

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name	:	Signals and systems
Course Code	:	AECB14
Program	:	B.Tech
Semester	:	IV
Branch	:	Electronics and Communication Engineering
Section	:	A,B,C,D
Academic Year	:	2019 – 2020
Chief Coordinator		Dr. V Padmanabha Reddy, Professor, ECE

OBJECTIVES:

I	Classify signals and systems and their analysis in time and frequency domains.
II	Study the concept of distortion less transmission through LTI systems, convolution and correlation properties.
III	Understand Laplace and Z-Transforms their properties for analysis of signals and systems.
IV	Identify the need for sampling of CT signals, types and merits and demerits of each type.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

SNo	QUESTION	ANSWER	Blooms	CO	CLO	CLO Code
			Level			
		MODULE -I Signal Analysis				
1	Define Signal.	Signal is a physical quantity that varies with respect to time, space or any other independent variable	Remember	CO 1	CLO 3	AECB14.03
2	Define system.	A set of components that are connected together to perform the particular task.	Remember	CO 1	CLO 4	AECB14.04
3	What are the major classifications of the signal?	1.Discrete time signal 2.Continuous time signal	Remember	CO 1	CLO 3	AECB14.03
4	Define discrete time signals	Discrete time signals are defined only at discrete times, and for these signals, the independent variable takes on only a discrete set of values.	Remember	CO 1	CLO 3	AECB14.03
5	Define continuous time signals	Continuous time signals are defined for a continuous of values of the independent variable. In the case of continuous time signals the independent variable is continuous.	Remember			AECB14.03
6	Define discrete time unit step	Discrete time unit step signal is defined by $U[n]=\{0,n\leq 0 \\ 1,n\geq 0$	Remember	CO 1	CLO 3	AECB14.03
7	Define discrete time unit	Discrete time Unit impulse is defined as δ [n]= $\{1, n=0$	Remember	CO 1	CLO 3	AECB14.03

	impulse.					
8	Define unit ramp	A ramp signal starts at t=0 and increases	Understand	CO 1	CLO 3	AECB14.03
	signal.	linearly with time 't'.	I In A	CO 1	CI C C	AECD14.00
9	Define periodic signal	A signal is said to be periodic, if it exhibits periodicity.i.e., $X(t+T)=x(t)$, for all values of t.	Understand	COT	CLO 3	AECB14.03
	51 5 1141	Periodic signal has the property that it is				
10	D. C	unchanged by a time shift of T.	XX 1 . 1	GO 1	GY O A	A E-CD 1 4 00
10	Define aperiodic signal	A signal is said to be aperiodic, it is not satisfy this condition i.e.,	Understand	CO I	CLO 3	AECB14.03
	51 511 41	X(t+T)=x(t),				
11	Define	Continuous time Unit step signal is defined as	Remember	CO 1	CLO 3	AECB14.03
	continuous time unit step	$U(t) = \{0, t < 0 \\ 1, t \ge 0 $				
12	Define	Continuous time unit impulse is defined as δ	Remember	CO 1	CLO 3	AECB14.03
	continuous time	$(t)=\{1, t=0$				
13	unit impulse. Define even	$0, t \neq 0$ A discrete time signal is said to be even when,	Remember	CO 1	CI O 3	AECB14.03
13	signal?	x[-n]=x[n]. The continuous time signal is said to	Remember	COI	CLO 3	7 ILCD14.03
	_	be even when,				
14	Define odd	x(-t)=x(t) The discrete time signal is said to be odd when	Understand	CO 1	CI O 3	AECB14.03
1.	signal?	x[-n] = -x[n].	Chacibana			120017.03
		The continuous time signal is said to be odd				
		when x(-t)= -x(t) Odd signals are also known as non symmetrical				
		signal				
15	Define Energy	A signal is said to be energy signal if it have	Remember	CO 1	CLO 3	AECB14.02
16	signal. Define power	finite energy and zero power. A signal is said to be power signal if it have	Remember	CO 1	CLO 3	AECB14.01
	signal	infinite energy and finite power.				
17	Define unit	Unit pulse function (t) is obtained from unit step	Remember	CO 1	CLO 3	AECB14.03
18	pulse function. Define	signals u(t)=u(t+1/2)- u(t-1/2) The continuous time complex exponential	Understand	CO 1	CLO 3	AECB14.03
	continuous time	signal is of the form $x(t)=Ce^{at}$ where c and a are			0200	
	complex exponential	complex numbers.				
	signal.					
19	What is	Continuous time real exponential signal is	Remember	CO 1	CLO 3	AECB14.03
	continuous time real exponential	defined by x (t)=Ce ^{at} Where c and a are complex numbers. If c and a are real, then it is				
	signal?	called as real exponential.				
20	What is	Continuous time growing exponential signal is	Understand	CO 1	CLO 3	AECB14.03
	continuous time growing	defined as $x(t)=Ce^{at}$, Where c and a are complex numbers. If a is positive, as t increases, then x				
	exponential	(t) is a growing exponential.				
21	signal?	-	D 1	00.1	GY C C	A E CE 1 1 CE
21	What is the energy signal		Remember	CO 1	CLO 3	AECB14.03
	formula?	$F = \int_{-\infty}^{\infty} x/t ^2 dt$				
		$E_{\infty} = \int_{-\infty}^{\infty} x(t) ^2 \mathrm{d}t$				
22	What is the		Remember	CO 1	CLO 3	AECB14.03
	formula of	$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) ^2 dt$				
22	power signal?	· -1	D 1	GO 1	CT C 4	AECD1404
23	What is unstable system?	For a bounded input, if the output is unbounded in the system then it is said to be unstable.	Remember	CO 1	CLO4	AECB14.04
24	What is stable	The system is said to be stable only when the	Remember	CO 1	CLO4	AECB14.04
25	system?	output is bounded for bounded input.	D .			
25	Define linearity?	A system is said to be linear when it satisfies superposition and homogenate principles.	Remember	CO 1	CLO1	AECB14.01
		Superposition and nonlogenate principles. Consider two systems with inputs as $x_1(t)$, $x_2(t)$,				
0.5	D. C.	and outputs as $y_1(t)$, $y_2(t)$ respectively.	<u> </u>	a = :	GY C :	A TI CT 1 : -
26	Define static system?	Static system is memory-less	Remember	CO 1	CLO4	AECB14.04
	system:					I .

