeric processor 8087 is a	Remember	CO 1	CLO 5	AEC021.05
	processor?	coprocessor which has been				
		designed to work under the control				
		of the processor 8086 and offer it				
		additional numeric processing				
		capabilities.				
31.	Define bit.	Bit is the smallest unit of memory	Remember	CO 1	CLO 2	AEC021.02
		storage.				
32.	What is Von Neumann	Data and instructions stored in a	Remember	CO 1	CLO 2	AEC021.02
	Architecture?	single memory unit.				
33.	What is Harvard	Data and instructions stored in a	Remember	CO 1	CLO 2	AEC021.02
	Architecture	separate memory units.				
34.	What is machine	Machine instruction is binary code	Understand	CO 1	CLO 4	AEC021.04
	instruction?	for processing by hardware.				
35.	What is direct	In Direct Addressing Mode, the	Remember	CO 1	CLO 4	AEC021.04
	addressing	address of the data is specified as				
	mode?	the Operand in the instruction.				
		Using Direct Addressing Mode,				
		we can access				
		any register or on-chip variable.				
		This includes general purpose				
		RAM, SFRs, I/O Ports, Control				
		registers. Example:MOVA,47H				
36.	What is assembler	Assembler directives directs the	Understand	CO 1	CLO 5	AEC021.05
	directives?	assembler to do something. As the				
		name says, it directs the assembler				
		to do a task.				
37.	Define byte	Define Byte [DB] directive	Understand	CO 1	CLO 5	AEC021.05
	(DB) directive?	defines the byte type variable.				
38.	Define word	Define Word [DW] directive	Understand	CO 1	CLO 5	AEC021.05
	(DW) directive?	defines items that are one word				
		(two bytes) in length.				
39.	Define quad	Define Quad word [DQ] directive	Understand	CO 1	CLO 5	AEC021.05
	word (DQ)	is used to tell the assembler to				
	directive?	declare variable 4 words in length				
		or to reserve 4 words of storage in				
		memory.				
40.	What is ten bytes	Define Ten bytes [DT] is used to	Understand	CO 1	CLO 5	AEC021.05
	(DT) directive?	define the data items that are 10				:
	· / ·····	bytes long.				
41.	What is versatility?	The microprocessors are versatile	Understand	CO 1	CLO 1	AEC021.01
	,	as the same chip can be used in a				
		number of applications by				
		configuring the software program.				
		programe program.				

42	X 71	This FOLL threading is seen to a single	TTo denote o d	CO 1	CLO 5	AEC021.05
42.	What is equ	This EQU directive is used to give	Understand	CO 1	CLO 5	AEC021.05
	directive??	a name to some value or to a				
		symbol.				
		Each time the assembler finds the				
		name in the program, it will				
		replace the name with the value or				
		symbol you given to that name.				
43.	What is even	EVEN directive instructs the	Understand	CO 1	CLO 5	AEC021.05
	directive??	assembler to increment the				
		location of the counter to the next				
		even address if it is not already in				
		the even address.				
44.	What is group	The GROUP directive is used to	Understand	CO 1	CLO 5	AEC021.05
	directive?	group the logical segments named				
		after the directive into one logical				
		group segment.				
45.	What is PROC	The PROC directive is used to	Understand	CO 1	CLO 5	AEC021.05
	directive?	identify the start of a procedure.				
		The term near or far is used to				
		specify the type of the procedure.				
46.	What is OFFSET	Offset directive is used to	Remember	CO 1	CLO 9	AEC021.09
	directive?	determine the offset or				
		displacement of a named data				
		item or procedure from the start				
		of the segment which contains it.				
47.	What is ORG	The ORG directive allows setting	Understand	CO 1	CLO 9	AEC021.09
	directive?	a desired value at any point in the				
		program.				
48.	What is PROC	PROC directive is used to identify	Understand	CO 1	CLO 9	AEC021.09
	directive?	the start of a procedure.				
49.	What is SEGMENT	SEGMENT directive is used to	Understand	CO 1	CLO 9	AEC021.09
	directive?	indicate the start of a logical				
		segment				
50.	What is Assume	The ASSUME directive is used to	Understand	CO 1	CLO 5	AEC021.05
	directive?	tell the assembler that the name of				
		the				
		logical segment should be used for				
		a specified segment.				
	DINDIACD	UNIT – II	NCUACEDD		MINC	
1	What are the modes in	AM OF 8086 AND AEESMBLY LA				AEC021.07
1.	what are the modes in which		Remember	CO 2	CLO 7	AEC021.07
	8086 can operate?	modes and they are minimum (or uniprocessor) mode and				
	obou can operate?	maximum (or multiprocessor)				
		maximum (or multiprocessor) mode.				
2.	What is an	The assembler processes an	Remember	CO 2	CLO 8	AEC021.08
۷.	Instruction	Instruction it converts the	Kemenibei			ALC021.00
	format?	instruction from its mnemonics				
	iormat:	form to standard machine				
		language format called the				
		"Instruction format".				
3.	What is a system bus?	System bus is used for	Understand	CO 2	CLO 8	AEC021.08
5.	That is a system bus?	communication path between	Understand			7110021.00
		Microprocessor and peripherals.				
		System bus is a group of wires				
I I		used to carry the information bits.				

4.	Define Program?	Program is a set of instruction	Remember	CO 2	CLO 8	AEC021.08
	-	used to perform a task.				
5.	Define Instruction?	Instruction is a command to the microprocessor to perform a task.	Remember	CO 2	CLO 8	AEC021.08
6.	Define Mnemonics?	Mnemonics is an abbreviation for each binary instruction word	Understand	CO 2	CLO 8	AEC021.08
7.	What is machine cycle?	A machine cycle consists of the steps that a computer's processor executes whenever it receives a machine language instruction. The cycle consists of three standard steps: fetch decode and execute.	Understand	CO 2	CLO 8	AEC021.08
8.	What are DAA and DAS Instructions?	Decimal Adjust after BCDAddition: When two BCDnumbers are added, the DAA isused after ADD or ADCinstruction to get correct answerin BCD.Decimal Adjust after BCDSubtraction: When two BCDnumbers are added, the DAS isused after SUB or SBBinstruction to get correct answerin BCD.	Remember	CO 2	CLO 8	AEC021.08
9.	What is pipelining?	A technique used in advanced microprocessors where the microprocessor begins executing a second instruction before the first has been completed	Remember	CO 2	CLO 8	AEC021.08
10.	Which Interrupt Has The Highest Priority?	TRAP has the highest priority.	Remember	CO 2	CLO 8	AEC021.08
11.	Explain few Assembly Controls?	JMP Jump; Intel 80×86; unconditional jump (near [relative displacement from PC] or far; direct or indirect [based on contents of general purpose register, memory location, or indexed]) Jump Conditionally; Intel 80×86; conditional jump (near [relative displacement from PC] or far; direct or indirect [based on contents of general purpose register, memory location, or indexed]) based on a tested condition: JA/JNBE, JAE/JNB, JB/JNAE, JBE/JNA, JC, JE/JZ, JNC, JNE/JNZ, JNP/JPO, JP/JPE, JG/JNLE, JGE/JNL, JL/JNGE, JLE/JNG, JNO, JNS, JO, JS	Understand	CO 2	CLO 9	AEC021.09