27	Define dynamic system	Dynamic system is a memory system.	Remember	CO 1	CLO4	AECB14.04
28	What is mean square error?	The average squared difference between the estimated values and the actual value.	Remember	CO 1	CLO1	AECB14.01
29	Define time	A system is said to be time variant if its input and output characteristics vary with time.	d Remember	CO 1	CLO4	AECB14.01
	variant system:	The condition for time variant system is:				
		$y(n,t) \neq y(n-t)$				
30	Define time	A system is said to be time variant if its input and	l Remember	CO 1	CLO4	AECB14.01
	invariant system?	output characteristics vary with time. Otherwise, the system is considered as time invariant.				
		The condition for time invariant system is:				
		y(n,t) = y(n-t)				
31	What is rectangular	It is defined as $\Pi(t) = 1$ for $ t \le \frac{1}{2}$.	Remember	CO 1	CLO3	AECB14.01
32	pulse function? What is signum	0 otherwise. $Sgn(t) = 1 t > 0$	Remember	CO 1	CLO3	AECB14.01
32	function?	-1 t<0	Kemember	CO 1	CLOS	ALCD14.01
		Sgn (t) = $-1+2u$ (t).				
33	What is sinc function?	It is defined by the expression	Remember	CO 1	CLO3	AECB14.01
		Sinc(t)=sint/t				
34	What is	It is defined as	Remember	CO 1	CLO3	AECB14.01
	triangular pulse function?					
		$\Lambda(t) = \begin{cases} 1 - t , & t \le 1 \\ 0, & \text{otherwise} \end{cases}$				
		(0, otherwise)				
35	Define vector.	A vector is a quantity or phenomenon that ha	as Remember	CO 1	CLO2	AECB14.01
33	Define vector.	two independent properties: magnitude an	d	COT	CLOZ	AECD14.01
		direction. The term also denotes the mathematical or geometrical representation of				
36	What are	such a quantity In orthogonal basis, every vector i	is Remember	CO 1	CLO2	AECB14.01
	orthogonal bases?	perpendicular to every other vector. The coordinate axes re mutually orthogonal.			6202	I LEED I 1.01
	bases:	MODULE – II				
		Fourier Serisand Fourier Trans				
1	Define Fourier Series?	A Periodic Signal x(t) with fundamental period T.If there exists a convergent series.	Understand CO) 2 C	LO 5 A	AECB14.05
		$x(t) = \sum_{n=-\infty}^{\infty} c_n e^{j\omega t} \cdot w = \frac{2\pi}{T}$				
		·				
2	What is Dirichelt	The series is called Fourier Series. 1. The function x(t) have only a finite number	Remember CO) 2 C	LO 5 A	AECB14.05
	Condition?	of maxima and minima. 2. The function x(t) posses a finite number of				
		discontinuities.				
		3. x (t) is absolutely integrable over one periodic. i.e., $\int_0^T x(t) dt < \infty$.				
L		periodic. i.e., j_0 $\kappa(i)$ $ai < \omega$.				
3	What is the half-wave symmetry?	A periodic signal satisfying the condition	Understand CO) 2 C	LO 5 A	AECB14.05
	wave symmeny!	$X(t)=x(t\pm t/T)$				
					1	

		is said to have half-wave symmetry.				
	What is Parseval's theorem?	Two periodic signals and $x_2(t)$ with the equal period T.If the Fourier series coefficients of these two signals are c_n and d_n are then $\frac{1}{T} \int_0^T x1(t) \cdot 2 = \sum_{n=-\infty}^{\infty} C_n 2$		CO 2	CLO 5	AECB14.05
	Property of Continuous time Fourier series?	If the Fourier coefficients of $x(t)$ are c_n , then the Fourier Coefficients of The Signal $x(t-t_0)$ are $FS[x(t-t_0)] = e^{-j(2\Pi/T)\Omega}{}_0 C_n$.		CO2	CLO 5	AECB14.05
	What is the Trigonometric Fourier Series?	The Trigonometric Representation of Fourier series x(t) is $a0 + \sum_{n=1}^{\infty} ancos(n\omega t) + \sum_{n=1}^{\infty} bnsin(n\omega t)$		CO2	CLO 5	AECB14.05
	What is Cosine Representation of the Fourier Series?	The cosine Representation of Fourier series $\mathbf{x}(t)$ is $=\sum_{n=0}^{\infty} ACOS(n\omega t) + \theta n$	Remember	CO 2	CLO 5	AECB14.05
	What is Exponential Fourier Series?	$Cn = \frac{1}{T} \int_{0}^{T} x(t)e^{-jnwt} dt$	Remember	CO 2	CLO 5	AECB14.05
	Define Convolution Property?	$FS[x_1(t) *x_2(t)] = TC_n d_{n.}$	Remember	CO 2	CLO 5	AECB14.05
10	What is the Time shifting Property?	If the Fourier series coefficients of $x(t)$ are $c_{n,t}$ then the Fourier Series coefficients of the shifted signal $x(t-t_0)$ are $c_{n,t}$ are $c_{n,t}$ for $c_{n,t}$ are $c_{n,t}$ for $c_{n,t}$	Remember	CO2	CLO 5	AECB14.05
	Define Fourier Transform?	$x(t)$ be a signal $-\infty < t < \infty$ and $x(t)$ is absolutely integrable, then the Fourier transform of $x(t)$ is $X(J\omega) = \int_{-\infty}^{\infty} x(t)e^{-jwt} dt$.	Understand	CO 2	CLO 7	AECB14.07
	Define Inverse Fourier Transform?	It is defined as $X(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega.$	Remember	CO 2	CLO 7	AECB14.07
	What is the Condition for existence of F.T of a signal x (t)?	$\int_{-\infty}^{\infty} x(t) dt. < \infty$	Understand	CO 2	CLO 7	AECB14.07
14	What is the Duality Property Of F.T	$F[x(t)] = X(j\boldsymbol{\omega})$ then $F[x(t)] = 2\Pi x(-j\boldsymbol{\omega})$	Remember	CO 2	CLO 7	AECB14.07
	Convolution Property of F.T	If $x(t)$ and $h(t)$ are having Fourier transform $X(j\boldsymbol{\omega})$ and $H(j\boldsymbol{\omega})$ then $F[x(t)*h(t)] = X(j\boldsymbol{\omega}) H(j\boldsymbol{\omega})$.	Remember	CO 2	CLO 7	AECB14.07
	Frequency	$F[x(t)] = X(j\boldsymbol{\omega})$ then $F[x(t) e^{j\boldsymbol{\omega}^{0t}}] = X(j(\boldsymbol{\omega} - \boldsymbol{\omega}_0)].$	Remember	CO 2	CLO 7	AECB14.07

 CET	T			1	
of F.T					
	$X_1(t)$ and $x_2(t)$ be signals with Fourier	Remember	CO 2	CLO 7	AECB14.07
theorem for	Transform $X_1(j\boldsymbol{\omega})$ and $X_2(j\boldsymbol{\omega})$				
continuous time	Then we have,				
periodic signal?					
F	ſ [∞] 1 ſ [∞]				
	$\int_{-\infty}^{\infty} x1(t)x2 * (t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X1(j\omega)X2$				
	$J_{-\infty}$ $2\pi J_{-\infty}$				
	$*(j\omega) d\omega$.				
What is the	$F[x(t)] = X(j\boldsymbol{\omega})$ then	Remember	CO 2	CLO 7	AECB14.07
property of Time	• • • • • • • • • • • • • • • • • • • •				
r	$F[-x(t)] = X(-j\boldsymbol{\omega})$				
	[(v)] 11(J)				
 Define Linear	TC FF (4)1 X (')1	D1	CO 2	CI O 7	AECD14.07
	If $F[x_1(t)] = X_1(j\boldsymbol{\omega})$ and	Remember	CO 2	CLO 7	AECB14.07
property of F.T	$\mathbf{F}[\mathbf{x}_1(\mathbf{t})] = \mathbf{X}_1(\mathbf{j}\boldsymbol{\omega})$				
	Then				
	$F[a_1x_1(t) + ax_2(t)] = a_1X_1(j\omega) + a_2X_2(j\omega)$				
What is	If $F[x(t)] = X(j\omega)$ then	Remember	CO 2	CLO 7	AECB14.07
Differentiation					
Property?					
- ~ p • · · · j ·	$\frac{dx(t)}{dt} \stackrel{\text{F.T.}}{\longleftrightarrow} j\omega. X(\omega)$				
	$\frac{dt}{dt} \longrightarrow \int \omega . \Lambda(\omega)$				
What is the	600	Remember	CO 2	CLO 7	AECB14.07
impulse function of	$\mathcal{F}[\delta(t)] = \int_{-\infty}^{\infty} \delta(t)e^{-j2\pi ft}dt = 1$				
Fourier transform?	$J_{-\infty}$				
What is the FT of	$U(\omega) = \pi \delta(\omega) + 1/j\omega$	Remember	CO 2	CLO 7	AECB14.07
Unit Step Function:	(w) -10(w) 11/Jw		202		1 ILCD 17.07
Define Gibbs	The Gibbs phenomenon is the step	Understand	CO 2	CLO 7	AECB14.07
		Chacistana	CO 2	CLU /	ALCD14.07
Phenomena.	response of a low-pass filter, and the				
	oscillations are called ringing or ringing				
	artifacts. Truncating the Fourier transform				
	of a signal on the real line, or the Fourier				
	series of a periodic signal (equivalently, a				
	signal on the circle) corresponds to				
	filtering out the higher frequencies by an				
	ideal low-pass/high-cut filter.				
What FT of Signum	Fourier transform of signum function is	Remember	CO 2	CLO 7	AECB14.07
Function?	1	Kemember	CO 2	CLU /	ALCD14.07
	2/jw				
What is the F.T of		Remember	CO 2	CLO 7	AECB14.07
exponential					
	$e^{-a t } \overset{ ext{F.T}}{\longleftrightarrow} rac{2a}{a^2+\omega^2}$				
	$e \longrightarrow \frac{1}{a^2 + \omega^2}$				
	j				
What is the	The infinite series in equation 1 may be	Remember	CO 2	CLO 7	AECB14.07
convergence	converges or may not. x(n) is absolutely				
condition?					
	summable				
	00				
	$\mathbf{r} = \mathbf{r} \mathbf{r}$				
	$\text{ when } \; \sum^{\infty} \; x(n) < \infty$				
	$n=-\infty$				
 L	<u> </u>			1	