12.	Write about	Condition codes are the list of	Understand	CO 2	CLO 9	AEC021.09
12.	Assembly Condition	possible conditions that can be	Onderstand	02	CLO)	ALC021.07
	Codes?	tested during conditional				
		instructions. Typical conditional instructions				
		include: conditional branches,				
		conditional jumps, and				
		conditional subroutine calls.				
		Some processors have a few				
		additional data related conditional				
		instructions, and some processors				
		make every instruction				
		conditional. Not all condition				
		codes available for a processor				
		will be implemented for every conditional instruction.				
13.	Write about Data	Data movement instructions move	Remember	CO 2	CLO 8	AEC021.08
	Movement?	data from one location to another.				
		The source and destination				
		locations are determined by the				
14.	What is the function of	addressingJump if above, not below, or	Remember	CO 2	CLO 8	AEC021.08
14.	JA or JNBE and JE/JZ	• Jump 11 above, not below, or equal i.e. when CF and $ZF = 0$	Nemeniber	02		AEC021.08
	Instructions	 Jump if zero or equal i.e. when 				
		ZF = 1				
15.	What is the function of	• Calls a procedure whose	Understand	CO 2	CLO 8	AEC021.08
	CALL and RET	address is given in the				
	Instructions	instruction and saves their				
		return address to the stack.				
		• Returns program execution from a procedure (subroutine)				
		to the next instruction or main				
		program.				
16.	What is the function of	1 0	Remember	CO 2	CLO 8	AEC021.08
	MOVS/MOVSB/MO	from the memory location(s)				
	VSW and	addressed by SI register to the				
	CMPS/CMPSB/CMPS	5				
	W Instructions	DI register.				
		• Compares the content of				
		memory location addressed by DI register with the content of				
		memory location addressed by				
		SI register.				
17.	What is Assembly	Numerical data is generally	Understand	CO 2	CLO 9	AEC021.09
	Numbers?	represented in binary system.				
		Arithmetic instructions operate on				
		binary data. When numbers are				
		displayed on screen or entered from keyboard, they are in ASCII				
		form.				
18.	Write about	The processor instruction set	Understand	CO 2	CLO 8	AEC021.08
	Assembly Arithmetic	provides the instructions ADD,				
	Instructions?	SUB, MUL, DIV, INC, and DEC				
		to perform arithmetic operations				
		which tests according to the need				
		of the program.				

10	XX7 · 1		TT 1 / 1	<u> </u>	CT O O	450001.00
19.	Write about	The processor instruction set	Understand	CO 2	CLO 8	AEC021.08
	Assembly Logical	provides the instructions AND,				
	Instructions?	OR, XOR, TEST, and NOT				
		Boolean logic, which tests, sets,				
		and clears the bits				
		according to the need of the				
		program.				
20.	What is Assembly	Conditional execution in assembly	Understand	CO 2	CLO 8	AEC021.08
	Conditions?	language is accomplished by				
		several looping and branching				
		instructions.				
		These instructions can change the				
		flow of control in a program.				
		Conditional execution is observed				
		in two scenarios				
		- Unconditional jump				
		Conditional jump				
21.	What is Assembly	3 1	Understand	CO 2	CLO 9	AEC021.09
	Strings?	length strings in our previous				/
	0	examples. The variable length				
		strings can have as many				
		characters as required.				
22.	What is Assembly	Procedures or subroutines are	Understand	CO 2	CLO 9	AEC021.09
22.	Procedures?	very important in assembly	Chaelstand	002	CLO /	1112021.09
	Tiocodules.	language, as the assembly				
		language programs tend to be				
		big in size. Procedures are				
		recognized by a name.				
23.	What is Assembly	A recursive procedure is one that	Remember	CO 2	CLO 9	AEC021.09
23.	Recursion?	calls itself. There are kind of	Kemember	02	CLO 9	ALC021.09
	Recuision:	recursion: direct and indirect.				
		In direct recursion, the procedure calls itself and in indirect				
		recursion, the first procedure calls				
		a second process, which in turn				
24	Without Transmission Incom	calls the first procedure.	D	CO 2	CLO 0	AEC021.00
24.	What Is mean by	A program runs on one machine	Remember	CO 2	CLO 9	AEC021.09
	Cross- compiler?	and executes on another is called				
		as cross- compiler				
		Programs which compile on One				
		Machine and Execute on Another				
	XX71 . 1	machine is called cross compiler.	TT T	<u> </u>	01.0.0	
25.	What is Assembly	Assembly language programming	Understand	CO 2	CLO 9	AEC021.09
	Language	is a low-level programming				
	Programming?	language for a computer or other				
		programmable devicespecific to a				
		particular computer architecture				
		in contrast to most high-level				
		programming languages, which				
		are generally portable across				
		multiple systems. assembly				
		language is converted into				
		executable system codethrough a				
		utility application called an				
		assembler like NASM, MASM,				
		etc.				