	Define discrete Fourier transform Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of	$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ when $\sum_{n=-\infty}^{\infty} x(n) < \infty$ $F\{\cos(2\pi f_0 t)\} = \frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))$ Fourier transform of rectangular pulse is SINC function.	Understand Understand Remember Remember Remember	CO 2 CO 2 CO 2 CO 2	CL0 6 CL0 7 CL0 7 CL0 7	AECB14.06 AECB14.06 AECB14.07 AECB14.07
II C	Define discrete Fourier transform Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T. What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	shifted by ± 90 . $\hat{x}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{x(k)}{t - k} dk$ The discrete-time Fourier transform (DTFT) or the Fourier transform of a discrete-time sequence $x[n]$ is a representation of the sequence in terms of the complex exponent tial sequence e^{jwn} . $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ or may not. $\mathbf{x} X(\omega) = \sum_{n=-\infty}^{\infty} x(n) < \infty$ $\mathbf{y} \mathbf{y} \mathbf{y} = \frac{1}{2} \left[\delta(f - f_0) + \delta(f + f_0) \right]$ Fourier transform of rectangular pulse is SINC function.	Understand Remember Remember Remember	CO 2 CO 2 CO 2	CL0 6 CL0 7 CL0 7 CL0 7	AECB14.06 AECB14.07 AECB14.07
II C	Define discrete Fourier transform Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T. What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	The discrete-time Fourier transform (DTFT) or the Fourier transform of a discrete—time sequence $x[n]$ is a representation of the sequence in terms of the complex exponent tial sequence e^{jwn} . $X(\omega) = \sum_{n=-\infty}^{\infty} x(n) < \infty$ Fourier transform of rectangular pulse is SINC function.	Understand Remember Remember Remember	CO 2 CO 2 CO 2	CL0 6 CL0 7 CL0 7 CL0 7	AECB14.06 AECB14.07 AECB14.07
II C	Fourier transform Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	The discrete-time Fourier transform (DTFT) or the Fourier transform of a discrete—time sequence $x[n]$ is a representation of the sequence in terms of the complex exponent tial sequence e^{jwn} . If $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ or may not. when $\sum_{n=-\infty}^{\infty} x(n) < \infty$	Understand Remember Remember Remember	CO 2 CO 2 CO 2	CL0 6 CL0 7 CL0 7 CL0 7	AECB14.06 AECB14.07 AECB14.07
II C	Fourier transform Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	The discrete-time Fourier transform (DTFT) or the Fourier transform of a discrete—time sequence $x[n]$ is a representation of the sequence in terms of the complex exponent tial sequence e^{jwn} . If $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ or may not. when $\sum_{n=-\infty}^{\infty} x(n) < \infty$	Understand Remember Remember Remember	CO 2 CO 2 CO 2	CL0 6 CL0 7 CL0 7 CL0 7	AECB14.06 AECB14.07 AECB14.07
II C	Fourier transform Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	the Fourier transform of a discrete—time sequence $x[n]$ is a representation of the sequence in terms of the complex exponent tial sequence e^{jwn} . If $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ or may not. when $\sum_{n=-\infty}^{\infty} x(n) < \infty$	Understand Remember Remember Remember	CO 2 CO 2 CO 2	CL0 6 CL0 7 CL0 7 CL0 7	AECB14.06 AECB14.07 AECB14.07
II C	Fourier transform Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	the Fourier transform of a discrete—time sequence $x[n]$ is a representation of the sequence in terms of the complex exponent tial sequence e^{jwn} . If $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ or may not. when $\sum_{n=-\infty}^{\infty} x(n) < \infty$	Understand Remember Remember Remember	CO 2 CO 2 CO 2	CL0 6 CL0 7 CL0 7 CL0 7	AECB14.06 AECB14.07 AECB14.07
II C	Fourier transform Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	the Fourier transform of a discrete—time sequence $x[n]$ is a representation of the sequence in terms of the complex exponent tial sequence e^{jwn} . If $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ or may not. when $\sum_{n=-\infty}^{\infty} x(n) < \infty$	Understand Remember Remember Remember	CO 2 CO 2 CO 2	CL0 6 CL0 7 CL0 7 CL0 7	AECB14.06 AECB14.07 AECB14.07
V S V IIII	Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T. What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	sequence in terms of the complex exponent tial sequence $e^{j_w n}$. $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n} \text{or may not.}$ when $\sum_{n=-\infty}^{\infty} x(n) < \infty$ $\int \{\cos(2\pi f_0 t)\} = \frac{1}{2} (\delta(f - f_0) + \delta(f + f_0)).$ Fourier transform of rectangular pulse is SINC function.	Remember Remember	CO 2 CO 2	CL0 7 CL0 7 CL0 7	AECB14.07 AECB14.07
V S V IIII	Define Convergence Condition What is formula of $\cos 2\pi f_0 t$ in F.T. What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	sequence e^{jwn} . If $X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ or may not. when $\sum_{n=-\infty}^{\infty} x(n) < \infty$	Remember Remember	CO 2 CO 2	CL0 7 CL0 7 CL0 7	AECB14.07 AECB14.07
V S V IIII	Condition What is formula of $\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$ when $\sum_{n=-\infty}^{\infty} x(n) < \infty$ $ = \frac{\int \{\cos(2\pi f_0 t)\} = \frac{1}{2}(\delta(f - f_0) + \delta(f + f_0))}{\int_{0}^{\infty} x(n) } $ Fourier transform of rectangular pulse is SINC function.	Remember Remember	CO 2 CO 2	CL0 7 CL0 7 CL0 7	AECB14.07 AECB14.07
S S V I I I I	What is formula of $\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse? What is the	when $\sum_{n=-\infty}^{\infty} x(n) < \infty$ $F\{\cos(2\pi f_0 t)\} = \frac{1}{2}(\delta(f - f_0) + \delta(f + f_0)).$ Fourier transform of rectangular pulse is SINC function.	Remember Remember	CO 2	CL0 7	AECB14.07
S N S N I I I I I I	$\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse?	$ \frac{n=-\infty}{\mathcal{F}\{\cos(2\pi f_0 t)\}} = \frac{1}{2}(\delta(f-f_0) + \delta(f+f_0)). $ Fourier transform of rectangular pulse is SINC function.	Remember Remember	CO 2	CL0 7	AECB14.07
S N S N I I I I I I	$\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse?	$ \frac{n=-\infty}{\mathcal{F}\{\cos(2\pi f_0 t)\}} = \frac{1}{2}(\delta(f-f_0) + \delta(f+f_0)). $ Fourier transform of rectangular pulse is SINC function.	Remember Remember	CO 2	CL0 7	AECB14.07
S N S N I I I I I I	$\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse?	$ \frac{n=-\infty}{\mathcal{F}\{\cos(2\pi f_0 t)\}} = \frac{1}{2}(\delta(f-f_0) + \delta(f+f_0)). $ Fourier transform of rectangular pulse is SINC function.	Remember Remember	CO 2	CL0 7	AECB14.07
S N S N I I I I I I	$\cos 2\pi f_0 t$ in F.T What is formula of $\sin \omega_0 t$ in F.T? What is the F.T of ectangular pulse?	Fourier transform of rectangular pulse is SINC function.	Remember Remember	CO 2	CL0 7	AECB14.07
V S V V iii iii	What is formula of inoot in F.T? What is the F.T of ectangular pulse? What is the	Fourier transform of rectangular pulse is SINC function.	Remember	CO 2	CL0 7	
r N iii iii	What is the F.T of ectangular pulse? What is the	Fourier transform of rectangular pulse is SINC function.				AECB14.07
V iii iii V	ectangular pulse? What is the	SINC function.	D :	G0.5		
ii ii V t						
i N L f	negration property	e () F.T 1 TT()	Remember	CO 2	CL0 7	AECB14.07
ι f	n F.T? What is F.T of	$\int x(t) dt \stackrel{\mathrm{F.T}}{\longleftrightarrow} \frac{1}{j\omega} X(\omega)$	Remember	CO 2	CL0 7	AECB14.07
	init step		Remember	002	CLO /	TECDI 1.07
١١ ١١	function?	W(1) A (1)	D 1	GO 2	CI 0.7	AECD14.07
	What is the formula of Ae ^{-at}	$X(j\omega) = A/(a+\omega)$	Remember	CO 2	CL0 7	AECB14.07
ι	ı(t)?		D1	GO 2	CI O 7	AECD14.07
	What is the formula of Ae ^{-a t} u	$X(j\omega) = 2aA/(a^2 + \omega^2)$	Remember	CO 2	CL0 7	AECB14.07
	t)?		T In danston d	CO 2	CI 0.7	AECD14.01
	What is the nverse F.T of δ	The inverse fourier transform is $F^{-1}[\delta(\omega)] = 1/2\pi$.	Understand	1 002	CL0 7	AECB14.01
((ω)?					
	What is the nverse F.T of δ	The inverse fourier transform is $F^{-1}[2\pi\delta(\omega)] = 1$.	Understand	CO 2	CL0 7	AECB14.01
	$(\omega - \omega_0)$?	1 [2πυ (ω)] – 1.				
		MODULE – III	DOLLGIA			
		SIGNAL TRANSMISSION THE LINEAR SYSTEMS.	KOUGH			
		A Transmission is said o be distortion less if	Understand	CO 3	CLO 9	AECB14.09
	ess Transmission?	the output is same as input, except the magnitude is scaled by a constant K and the				
	XII	waveform is delayed by t _d sec.	TT 1	00.2	OT O	AECD14.10
		 Amplitude Distortion. Phase distortion. 	Understand	CO 3	CLO 10	AECB14.10
C	different types of					
3 I	different types of distortions in inear system?					
((1	What are the	1. Amplitude Distortion.	Understand	CO 3		AECB14.10

	11		1		1.0	ı
	distortion?	various frequency components undergo different amplification.			10	
	Define Phase Distortion?	In phase distortion the relative phases of various frequency components may be disturbed.	Remember	CO 3	CLO 10	AECB14.10
	What is the output of a distortion les system?	If $x(t)$ is the input signal, then the output $y(t)$ of a distortion less system is $Y(t) = Kx(t-t_d)$	Understand	CO 3	CLO 10	AECB14.10
	Define Signal Bandwidth?	The band of frequencies the contains most of the signal energy is known as bandwidth of the signal.	Remember	CO 3	CLO 10	AECB14.10
	Define System Bandwidth?	The range of frequencies for which the magnitude $ H(j\omega) $ of the system remains with $\frac{1}{\sqrt{2}}$ of its maximum value is known as system bandwidth.	Remember	CO 3	CLO 10	AECB14.10
8	Define Rise time?	The rise time t_r is the time required for the response to rise from 10 to 90% of the final value.	Remember	CO 3	CLO 10	AECB14.10
	What is the relationship between bandwidth and rise time?	The rise time is inversely proportional to the bandwidth.	Understand	CO 3	CLO 10	AECB14.10
10	What is paley- weiner Criterion?	The Paley-Wiener criterion is the frequency equivalent of the causality condition in the time domain. It states that the magnitude of the transfer function can be exactly zero only a discrete frequencies but not over a finite band of frequencies.	Understand	CO 3	CLO 11	AECB14.11
	What is physically realizable impulse response?	A system is said to be physically realizable if impulse response $h(t)=0$ for $t<0$.	Understand	CO 3	CLO 10	AECB14.10
	What is the condition on impulse response for a linear phase	The impulse response is symmetrically about $t=t_d$.	Understan d	CO 3	CLO 10	AECB14.10
13		The type of systems whose input and output both are continuous signals or analog signals are called continuous systems.	Remember	CO 3	CLO 10	AECB14.10
	Define Discrete systems	The type of systems whose input and output both are discrete signals or digital signals are called digital systems.		CO 3	CLO 10	AECB14.10
	Define Casual System	A system is causal if the output depends only on present and past, but not future input.	Remember	CO 3	CLO 10	AECB14.10
	Define LTI system		Remember	CO 3		AECB14.09
	Define transfer function of LTI system.	The ratio of laplace transform of output y(t) to the laplace transform of intput is called transfer function.	Remember	CO 3	CLO 9	AECB14.09
	Define impulse response	If the input to the system is impulse input then its response is called impulse response.	Remember	CO 3	CLO 9	AECB14.09
19	What is magnitude spectrum for distortionless system.		Understand	CO 3	CLO 9	AECB14.09
20	Define LTV system	A system is said to be LTV if it satisfies both liniarity and time variance properties.		CO 3	CLO 9	AECB14.09
21	Define cutoff	The cutoff frequency is defined as the	Remember	CO 3	CLO 9	AECB14.09

	frequency	frequency at which the ratio of the				
	Define low pass filter	(input/output) has a magnitude of 0.707 A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff		CO 3	CLO 9	AECB14.09
	inter	frequency and attenuates signals with frequencies higher than the cutoff frequency.				
	Define high pass filter	A high-pass filter is a filter that passes signals with a frequency higher than a selected cutoff		CO 3	CLO 9	AECB14.09
	inter	frequency and attenuates signals with frequencies lower than the cutoff frequency.				
	Define band-pass filter	A band-pass filter or bandpass filter is a device that passes frequencies within a certain	Remember	CO 3	CLO 9	AECB14.09
	inter	range and rejects frequencies outside that range.				
	Define band-stop filter	A band-stpo filter or bandreject filter is a device that rejects frequencies within a certain	Remember	CO 3	CLO 9	AECB14.09
	inter	range and passes frequencies outside that range.				
	Define All-Pass	All-Pass System has a constant amplitude	Remember	CO 3	CLO 9	AECB14.09
	System	response, but doesn't always have a linear phase response.				
27	Define ideal filter	A filter has a unit gain (0 dB) in the passband and a gain of zero $(-\infty \text{ dB})$ in the stopband is called idelfilter.	Remember	CO 3	CLO 9	AECB14.09
	Define practical filter	A filter has a finite transition band always	Remember	CO 3	CLO 9	AECB14.09
	inter	exists between the passband and the stopband is called practical filter. In the transition band,				
		the gain of the filter changes gradually from				
		one (0 dB) in the passband to zero ($-\infty$ dB) in the stopband.				
	Define	Convolution is a mathematical way of	Remember	CO 3		AECB14.12
	Convolution Define De	combining two signals to form a third signal. Deconvolution is reverse process to	Remember	CO 3	12 CLO	AECB14.12
	Convolution	convolution widely used in signal and image processing.		203	12	1
31	Define Commutative	Commutative Property of convolution states	Remember	CO 3	CLO 12	AECB14.12
	Propertyof Convolution.	that $x_1(t) * x_2(t) = x_2(t) * x_1(t)$			12	
		Distributive Property of convolution states	Remember	CO 3	CLO	AECB14.12
	Propertyof Convolution.	that $x_1(t)*[x_2(t)+x_3(t)]=[x_1(t)*x_2(t)]+[x_1(t)*x_3(t)]$			12	
33	DefineAssociative	Associative Property of convolution states that	Remember	CO 3	CLO	AECB14.12
	Property of Convolution.	$x_1(t)*[x_2(t)*x_3(t)]=[x_1(t)*x_2(t)]*x_3(t)$	remember	CO 3	12	7.LCD14.12
	DefineShifting Propertyof	Shifting Propertyof Convolutionstates that $x_1(t-t0)*x_2(t-t1)=y(t-t0-t1)$	Remember	CO 3	CLO 12	AECB14.12
	Convolution Define	Convolution with Impulse is the signal itself.	Remember	CO 3	CLO	AECB14.12
		Convolution with impulse is the signal itself. $x(t)*\delta(t)=x(t)$	remember	COS	12	AECD14.12
	Define	Convolution of Unit Step function is ramp	Remember	CO 3	CLO	AECB14.12
	Convolution of Unit Step	function. $u(t)*u(t)=r(t)$			12	
İ	ı					
	Define Scaling Property of	Scaling Property of Convolution states that If $x(t)*h(t)=y(t)x(t)*h(t)=y(t)$	Remember	CO 3	CLO 12	AECB14.12