26	Wilcot and the	A decontagonal of using accounting	Damanhan	CO 2	CLOO	AEC021.00
26.	What are the	Advantages of using assembly	Remember	CO 2	CLO 9	AEC021.09
	advantages of	language are –				
	Assembly Language	- It requires less memory and				
	Programming?	execution time;				
		- It allows hardware-specific				
		complex				
		- It is suitable for time-critical				
		jobs;				
		- It is most suitable for writing				
		interrupt provider routines and				
		different memory resident				
27	<u> </u>	programs.	XX 1 . 1	<i>a</i> a a	CT O O	150001.00
27.	Give an example of	Hexadecimal number considered is	Understand	CO 2	CLO 9	AEC021.09
	Hexa decimal	(FAD8)H its equal binary form is -				
•	conversion to binary?	(1111 1010 1101 1000)B	D	<u> </u>		
28.	What is interrupt?	An interrupt is a signal sent to the	Remember	CO 2	CLO 9	AEC021.9
		processor that interrupts the current				
		process. It may be generated by a				
		hardware device or a software				
		program.		~	07.5	
29.	What Is Non-	An interrupt which can be never be	Remember	CO 2	CLO 9	AEC021.09
	maskable Interrupts?	turned off (i.e., disabled) is known				
		as Non-Maskable interrupt.				
30.	What is PTR	PTR operator is used to assign a	Remember	CO 2	CLO 9	AEC021.09
	directive?	specific type of a variable or to a				
		label.				
31.	What is PUBLIC	The PUBLIC directive is used to	Understand	CO 2	CLO 9	AEC021.09
	directive?	instruct the assembler that a				
		specified name or label will be				
		accessed from other modules.	** 1 1	<u> </u>		
32.	What is INT21H?	INT 21H is used to call DOS	Understand	CO 2	CLO 9	AEC021.09
22		Function.	XX 1 / 1	00.0		A E C 0 2 1 0 0
33.	Define assembler?	Assembler converts	Understand	CO 2	CLO 9	AEC021.09
		instructions written in low-				
		level symbolic code into				
24		machine code.	TTo do not o n d	<u> </u>	CLOO	AEC021.00
34.	What is base register?	BX is known as the base register,	Understand	CO 2	CLO 9	AEC021.09
		as it may be used in indexed				
35.	What is count	addressing.	Understand	CO 2	CLO 8	AEC021.08
55.		6	Understand	02		AEC021.08
	register?	CX registers store the loop count in iterative operations.				
36.	What is an instruction	Instruction Pointer (IP) stores the	Understand	CO 2	CLO 8	AEC021.08
50.	pointer?		Understallu			ALC021.00
	pointer :	offset address of the next instruction to be done.				
37.	What is END	The END directive marks the end	Understand	CO 2	CLO 8	AEC021.08
57.	directive?	of an assembly language program	Understallu			ALC021.00
38.	What is ENDP	ENDP (End Procedure) used to	Understand	CO 2	CLO 8	AEC021.08
50.	directive?	indicate the end of a procedure.	Understallu			ALC021.00
39.	What is ENDS	ENDS-End of Segment directive	Understand	CO 2	CLO 8	AEC021.08
57.	directive?	marks the end of a logical segment.	Chiefstand			1112021.00
40.	What Happens When	The Micro Processor enters into	Understand	CO 2	CLO 8	AEC021.08
т 0.	Hlt Instruction is	Halt-State and the buses are tri-	Understallu			112021.00
	Executed in	stated.				
	Processor?	Stated.				
	110005501				L	L

	8255	UNIT – III 5 PROGRAMMABLE PERIPHERA	L INTERFAC	CE (PPI)		
1.	What are the features of 8255A?	The prominent features of 8255A are as follows – - It consists of 3 8-bit IO ports i.e. PA, PB, and PC to enhance the flexibility of 8225. Address/data bus must be externally demux. - It is TTL compatible. - It has improved DC driving	Remember	CO 3	CLO 10	AEC021.10
2.	What is the necessity of 8259A?	 capability. In a system, microprocessor may need to perform the following tasks in an efficient way using interrupt: Read ASCII characters from a keyboard on an interrupt basis. Count interrupts from a timer to produce a real time clock of seconds, minutes and hours. Communicate with an A/D converter. Communicate with a display or printer. Detect several emergency signals like power failure etc on an interrupt basis. 	Remember	CO 3	CLO 13	AEC021.13
3.	What is the function of 8259A?	The Programmable Interrupt Controller (PIC) functions as an overall manager in an interrupt- driven system environment. It accepts requests from the peripheral equipment, determines which of the incoming requests is of the highest importance (priority), ascertains whether the incoming request has a higher priority value than the level currently being serviced and issues an interrupt to the CPU based on this determination.	Remember	CO 3	CLO 13	AEC021.13
4.	What are the different types of command words used in 8259A?	The command words of 8259A are classified in two groups, 1.Initialization command words (ICWs) 2.Operation command words (OCWs)	Understand	CO 3	CLO 13	AEC021.13
5.	• -	(a)Fully Nested Mode (b)End of Interrupt (EOI) (c)Automatic Rotation (d)Automatic EOI Mode (e)Specific Rotation (f)Special Mask Mode	Understand	CO 3	CLO 13	AEC021.13

		(g)Edge and level Triggered Mode (h)Reading 8259 Status (i)Poll command (j)Special Fully Nested Mode (k)Buffered mode				
6.		(1)Cascade mode The internal devices of a DAC are	Understand	CO 3	CLO 11	AEC021.11
0.	internal devices of a typical DAC?	R/2R resistive network, an internallatch and current to voltage converting amplifier.	Understand	05		ALC021.11
7.	What is settling or conversion time in DAC?	The time taken by the DAC to convert a given digital data tocorresponding analog signal is called conversion time.	Understand	CO 3	CLO 11	AEC021.11
8.	What are the different types of ADC?	The different types of ADC are successive approximation ADC, counter type ADC flash type ADC, integrator converters and voltage- to-frequency converters.	Understand	CO 3	CLO 11	AEC021.11
9.	What is interrupt?	An interrupt is a signal sent to the processor that interrupts the current process. It may be generated by a hardware device or a software program.	Remember	CO 3	CLO 12	AEC021.12
10.	What are Maskable/Non- Maskable Interrupt?	An interrupt that can be disabled by writing some instruction is known as Maskable Interrupt otherwise it is called Non- Maskable Interrupt.	Remember	CO 3	CLO 12	AEC021.12
11.	What Is Non- maskable Interrupts?	An interrupt which can be never be turned off (i.e., disabled) is known as Non-Maskable interrupt.	Remember	CO 3	CLO 12	AEC021.12
12.	What is ISR?	ISR Stands for "Interrupt Service Routine." An ISR (also called an interrupt handler) is a software process invoked by an interrupt request from a hardware device. It handles the request and sends it to the CPU, interrupting the active process. When the ISR is complete, the process is resumed.	Remember	CO 3	CLO 12	AEC021.12
13.	What is IRQ?	IRQ Stands for "Interrupt Request." PCs use interrupt requests to manage various hardware operations. Devices such as sound cards, modems, and keyboards can all send interrupt requests to the processor.	Remember	CO 3	CLO 12	AEC021.12
14.	What are the hardware interrupts of 8086?	The interrupts of 8086 are INTR and NMI. The INTR is general maskable interrupt and NMI is non-maskable interrupt.	Understand	CO 3	CLO 12	AEC021.12
15.	Which Interrupt Has The Highest Priority?	TRAP has the highest priority.	Remember	CO 3	CLO 12	AEC021.12

16	W/lest '	If the formation of 1.1	The day of the	00.2		AEC021 10
16.		If the functions performed by a	Understand	CO 3	CLO 10	AEC021.10
	programmable	peripheral device can be altered				
	peripheral device?	or changed by a program				
		instruction then the peripheral				
		device is called programmable				
		device. Usually the programmable				
		devices will have control				
		registers. The device can be				
		programmed by sending control				
		word in the prescribed format to				
		the control register.				
17.	What is the need for	The I/O devices are generally slow	Understand	CO 3	CLO 10	AEC021.10
	a Port?	devices and their timing				
		characteristics do not match with				
		processor timings. Hence the I/O				
		devices are connected to system				
		bus through the ports.				
18.	Write about	In handshake port, signals are	Understand	CO 3	CLO 10	AEC021.10
101	handshake port?	exchanged between I/O device	Charlotana	000	02010	1120021110
	F	and port or				
		between port and processor for				
		checking or informing various				
		condition of the device.				
19.	What are the	The internal devices of 8255 are	Understand	CO 3	CLO 10	AEC021.10
	internal devices of	port-A, port-B, port-C and Control				
	8255?	register. The ports can be				
		programmed for either input or				
		output function in different				
		operating modes.				
20.	What are the	The port-A of 8255 can be	Understand	CO 3	CLO 10	AEC021.10
	operating modes of	programmed to work in anyone of				
	port -A 8255?	the following operating modes				
		asinput or output port.				
		Mode-0: Simple 1/0 port. Mode-1 :				
		Handshake 1/0 port				
		Mode-2 : Bidirectional 1/0 port				
21.	What are the	1. The port-C pins are used	Understand	CO 3	CLO 10	AEC021.10
	functions	for handshake signals.				
	performed by port-	2. Port-C can be used as an 8-				
	C of 8255?	bit parallel 1/0 port in mode-0.				
		3. It can be used as two				
		numbers of 4-bit parallel port in				
		mode-0.				
		4. The individual pins of port-				
		C can be set or reset for various				
		control applications.				
		control upphounons.				