	DefineDifferentiati on of Output of LTI system	Differentiation of Output of LTI system states that if $y(t)=x(t)*h(t)$ then $dy(t)/dt=dx(t)/dt*h(t)$ or $dy(t)/dt=x(t)*dh(t)/dt$	Remember	CO 3	CLO 9	AECB14.09
	What is Convolution of two causal sequences?	Convolution of two causal sequences is also causal.			12	AECB14.12
	What is Convolution of two anti causal sequences?	Convolution of two anti causal sequences is also anti causal.			12	AECB14.12
	What is Convolution of twounequal length rectangles?	Convolution of two unequal length rectangles results a trapezium.	Understand	CO 3	CLO 12	AECB14.12
	What is Convolution of twoequal length rectangles?	Convolution of two equal length rectangles results a triangle	Understand	CO 3	CLO 12	AECB14.12
43	What is Convolution of a signal with itself?	A function convoluted itself is equal to integration of that function.	Understand	CO 3	CLO 12	AECB14.12
	What are Limits of Convoluted Signal?	If two signals are convoluted then the resulting convoluted signal has following range is Sum of lower limits $<$ t $<$ sum of upper limits .		CO 3	CLO 12	AECB14.12
	What is Area of Convoluted Signal?	The area under convoluted signal is equal to the product of area under impulse response and area under output signal.	Understand	CO 3	CLO 12	AECB14.12
	Define DC component of any signal.	DC component of any signal is the ratio of area of the signal to the period of the signal.	Understand	CO 3	CLO 9	AECB14.09
	What is length of Discrete Convolution	if any two sequences have m, n number of samples respectively, then the resulting discrete convoluted sequence will have [m+n-1] samples.	Understand	CO 3	CLO 12	AECB14.12
	What is length of periodic or circular convolution	If two sequences of length m, n respectively are convoluted using circular convolution then resulting sequence having max [m,n] samples.	Understand	CO 3	CLO 12	AECB14.12
	Define invertiblesystem	A system is said to be invertible if distinct inputs lead to distinct outputs				AECB14.09
	Define step response	If the input to the system is step input ,then the its response is called step response.	Understand	CO 3	CLO 9	AECB14.09
		MODULE – IV LAPLACE AND Z-TRANS	FORM			
	Define Laplace transform?	A signal x(t) is defined as	Understand	CO 4	CLO 13	AECB14.13
		$X(S) = \int_{-\infty}^{\infty} x(t)e^{-st} dt.$				
		Where S=σ+jω				
	What is Region of convergence (ROC)	The ROC of $X(S)$ is the set of all values of σ for which the Laplace transform convergence.	Remember	CO 4	CLO 14	AECB14.14

1 2	Define transfer	The transfer function of the greatern is the	I Indonstand	CO 4	CI O 15	AECD14.15
	Define transfer	The transfer function of the system is the	Understand	CO 4	CLO 15	AECB14.15
	function.	ratio of the Laplace transform of the output				
		signal to the Laplace transform of the input				
	5 6	signal with all initial conditions are zero.	** 1		GY 0 4 7	1 T C T 1 1 1 7
	Define natural	The natural response of the system is the part	Understand	CO 4	CLO 15	AECB14.15
	response	of the total response which is due to initial				
		conditions of the system alone.				
5	Define forced	The forced response of the system is the part	Understand	CO 4	CLO 13	AECB14.13
	response	of the total response which is due to input				
		alone.				
6	Define poles and	The transfer function of a system is the ratio	Understand	CO 4	CLO 14	AECB14.14
	zeros of a transfer	of two polynomials. The roots of the			0201.	112021
	function.	numerator polynomial are called the zeros of				
	runction.	the transfer function. The roots of the				
		denominator polynomial are called poles of				
		the transfer function.				
7	Define turnsiant		T.T., al a make mad	CO 4	CI O 12	AECD14.12
	Define transient	The part of forced response which is due to	Understand	CO 4	CLO 13	AECB14.13
	response	to poles of the system is known as transient				
<u> </u>	- 0	response.				
	Define steady	The part of forced response which is due to	Understand	CO 4	CLO 13	AECB14.13
	state response.	to poles of the input signal $X(S)$ is known as				
		transient response.				
9	What is the initial	The initial value theorem allows calculate	Remember	CO 4	CLO 14	AECB14.14
	value theorem of	x(0) directly from the transform $X(s)$				
	L.T	$\lim_{t \to 0} x(t) = \lim_{S \to \infty} sX(S)$				
			D1	CO 4	CI O 14	AECD14.14
	What is the final	$\lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(S)$	Remember	CO 4	CLO 14	AECB14.14
	value theorem of					
	Laplace transform	2				
11	What is the L.T of	$L[\cos\Omega_0 t] = \frac{s}{s^{2+}\Omega_0^2}$	Remember	CO 4	CLO 14	AECB14.14
	the $\cos \Omega_0 t$					
12	What is the L.T of		Remember	CO 4	CLO 14	AECB14.14
	the $\sin \Omega_0 t$	$L[\sin \Omega_0 t] = \frac{\Omega_0}{S^2 + \Omega_0^2}$				
12	What is the	The necessary condition for convergence of	Damamhar	CO 4	CLO 14	AECB14.14
			Remember	CO 4	CLO 14	AECD14.14
	condition for	the L.T is absolutely integrable.				
	convergence of	$\int_{a}^{b} a(t) ^{2-\sigma t} dt$				
		$I = IXIIIP \longrightarrow I \subseteq 00$				
	L.T	$\int_{-\infty} x(t)e^{-\sigma t} < \infty$				
		The z-transform of a discrete time sequence	Understand	CO 4	CLO 15	AECB14.15
14	Define Z-	$J = \infty$	Understand	CO 4	CLO 15	AECB14.15
14	Define Z-	The z-transform of a discrete time sequence	Understand	CO 4	CLO 15	AECB14.15
14	Define Z-	The z-transform of a discrete time sequence $x(n)$, is defined as	Understand	CO 4	CLO 15	AECB14.15
14	Define Z-	The z-transform of a discrete time sequence $x(n)$, is defined as	Understand	CO 4	CLO 15	AECB14.15
14	Define Z-	The z-transform of a discrete time sequence	Understand	CO 4	CLO 15	AECB14.15
14	Define Z- transform.	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$		CO 4		
14	Define Z-transform. Define infinite	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as	Understand Understand		CLO 15	AECB14.15 AECB14.15
14	Define Z- transform.	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as				
14	Define Z-transform. Define infinite Z-transform.	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$	Understand	CO 4	CLO 15	AECB14.15
14 15	Define Z-transform. Define infinite Z-transform. What is the z-	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$;				
15	Define Z-transform. Define infinite Z-transform. What is the z-transform of	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$	Understand	CO 4	CLO 15	AECB14.15
14 15 16	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function?	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$.	Understand Remember	CO 4	CLO 15	AECB14.15 AECB14.15
14 15 16	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$;	Understand	CO 4	CLO 15	AECB14.15
14 15 16	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$.	Understand Remember	CO 4	CLO 15	AECB14.15 AECB14.15
14 15 16	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$.	Understand Remember	CO 4	CLO 15	AECB14.15 AECB14.15
14 15 16	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$.	Understand Remember Remember	CO 4 CO 4	CLO 15 CLO 15	AECB14.15 AECB14.15 AECB14.16
14 15 16 17	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in z-transform? What is the final	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$. If $x(n)$ is causal, then $x(0) = \lim_{z \to 1} X(z)$ If $x(n)$ is causal, then $z\{x(n)\}$	Understand Remember	CO 4	CLO 15	AECB14.15 AECB14.15
14 15 16 17	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in z-transform? What is the final value theorem in	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$.	Understand Remember Remember	CO 4 CO 4	CLO 15 CLO 15	AECB14.15 AECB14.15 AECB14.16
14 15 16 17	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in z-transform? What is the final value theorem in z-transform	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$. If $x(n)$ is causal, then $x(0) = \lim_{z \to 1} X(z)$ If $x(n)$ is causal, then $z(x(n))$ and $z(x(n))$ are $z(x(n))$ are $z(x(n))$ and $z(x(n))$ are $z(x(n))$ are $z(x(n))$ and	Understand Remember Remember	CO 4 CO 4	CLO 15 CLO 16 CLO 16	AECB14.15 AECB14.16 AECB14.16
14 15 16 17 18	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in z-transform? What is the final value theorem in z-transform What is the ROC	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$. If $x(n)$ is causal, then $x(0) = \lim_{z \to 1} X(z)$ If $x(n)$ is causal, then $z\{x(n)\}$ $x(\infty) = \lim_{z \to 1} (z-1)X(z)$ The ROC of a finite duration causal sequence	Understand Remember Remember	CO 4 CO 4	CLO 15 CLO 15	AECB14.15 AECB14.15 AECB14.16
14 15 16 17 18	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in z-transform? What is the final value theorem in z-transform What is the ROC of a finite	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$. If $x(n)$ is causal, then $x(0) = \lim_{z \to 1} X(z)$ If $x(n)$ is causal, then $z(x(n))$ and $z(x(n))$ are $z(x(n))$ are $z(x(n))$ and $z(x(n))$ are $z(x(n))$ are $z(x(n))$ and	Understand Remember Remember	CO 4 CO 4	CLO 15 CLO 16 CLO 16	AECB14.15 AECB14.16 AECB14.16
14 15 16 17 18	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in z-transform? What is the final value theorem in z-transform What is the ROC of a finite duration causal	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$. If $x(n)$ is causal, then $x(0) = \lim_{z \to 1} X(z)$ If $x(n)$ is causal, then $z\{x(n)\}$ $x(\infty) = \lim_{z \to 1} (z-1)X(z)$ The ROC of a finite duration causal sequence	Understand Remember Remember	CO 4 CO 4	CLO 15 CLO 16 CLO 16	AECB14.15 AECB14.16 AECB14.16
14 15 16 17 18	Define Z-transform. Define infinite Z-transform. What is the z-transform of impulse function? What is the initial value theorem in z-transform? What is the final value theorem in z-transform What is the ROC of a finite duration causal sequence?	The z-transform of a discrete time sequence $x(n)$, is defined as $X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$ The inverse z-transform of $X(z)$ is defined as $x(n) = \frac{1}{2\pi j} \oint X(z)z^{n-1}$ For an impulse sequence $x(n) = \delta(n)$; the z-transform $X(z)=1$. If $x(n)$ is causal, then $x(0) = \lim_{z \to 1} X(z)$ If $x(n)$ is causal, then $z\{x(n)\}$ $x(\infty) = \lim_{z \to 1} (z-1)X(z)$ The ROC of a finite duration causal sequence	Understand Remember Remember Remember	CO 4 CO 4	CLO 15 CLO 16 CLO 16	AECB14.15 AECB14.16 AECB14.16

	l a		 			
		sequence is entire z-plane except at $z=\infty$.				
	duration ant					
	causal sequence? What is the	It is absolutely integrable of x(t)e	Damanhan	CO 4	CLO 16	AECB14.16
	condition for	It is absolutely integrable of $x(t)e^{-t}$. That is, $X(s)$ exists if	Remember	CO 4	CLU 10	ALCD14.10
	convergence of	.1 natis,2(5) CAISTS 11				
	L.T?	∞ 				
		$\int_{-\infty}^{\infty} x(t) e^{-\sigma t} < \infty$				
		<i>J</i> –∞				
	What is the	$L[u(t)] = \frac{1}{S}$	Remember	CO 4	CLO 13	AECB14.13
	Laplace transform	3				
	of unit step function?					
	What is the L.T of		Remember	CO 4	CLO 13	AECB14.13
			Kemember	CO 4	CLO 13	7 ILCD14.13
24	What is the L.T of	$L [COS\omega_0 t u(t)] = S / S^2 + \omega_0^{2}$ $L [sin\omega_0 t u(t)] = \omega_0 / S^2 + \omega_0^{2}$	Remember	CO 4	CLO 13	AECB14.13
	$Sin\omega_0 tu (t).$					
25	What is the	For a system to be stable, the pole of the	Remember	CO 4	CLO 13	AECB14.13
	condition for	transfer function must be in the left half of				
	•	s-plane.				
	system?					
	What are the	1. An ideal integrator.	Remember	CO 4	CLO 13	AECB14.13
	transfer functions?	2. An ideal delay of T seconds.				
		3. The transfer function of ideal integrator				
27		is 1/s.	D 1	CO 4	CI O 12	AECD14.12
	What are the	1. Direct form I realization.	Remember	CO 4	CLO 13	AECB14.13
	~ I	2. Direct form II realization.				
		3. Cascode form realization.				
20		4. Parallel-form realization.	TT 1	GO 1	GI O 15	A E CD 1 1 1 2
28		It is a minimal set of variables known as state variables, it provides the state and output for	Understand	CO 4	CLO 13	AECB14.13
		the system is $t>t_0$.				
29	Define signal	A signal flow graph is a graphical	Understand	CO 4	CLO 13	AECB14.13
	_	representation of the relationships between the				
		variables of a set of linear algebraic equations.				
	Define block	It is a interconnection of subsystem	Understand	CO 4	CLO 13	AECB14.13
		representing certain basic mathematical				
		operation in such a way that the overall diagram represents the system's mathematical				
		model.				
31	What are the	1. Long division method.	Remember	CO 4	CLO 13	AECB14.13
		2. Partial fraction expansion method.				
	U	3. Residue method.				
		4. Convolution method.				
	transform?	[C∞ 1 C∞	D 1	CO 4	CI O 16	AECD1416
	What is the Parseval's	$\int_{-\infty}^{\infty} x_1(t) x_2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\omega) X_2^*(\omega) d\omega$	Remember	CO 4	CLO 16	AECB14.16
	relation in z-					
	transform?	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$				
	What are the	1. The ROC cannot contain any poles.	Remember	CO 4	CLO 16	AECB14.16
		2. The ROC must be a connected region.	TOMORIOGI	20 4	CLC 10	11LCD17.10
		3. The ROC of an LTI stable system contains				
		the unit circle.				
		4. The ROC is a ring or disc in the z-plane				
		centered at the origin.				
L						