22.	Draw the control	Control word	Understand	CO 3	CLO 10	AEC021.10
	word format for I/O mode.	D7 D6 D5 D4 D3 D2 D1 D0 Port C (lower) 1 = Input 0 = Output Mode selection 0 = Mode 0 1 = Input 0 = Output Mode selection 0 = Mode 0 1 = Input 0 = Output Port C (upper) 1 = Input 0 = Output Port A 1 = Input 0 = Output Mode selection 0 = Mode 0 1 = Mode 1 1 = Input 0 = Output Port C (upper) 1 = Input 1 = Input 0 = Output Port A 1 = Mode 2 Mode set flag 1 = IN0 Mode				
23.	Draw the control word format for BSR (Bit Set Reset) Mode.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Understand	CO 3	CLO 10	AEC021.10
24.	What are the different scan modes of 8279?	The different scan modes of 8279 are Decoded scan and Encoded scan. In decoded scan mode, the output of scan lines will be similar to a 2-to-4 decoder. In encoded scan mode, the output of scan lines will be binary count, and so an external decodershould be used to convert the binary count to decoded output.	Understand	CO 3	CLO 11	AEC021.11
25.	What is de bouncing?	When a key is pressed, it bounces after a short time. If a key code is generated immediately aftersensing a key actuation, then the processor will generate the same keycode a number of times.(A key typically bounces for 10 to 20 msec). Hence the processor has to wait for the keybounces to settle before reading the keycode. This process is called keyboard de bouncing.	Understand	CO 3	CLO 11	AEC021.11
26.	What is the difference in programming the 8279 for encoded scan and decoded	If the 8279 is programmed for decoded scan then the output of scan lines will be decoded outputand if it is programmed for, encoded scan then the output of scan lines will be binary count.	Remember	CO 3	CLO 13	AEC021.13

		Tu an as dad made, an antomal				
	scan?	Inencoded mode, an external decoder should be used to decode the scan lines.				
27.	What is scanning in keyboard and what is scan time?	The process of sending a zero to each row of a keyboard matrix and reading the columns for keyactuation is called scanning. The scan time is the time taken by the processor to scan all therows one by one starting from first row and coming back to the first row again.	Remember	CO 3	CLO 11	AEC021.11
28.	What are the tasks involved in keyboard interface?	The tasks involved in keyboard interfacing are sensing a key actuation, de bouncing the key and generating key codes (Decoding the key). These tasks are performed by software if the keyboardis interfaced through ports and they are performed by hardware if the keyboard is interfacedthrough 8279.	Remember	CO 3	CLO 11	AEC021.11
29.	What is meant by 2- key lockout and N- key rollover?	2-Key Lockout: When two keys are pressed simultaneously, one key pressed first will berecognized and code will be generated. N-Key Rollover: When a key is pressed continuously, the same key will be recognized several times, after each de bounce.	Understand	CO 3	CLO 11	AEC021.11
30.	Write about Memory interfacing in 8086 microprocessor?	If any instruction is executed then we require microprocessor to access the memory in order to read the instruction codes and the stored data in the memory. So, to read from the memory and write in registers this memory and microprocessor need some signals. There are some key factors that are required in interfacing process to match with the memory requirements and microprocessor signals. So, the interfacing circuit must be designed in such a way that it should match with the memory signal requirements and the signals of the microprocessor.	Understand	CO 3	CLO 11	AEC021.11
31.	What is I/O Interfacing in 8086 microprocessor?	IO interfacing is the communication between various devices like keyboard, mouse, printer, etc. It is a set of registers where CPU communicates and controls the I/O device with the help of reading and writing registers.	Understand	CO 3	CLO 11	AEC021.11

				-		
		These registers are connected to				
		the CPU using buses. So, in order				
		to interface between keyboard and				
		other devices with the				
		microprocessor latches and buffers				
		are used. This type of interfacing is				
		known as I/O				
		interfacing.				
32.	What is	It is a specially designed type of	Understand	CO 3	CLO 11	AEC021.11
52.	programmable	programmable keyboard/display	Onderstand	005	CLO II	1112021.11
	keyboard?	controller launched by Intel which				
	Keyboard?	•				
		helps in interfacing the keyboard				
		with the CPU. It identifies any				
		type of key that has been pressed				
		with the help of scanning.				
		It then sends the response of the				
		pressed key to the CPU and vice-				
		a-versa.				
33.	How Many Ways	The Keyboard can be interfaced in	Understand	CO 3	CLO 11	AEC021.11
	the Keyboard are	two modes that is either in the				
	Interfaced with the	interrupt or the polled mode.				
	CPU?	In the Interrupt mode, whenever				
		any key is pressed then the request				
		is sent by the processor, otherwise				
		the CPU will continue to follow				
		with its main task. In the Polled				
		mode, the CPU periodically reads				
		an internal flag of 8279 and checks				
		whether any key is pressed or not				
		with any pressure exerted by the				
		key.				
34.	How Does 8279	The keyboard which acts as an	Understand	CO 3	CLO 11	AEC021.11
	Keyboard Work?	input device contains maximum of				
		64 keys. With the help of keyboard				
		the user can perform various types				
		of tasks.				
		Certain specific key-codes are used				
		where text is entered as an input				
		with the keyboard.				
35.	What is 8257 DMA	8257 DMA stands for 4-channel	Understand	CO 3	CLO 11	AEC021.11
55.	controller?	Direct Memory Access. It is	Chaerbland	005		1120021.11
		specially designed by Intel for data				
		transfer at the highest speed.				
		With the use of a DMA controller,				
		the device sends requests to the				
		CPU to hold its data, sequential				
		memory address and control bus,				
		which helps the device to transfer				
		data directly to/from the memory.				
		The DMA data transfer is initiated				
		only after receiving HLDA signal				
		from the CPU.				
		from the CPU.				

36.	How DMA	Primarily when any device	Understand	CO 3	CLO 11	AEC021.11
50.	How DMA Operations are	Primarily, when any device requires to send data between the	Understand	05	CLO II	AEC021.11
	Performed?	device and the memory, the device				
	renomed:	need to send DMA request (DRQ)				
		to DMA controller. The DMA				
		controller sends Hold request				
		(HRQ) to the CPU and waits for				
		the CPU to assert the HLDA				
		signal.				
		Then the microprocessor tri-states				
		all the data bus, address bus, and				
		control bus. The CPU leaves the				
		control over bus and acknowledges				
		the HOLD				
		request through HLDA signal.				
37.	What are the	The prominent features of 8257 –	Understand	CO 3	CLO 13	AEC021.13
071	features of 8257?	• It has four channels which can be				
		exhibited over four I/O devices.				
		 Each channel has 16-bit address 				
		and 14-bit counter.				
		 Data transfer of each channel can 				
		be taken up to 64kb. Each				
		channel can be programmed				
		independently.				
		 Each channel can perform 				
		certain specific actions i.e., read				
		transfer, write transfer and verify				
		transfer operations.				
38.	What is	The 8255A is generally seen as 8-	Understand	CO 3	CLO 10	AEC021.10
	Programmable	bit bidirectional data buffer, which				
	Peripheral	is specially designed to transfer				
	Interface?	the data with the execution of				
		input output instructions requested				
		by the CPU. It has the ability to				
		use with almost any				
		microprocessor.				
		It consists of three 8-bit				
		bidirectional I/O ports (24 I/O				
		lines) which can be				
		configured with their different				
		configured with their different				
		configured with their different functional characteristics, each				
39.	What are the	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e.,	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e.,	Understand	CO 3	CLO 10	AEC021.10
39.		configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C.	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output latch/buffer and one 8-bit input	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output latch/buffer and one 8-bit input buffer possessing both pull-up and	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output latch/buffer and one 8-bit input buffer possessing both pull-up and pull-down devices present in Port	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output latch/buffer and one 8-bit input buffer possessing both pull-up and pull-down devices present in Port A.	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output latch/buffer and one 8-bit input buffer possessing both pull-up and pull-down devices present in Port A. Port B is similar to PORT A.	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output latch/buffer and one 8-bit input buffer possessing both pull-up and pull-down devices present in Port A. Port B is similar to PORT A. Port C can be split into two parts,	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output latch/buffer and one 8-bit input buffer possessing both pull-up and pull-down devices present in Port A. Port B is similar to PORT A. Port C can be split into two parts, i.e. PORT C lower (PC0-PC3) and	Understand	CO 3	CLO 10	AEC021.10
39.	different Ports of	configured with their different functional characteristics, each possessing unique features to upgrade the flexibility of 8255. 8255A consists of three ports, i.e., PORT A, PORT B, and PORT C. Port A contains one 8-bit output latch/buffer and one 8-bit input buffer possessing both pull-up and pull-down devices present in Port A. Port B is similar to PORT A. Port C can be split into two parts,	Understand	CO 3	CLO 10	AEC021.10

		These three ports are further classified into two groups, i.e. Group A includes PORT A and upper PORT C. Group B includes PORT B and lower PORT C. These two groups can be programmed in three different modes, i.e. the first mode is named as mode 0, the second mode is named as							
		Mode 1 and the third mode is							
40.	What are the	named as Mode 2. Mode 0 – In this mode, Port A and	Understand	CO 3	CLO 10	AEC021.10			
40.	Operating Modes in 8255A?	B is used as two 8-bit ports and Port C as two 4-bit ports. Mode 1 – In this mode, Port A and B are used as 8-bit I/O ports. They can be configured as either input or output ports. Mode 2 – In this mode, Port A can be configured as the bidirectional port and Port B can be available in Mode 0 or Mode 1.	Understand			ALC021.10			
	UNIT – IV								
1.	What are the Ways	SERIAL DATA TRANSFER There are two ways of	Understand	CO 4	CLO 14	AEC021.14			
1.	of Communication – Microprocessor with the Outside World?	There are two ways of communication in which the microprocessor can connect with the outside world. Serial Communication Interface Parallel Communication interface	Understand	04		AEC021.14			
2.	What are the different types of methods used for data transmission?	The data transmission between two points involves unidirectional or bi- directional transmission of meaningful digital data through a medium. There are basically there modes of data transmission (a)Simplex (b)Duplex (c)Half Duplex	Understand	CO 4	CLO 14	AEC021.14			
3.	What is the use of modem control unit in 8251?	The modem control unit handles the modem handshake signals to coordinate the communication between the modem and the USART.	Remember	CO 4	CLO 15	AEC021.15			
4.	What are the various Programmed data transfer methods?	i) Synchronous data transferii) Asynchronous data transferiii)Interrupt driven data transfer	Understand	CO 4	CLO 14	AEC021.14			
5.	What is the use of 8251 chip?	Intel's 8251A is a universal synchronous asynchronous receiver and transmitter compatible with Intel's Processors.	Understand	CO 4	CLO 15	AEC021.15			

6	What is baud rate?	The baud rate is the rate at which	Understand	CO 4	CLO 14	AEC021.14
6.		the serial data is transmitted (expressed as bits per second). Baud rate is also defined as l/(Tb - time period for a symbol). In some systems, one data bit maybe represented through one symbol. Then, on such occasions, the baud rate and bits/sec aresame.				
7.	What are the different types of errors that can occur in asynchronous serial communication?	 Framing Error Over run Error Parity Error 	Understand	CO 4	CLO 14	AEC021.14
8.	What is the significance of C/D signal in 8251?	This pin is used to select either Control register for configuring or Data bus buffer for read /write operations.	Understand	CO 4	CLO 15	AEC021.15
9.	What is USART? What are the functions performed by INTEL 8251A?	The device which can be programmed to perform Synchronous or Asynchronous serial communication is called USART (Universal Synchronous Asynchronous Receiver Transmitter). The INTEL 8251A is an example of USART. The INTEL 8251A is used for serial data transmission or reception either asynchronously or synchronously. The 8251A can be used to interface MODEM for serial communication through telephone lines.	Remember	CO 4	CLO 15	AEC021.15
10.	What are the control words of 8251A and what are its functions?	The control words of 8251A are Mode word and Command word. The mode word informs 8251about the baud rate, character length, parity and stop bits. The command word can be send toenable the data transmission and reception.	Remember	CO 4	CLO 15	AEC021.15
11.	What are the functions performed by INTEL 8251A?	The INTEL 8251A is used for converting parallel data to serial or vice versa. The data transmission or reception can be either asynchronously or synchronously. The 8251A can be used to interface MODEM and establish serial communication through MODEM over telephone lines.	Understand	CO 4	CLO 15	AEC021.15

12.	What is RS-232C	The RS232C is a serial bus	Understand	CO 4	CLO 15	AEC021.15
	Standard?	consisting of a maximum of 25 signals, which are standardized by EIA (Electronic Industry Association). The first 9 signals are sufficient for most of the serial data transmission.				
13.	What is the voltage level used in RS232C standard?	The voltage levels are Logic LOW (0) : -3V to -15V Logic HIGH (1) : +3V to +15V Commonly used voltage levels are +12V (logic HIGH) and -12V (logic LOW).	Understand	CO 4	CLO 15	AEC021.15
14.	What are the various programmed data transfer methods?	i. Synchronous data transferii. Asynchronous data transferiii. Interrupt driven data transfer	Understand	CO 4	CLO 14	AEC021.14
15.	Define USART?	8251A is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial data communication. Programmable peripheral designed for synchronous/asynchronous serial data communication, packaged in a 28-pin DIP.	Understand	CO 4	CLO 15	AEC021.15
16.	What is status word register?	Checks the ready status of the peripheral. Status word register provides the information concerning register status and transmission errors.	Understand	CO 4	CLO 15	AEC021.15
17.	Define program status word?	The Program Status Word or PSW is a collection of data 8 bytes (or 64 bits) long, maintained by the operating system. It keeps track of the current state of the system.	Understand	CO 4	CLO 15	AEC021.15
18.	What is RS 232?	An RS-232 serial port was once a standard feature of a computer, used for connections to modems, printers, mice, data storage, uninterruptible power supplies, and other peripheral devices.	Understand	CO 4	CLO 15	AEC021.15
19.	Define USB system?	A Universal Serial Bus (USB) is a common interface that enables communication between devices and a host controller such as a personal computer (PC).	Understand	CO 4	CLO 16	AEC021.16
20.	What is USB cable?	USB cables are designed to ensure correct connections by having different connectors on host and devices, it is possible to connect; two hosts or two devices together.USB requires a shielded cable containing 4 wires.	Understand	CO 4	CLO 16	AEC021.16

21	Define USP heat?	The USD heat communicated with	Understand	CO 4	CLO 16	AEC021.16
21.	Define USB host?	The USB host communicates with the devices using a USB host controller. The host is responsible for detecting and enumerating devices, managing bus access, performing error checking, providing and managing power, and exchanging data with the	Understand	CO 4	CLO 16	AEC021.16
		devices.				
22.	What are control transfers?	Control transfers are used to configure and retrieve information about the device capabilities.	Remember	CO 4	CLO 15	AEC021.15
23.	What is Control Register?	This is a 16-bit register for a control word consists of two independent bytes; the first byte is called Mode Instruction (Word) and the second byte is called the Command Instruction (Word). This register can be accessed as an output port when the pin is high.	Understand	CO 4	CLO 15	AEC021.15
24.	What is data bus buffer?	This is a tri state bidirectional buffer used to interface the 8255 to system data bus. Data is transmitted or received by the buffer on execution of input or output instruction by the CPU.	Understand	CO 4	CLO 15	AEC021.15
25.	What is Strobe control?	Strobe control method of data transfer uses a single control signal for each transfer. The strobe may be activated by either the source unit or the www.eazynotes.com destination unit.	Understand	CO 4	CLO 15	AEC021.15
26.	What is Status Register?	This input register checks the ready status of a peripheral. This register is addressed as an input port when the c/đ pin is high. It has the same port address as the control register.	Understand	CO 4	CLO 15	AEC021.15
27.	What is Token packet?	The bit packet that commands the device either to receive data or transmit data in transmission of USB asynchronous communication is Token packet.	Understand	CO 4	CLO 15	AEC021.15
28.	What is Data bus buffer?	Data bus buffer helps in interfacing the internal data bus of 8251 to the system data bus. The data transmission is possible between 8251 and CPU by the data bus buffer block.	Remember	CO 4	CLO 15	AEC021.15
29.	Define Modem.	Modem is a device converts analog signals to digital signals and vice-versa and helps the computers to communicate over telephone lines or cable wires.	Understand	CO 4	CLO 15	AEC021.15

30.	What is Transmit	Transmit buffer is used for	Understand	CO 4	CLO 16	AEC021.16
	buffer?	parallel to serial converter that				
		receives a parallel byte for				
		conversion into serial signal and				
		further transmission onto the				
		common channel.				
31.	What is Receiver	The receiver buffer accepts serial	Understand	CO 4	CLO 16	AEC021.16
	Buffer?	data on the RxD line, coverts this				
		serial data to parallel formats,				
		checks for bits or characters that				
		are unique to the communication				
		technique and sends an				
		"assembled" character to CPU.				
32.	What does USB	USB stands for Universal Serial	Understand	CO 4	CLO 16	AEC021.16
52.	stand for?	Bus, and it represents an industry	Onderstand	00 +	CLO IO	71LC021.10
	stand for :	standard for cables, connectors				
		-				
		and communications protocols,				
		used for the connection,				
		communication, and power				
		supply between various				
	****	computing devices.	** 1 1	<i>a</i> . <i>i</i>	CT 0 1 1	
33.	What is	The mode in which the bits of	Understand	CO 4	CLO 14	AEC021.14
	Asynchronous Data	data are not synchronized by a				
	Transfer?	clock pulse. Clock pulse is a				
		signal used for synchronization of				
		operation in an electronic system.				
34.	What is	The mode in which the bits of	Understand	CO 4	CLO 14	AEC021.14
	Synchronous Data	data are synchronized by a clock				
	Transfer?	pulse.				
35.	What are the	The control words of 8251A are	Understand	CO 4	CLO 15	AEC021.15
	functional types	divided into two functional types.				
	used in control	1.Mode Instruction control word				
	words of 8251a?	2.Command Instruction control				
		word				
36.	What is RS232?	RS232 is a standard protocol used	Understand	CO 4	CLO 15	AEC021.15
		for serial communication, it is				
		used for connecting computer and				
		its peripheral devices to allow				
		serial data exchange between				
		them.				
37.	What is	Handshaking is the process which	Remember	CO 4	CLO 14	AEC021.14
57.	Handshaking?	is used to transfer the signal from	Kemember	0.04	CLO 14	ALC021.14
	Handshaking:	DTE to DCE to make the				
		transfer of data. The messaging				
		between transmitter & receiver				
20	XX 71	can be done by handshaking.	TT T T T			
38.	What are the	The control words of 8251A are	Understand	CO 4	CLO 15	AEC021.15
	control words of	Mode word and Command word.				
	8251A and what	The mode word informs				
	are its functions?	8251about the baud rate,				
		character length, parity and stop				
		bits. The command word can be				
		send to enable the data				

			1		1	
39.	What is RS 232C interface?	RS-232C is a long-established standard ("C" is the current version) that describes the physical interface and protocol for relatively low-speed serial data communication between computers and related devices.	Understand	CO 4	CLO 15	
40.	Define Parity error.	A parity error occurs when the parity of the number of one- bits disagrees with that specified by the parity bit. Use of a parity bit is optional, so this error will only occur if parity-checking has been enabled.	Understand	CO 4	CLO 15	AEC021.15
41.	Define Overrun error.	An "overrun error" occurs when the receiver cannot process the character that just came in before the next one arrives. If the CPU or DMA controller does not service the UART quickly enough and the buffer becomes full, an Overrun Error will occur, and incoming characters will be lost.	Understand	CO 4	CLO 15	AEC021.15
42.	What is Read/Write control logic?	It is a control block for overall device. It controls the overall working by selecting the operation to be done.	Remember	CO 4	CLO 15	AEC021.15
43.	Why is USART used?	USART Serial Data Communication in AVR Microcontroller. The USART stands for universal synchronous and asynchronous receiver and transmitter. It is a serial communication of two protocols. This protocol is used for transmitting and receiving the data bit by bit with respect to clock pulses on a single wire.	Understand	CO 4	CLO 15	AEC021.15
44.	What is RS232 Protocol?	In RS232, 'RS' stands for Recommended Standard. It defines the serial communication using DTE and DCE signals. Here, DTE refers to Data Terminal Equipment and DCE refers to the Data Communication Equipment.	Understand	CO 4	CLO 15	AEC021.15
45.	What is UBRR (USART Baud Rate Register)?	This register is 16BIT wide so **UBRRH **is the High Byte and **UBRRL **is Low byte. But as we are using C language it is directly available as UBRR and compiler manages the 16BIT access. This register is used by the USART to generate the data transmission at specified speed (say 9600Bps)	Understand	CO 4	CLO 16	AEC021.16

40		Coffeender Handelanding in DC222	TT 1 (1	CO 4		AEC001.16
46.	What is Software	Software Handshaking in RS232	Understand	CO 4	CLO 16	AEC021.16
	Handshaking?	involves two special characters				
		for starting and stopping the				
		communication. These characters				
		are X-ON and X-OFF				
		(Transmitter On and Transmitter				
		OFF).				
47.	Define slew rate.	The change of input voltage	Understand	CO 4	CLO 16	AEC021.16
		determines the rate at which				
		the RS232 driver responds. This				
		is often termed as slew rate.				
48.	What is Hardware	The flow control of data	Remember	CO 4	CLO 16	AEC021.16
	Handshaking?	transmission and reception is				
		done using hardware				
		handshaking.				
49.	Define Data bits.	Data bits are a measurement of	Understand	CO 4	CLO 16	AEC021.16
		the actual data bits in a				
		transmission.				
50.	What is UDR:	UDR: USART Data Register	Understand	CO 4	CLO 16	AEC021.16
	USART Data	contains the received data or the				
	Register?	transmitted data.				
51.	What is USB Host	A USB Host Controller is the	Understand	CO 4	CLO 16	AEC021.16
	Controller?	hardware either on the computer				
		motherboard or PCI card. It				
		provides an interface for				
		transferring streams of data				
		between the host computer and				
		the USB devices. The host				
		computer may have one or				
		multiple USB host controllers				
		with different types of interface.				
52.	What is Software	Software Handshaking in RS232	Understand	CO 4	CLO 16	AEC021.16
	Handshaking?	involves two special characters				
	C	for starting and stopping the				
		communication. These characters				
		are X-ON and X-OFF				
		(Transmitter On and Transmitter				
		OFF).				
53.	What is USB Host	A Host Controller Interface (HCI)	Understand	CO 4	CLO 16	AEC021.16
	Controller	is a register level interface which				
	Interface?	allows host controller hardware to				
		communicate with the operating				
		system of a host computer.				
		UNIT-V	·			
		ADVANCED MICROPRO	CESSORS			
1.	What is Intel	The Intel 80286 was a 16-bit	Understand	CO 5	CLO17	AEC021.17
	80286?	microprocessor chip introduced in				
		1982. The 80286 chip contained a				
		24-bit address bus, capable of				
		accessing up to 16 MB				
		(megabytes) of RAM (random				
		access memory) and multitasking,				
		the OS.				
2.	Define segment	Segment descriptors are a part of	Understand	CO 5	CLO17	AEC021.17
	descriptor?	the segmentation unit, used for				
	*	translating a logical address to a				
		linear address.				
L1			1			

3.	Define machine	The machine status word consists	Remember	CO 5	CLO17	AEC021.17
5.	status word?	of four flags used for the LMSW and SMSW instructions which are available in the instruction set of 80286 to write and read the MSW in real address mode.	Remember			
4.	What is protected virtual address mode?	When the 80286 is reset, it always starts its execution in real address mode, where in it performs the initialization of the IP, peripheral, enables interrupts, sets up descriptor tables and then it prepares for entering the protected virtual address mode.	Understand	CO 5	CLO17	AEC021.17
5.	Define swapping?	The procedure of fetching the chosen program segments or data from the secondary storage into the physical memory is swapping	Remember	CO 5	CLO17	AEC021.17
6.	Define unswapping?	The procedure of storing back the partial results or data back on to the secondary storage is called unswapping.	Remember	CO 5	CLO17	AEC021.17
7.	Define descriptor?	The segments or pages have been associated with a data structure known as a descriptor. The descriptor contains information on the page, and also carry relevant information regarding a segment, and its access rights.	Remember	CO 5	CLO18	AEC021.18
8.	What is page table cache?	The storage of 32 recently accessed page table entries to optimize the time, is known as page table cache.	Understand	CO 5	CLO17	AEC021.17
9.	What are gate descriptors?	The descriptors that are used for subroutines and interrupt service routines are gate descriptors.	Understand	CO 5	CLO18	AEC021.18
10.	What is system segment descriptor?	The 80286 has system segment descriptor, that is used for special system data segments, and control transfer operations.	Understand	CO 5	CLO19	AEC021.19
11.	What is interrupt gate and trap gate?	The gate that is used to specify a corresponding service routine is interrupt gate and trap gate.	Understand	CO 5	CLO18	AEC021.18
12.	What is task gate?	The gate that is used to switch from one task to another is task gate.	Understand	CO 5	CLO17	AEC021.17
13.	What is call gate?	The word count field is only used by a call gate descriptor, to indicate the number of bytes to be transferred from the stack of the calling routine to the stack of the called routine.	Understand	CO 5	CLO17	AEC021.17
14.	Define cache memory.	The memory that maintains the most frequently required data for execution, in a high speed	Remember	CO 5	CLO18	AEC021.18

		memory is called cache memory.				
15.	What is local and global descriptor?	A descriptor table is an array of 8 KB descriptor. This means there may 8 KB descriptors are in a descriptor table. A Global Descriptor table contains	Understand	CO 5	CLO18	AEC021.18
16.	Define Interrupt Descriptor Table?	Interrupt descriptor table is used to store task gates, interrupt gates and trap gates. The IDT has a 24 bit base address and 16 bit limit register in the CPU.	Understand	CO 5	CLO17	AEC021.17
17.	What is privilege?	The privilege mechanism controls the access to descriptors and hence to the corresponding segments of the task.	Understand	CO 5	CLO17	AEC021.17
18.	Define descriptor cache?	To allow for fast accesses to segmented memory, the 80286 processor keeps a copy of each segment descriptor in a special descriptor cache. This saves the processor from accessing the GDT for every memory access made.	Understand	CO 5	CLO17	AEC021.18
19.	What is GDT?	The Global Descriptor Table or GDT is a data structure used by Intel x86- family processors starting with the 80286 in order to define the characteristics of the various memory areas used during program execution, including the base address, the size and access privileges like execute- ability and write-ability.	Understand	CO 5	CLO17	AEC021.17
20.	What is LDT?	There is also a Local Descriptor Table (LDT). While the LDT contains memory segments which are private to a specific program, the GDT contains global segments.	Understand	CO 5	CLO17	AEC021.17
21.	What is LLDT?	The instruction that loads a selector which refers to a local descriptor table, containing the base address and limit for LDT is LLDT	Understand	CO 5	CLO17	AEC021.17
22.	What happens when 80286 is reset?	When 80286 is reset, it always starts its execution in real addressing mode.	Understand	CO 5	CLO17	AEC021.17
23.	What is context switching?	This context switch may be initiated at fixed time intervals (pre-emptive multitasking),or the running program may be coded to signal to the supervisory software when it can be interrupted in multitasking.	Remember	CO 5	CLO17	AEC021.17

24	Which unit that is	The execution unit has eight	Understand	CO 5	CLO19	AEC021.19
24.	used for handling	general purpose and eight special	Understand	05	CLOI9	ALC021.19
	data, and calculates	purpose registers, which are either				
	offset address?	used for handling the data or				
	onset address.	calculating the offset addresses.				
25.	What is instruction	The process of fetching the	Remember	CO 5	CLO18	AEC021.18
	pipelining?	instructions in advance and				
		storing in the queue is called				
		instruction pipelining.				
26.	What is the	The advantage of paging scheme	Understand	CO 5	CLO17	AEC021.17
	advantage of pages	is that the complete segment of a				
	in paging?	task need not be in the physical				
		memory at any time. Only a few				
		pages of the segments, which are				
		required currently for the				
		execution, need to be available in				
27	XX71 (1 1	the physical memory.	TT 1 (1	CO 5	CL 017	AEC021.17
27.	What is page table	The storage of 32 recently	Understand	05	CLO17	AEC021.17
	cache?	accessed page table entries to				
		optimize the time, is known as page table cache.				
28.	Which test	Two test registers are provided by	Remember	CO 5	CLO18	AEC021.18
20.	register(s) that is	80386 for page caching, namely	Kemember	05	CLUIS	ALC021.18
	provided by 80386	test control and test status				
	for page caching?	registers.				
29.	Which flag bits that	The IOPL flag bits indicate the	Remember	CO 5	CLO17	AEC021.17
_>.	indicate the	privilege level of current IO	Ttementoer	000	CLOIT	11120021117
	privilege level of	operations.				
	current IO	1				
	operations					
30.	Define integer data	The representation of 8-bit or 16-	Understand	CO 5	CLO17	AEC021.17
	type?	bit signed binary operands using				
		2's complement is integer data				
		type.				
31.	What is LGDT?	The LGDT (load global descriptor	Remember	CO 5	CLO17	AEC021.17
		table register) loads 6 bytes from				
		a memory block, pointed to by the				
		effective address of the operand,				
		into global descriptor table				
20	Define virtual	register.	Understand	CO 5	CLO17	AEC021.17
32.		To the user, there exists a very large logical memory space,	Understand	05		ALC021.17
	memory.	which is actually not available				
		called virtual memory. This does				
		not exist physically in a system. It				
		is however, possible to map a				
		large virtual memory space onto				
		the real physical memory.				
33.	What are the	• The 80286 microprocessor is	Understand	CO 5	CLO17	AEC021.17
	features of 80286?	an advanced version of the				
		8086 microprocessor that is				
		designed for multi user and				
		multitasking environments				
		• The 80286 addresses 16 M				
		Byte of physical memory and				
		1G Bytes of virtual memory by				
		using its memory-management				

		system				
34.	What are the features of 80386?	 The 80386 also includes 32-bit extended registers and a 32-bit address and data bus. The 80386 is operated in the pipelined mode, it sends the address of the next instruction or memory data to the memory system prior to completing the execution of the current instruction 	Remember	CO 5	CLO18	AEC021.18
35.	What are the features of 80486?	 The 80486 microprocessor is an improved version of the 80386 microprocessor that contains an 8K-byte cache and an 80387 arithmetic co processor; A new feature found in the 80486 in the BIST (builtin self-test) that tests the microprocessor, coprocessor, and cache at reset time 	Remember	CO 5	CLO19	AEC021.19
36.	Define multitasking?	Multitasking refers to the simultaneously performance of multiple tasks and processes by hardware, software or any computing appliance. It enables the performance of more than one computer process at the same time with minimal lag in overall performance and without affecting the operations of each task.	Understand	CO 5	CLO17	AEC021.17
37.	List out the Register organization of 80286?	The 80286 CPU contains almost the same set of registers, as in 8086, viz. (a) Eight 16-bit general purpose registers (b) Four 16-bit segment registers (c) Status and control register (d) Instruction pointer.	Remember	CO 5	CLO17	AEC021.17
38.	Give the Signal Descriptions of 80386	 CLK₂ :The input pin provides the basic system clock timing for the operation of 80386. D₀ - D₃₁:These 32 lines act as bidirectional data bus during different access cycles. A₃₁ - A₂: These are upper 30 bit of the 32- bit address bus. BE₀ to BE₃: The 32- bit data bus supported by 80386 and the memory system of 80386 can be viewed as a 4- byte wide memory access mechanism. The 4 byte enable lines BE₀ to BE₃, may be used for enabling these 	Remember	CO 5	CLO18	AEC021.18

						1
		4 blanks. Using these 4 enable				
		signal lines, the CPU may				
		transfer 1 byte / 2 / 3 / 4 byte of				
		data simultaneously.				
39.	List out Register	• The 80386 has eight 32 - bit	Understand	CO 5	CLO18	AEC021.18
	Organization of	general purpose registers which				
	80386?	may be used as either 8 bit or 16 bit registers.				
		• A 32 - bit register known as an				
		extended register, is represented				
		by the register name with prefix				
		E.				
		• Example : A 32 bit register				
		corresponding to AX is EAX,				
		similarly BX is EBX etc.				
		• The 16 bit registers BP, SP, SI				
		and DI in 8086 are now				
		available with their extended				
		size of 32 bit and are names as				
		EBP,ESP,ESI and EDI.				
		• AX represents the lower 16 bit				
		of the 32 bit register EAX.				
		• BP, SP, SI, DI represents the				
		lower 16 bit of their 32 bit				
		counterparts, and can be used as				
		-				
		independent 16 bit registers.				

Prepared by:

Mr. V R Seshagiri Rao, Assistant Professor

HOD, CSE