34	What is the convolution property in the Z-Transform?	If $Z\{x1(n)\} = X_1(Z)$ and $Z\{x2(n)\} = X_2(Z)$ then $Z\{x_1(n)\} * x_2(n)\} = X_1(Z) X_2(Z).$	Remember	CO 4	CLO 16	AECB14.16
	What is the z- transform of unit step function?	$X(Z) = \frac{1}{1 - Z^{-1}}$	Remember	CO 4	CLO 16	AECB14.16
	Define System function.	Let x(n) and y(n) are the input and output sequences of an LTI system with impulse h(n).the system function of the LTI system is defined as the ratio of Y(Z) and X(Z). That is $H(Z) = \frac{Y(Z)}{X(Z)}$	Understand	CO 4	CLO 15	AECB14.15
37	What is the Z- Transform of the sequence $x(n)=a^n$ u(n)	$X(Z) = \frac{Z}{Z-a} \text{ROC: } z > a .$	Understand	CO 4	CLO 15	AECB14.15
38	What is the Z- Transform of the sequence x (n) = nu (n)?	$Z[nu(n)] = \frac{z}{(z-1)2}$	Understand	CO 4	CLO 15	AECB14.15
	l	The ROC of a finite duration ant casual sequence is entire Z-Plane except at $z = \infty$	Understand	CO 4	CLO 15	AECB14.15
	What is the time reversal property of the z- transform?	If $Z\{x_1(n)\} = X(Z)$ and $Z\{x_2(n)\} = X_2(Z)$ then $Z\{x_1(n)\} * x_2(n)\} = X_1(z) X_2(Z)$.	Understand	CO 4	CLO 15	AECB14.15
		MODULE – V SAMPLING THEOREM	Л			
1	Define sampling theorem	The sampling frequency $f_s \ge 2f_m$, the samplin frequency must be at least twice the highest frequency present in the signal.	g Remem	ber CO	5 CLO 1	17 AECB14.17
2	Define nyquist rate	The frequency 2f _m , which is under sampling theorem must be exceeded by the sampling frequency is known as nyquist rate.		ber CO	5 CLO	17 AECB14.17
3	Define anti aliasing filter	A filter that is used to reject high frequence signals before it is sampled to reduce the aliasing is called anti-aliasing filter.		ber CO	5 CLO	17 AECB14.17
4	What is the transfer function of a zero order hold	The transfer function of a zero order	Understa			18 AECB14.18
5	Define sampling interval	The sampling interval has been taken as fixe and it is defined to be the unit interval.	ed Remem	ber CO	5 CLO	18 AECB14.18
6	Define band limited signal	A Band-limited signal is one whose Fourier Transform is non-zero on only a finite interval of the frequency axis.	al			18 AECB14.18
7	Define impulse sampling	Impulse sampling can be performed by multiplying input signal x(t) with impulse training of period 'T'.	in			18 AECB14.18
8	Define natural sampling	Natural Sampling is a practical method of sampling in which pulse have finite width equato τ. Sampling is done in accordance with the carrier signal which is digital in nature.	al	ber CO	0.5 CLO 1	18 AECB14.18

9	Define flattop	Natural Sampling is a practical method of	Remember	CO 5	CLO 18	AECB14.18
	sampling	sampling in whichthe pulse is in the form of flat				
		top.				
10	Define under	Undersampling is a technique where one	Remember	CO 5	CLO 18	AECB14.18
	sampling	samples a bandpass-filtered signal at a sample				
	samping	rate below its Nyquist rate				
11	Define over	Oversampling is the process of sampling a	Remember	CO 5	CI O 19	AECB14.18
11			Remember	CO 3	CLU 18	AECD14.18
	sampling	signal at a sampling frequency significantly				
		higher than the Nyquist rate.				
12	Define perfect	Perfect sampling is the process of sampling a	Remember	CO 5	CLO 18	AECB14.18
	sampling	signal at a sampling frequency significantly				
	1 0	equal to the Nyquist rate.				
13	Define band pass	Bandpass sampling is a technique where one	Remember	CO 5	CLO 18	AECB14.18
13	sampling	samples a band pass-filtered signal at a sample	Remember	003	CLO 10	TIECDI I.10
	samping					
	T . C.	rate below its Nyquist rate		G0. 7	GY 0 10	1 T C D 1 1 1 0
14	Define	Correlation describes the mutual relationship	Remember	CO 5	CLO 19	AECB14.19
	Correlation	which exists between two or more things.				
15	Define auto	Autocorrelation, also known as serial	Remember	CO 5	CLO 19	AECB14.19
	Correlation	correlation, is the correlation of a signal with a				
		delayed copy of itself.				
16	Define cross	Cross-correlation is a measure of similarity of	Remember	CO 5	CI O 10	AECB14.19
10			Kemember	1003	CLU 19	AECD14.19
	Correlation	two series as a function of the displacement of				
		one relative to the other.				
17	Define symmetry	Auto correlation exhibits conjugate symmetry	Remember	CO 5	CLO 19	AECB14.19
	property of auto	i.e. $R(\tau) = R^*(-\tau)$				
	Correlation	(-) (-)				
18	Define auto	Auto correlation function of energy signal at	Remember	CO 5	CI O 10	AECB14.19
10			Kemember	CO 3	CLO 19	AECD14.19
	Correlation of	origin i.e. at τ =0 is equal to total energy of that				
	energy signal	signal,				
19	Define maximum	Auto correlation function is maximum at τ =0 i.e	Remember	CO 5	CLO 19	AECB14.19
	value of auto	$ R(\tau) \le R(0) \forall \tau$				
	Correlation	(-) =(-)				
20	Define relation	Correlation function and power spectral	Remember	CO 5	CI O 20	AECB14.20
20	between	1 1	Kemember	003	CLO 20	ALCD14.20
		densities are Fourier transform pairs.				
	correlation and					
	PSD					
21	Define Energy	Energy spectral density describes how the	Remember	CO 5	CLO 20	AECB14.20
	Density	energy of a signal or a time series is distributed				
	Spectrum	with frequency				
22			Domambas	CO 5	CI O 20	AECB14.20
22	Define Power	Power spectral density describes how the	Remember	1003	CLU 20	AECB14.20
	Density	power of a signal or a time series is distributed				
	Spectrum	with frequency				
23	Define Parseval's	Parseval's theorem for energy signals states that	Remember	CO 5	CLO 20	AECB14.20
	theorem	the total energy in a signal can be obtained by				
		the spectrum of the signal				
24	Define		Remember	CO 5	CI O 10	AECB14.19
24		Cross correlation function corresponds to the	Keilleinber	003	CLO 19	AECD14.19
	correlation	multiplication of spectrums of one signal to the				
	theorem	complex conjugate of spectrum of another				
		signal.		<u> </u>	<u></u>	
25	Define aliasing	Aliasing is an effect that causes different	Remember	CO 5	CLO 17	AECB14.17
		signals to become overlapped (or aliases of one				
		another) when sampled.				
26	Define methods		Domombor	CO 5	CI O 17	AECB14.17
26		considering f _s >2f _m or by using anti aliasing	Remember	003	CLU 1/	AECB14.1/
	to reduce aliasing	filters.				
27	Give auto	The auto correlation of $x(t)$ is	Understand	CO 5	CLO 19	AECB14.19
	correlation				1	
	formula	$R_{11}(au)=R(au)=\int_{-\infty}^{\infty}x(t)x(t- au)dt$				
	101111u1a					
1				l	1	

20	Civia amaga	The areas correlation of v (t) and v (t) is	Undonstand	CO 5	CI O 10	AECD14.10
28	Give cross	The cross correlation of $x_1(t)$ and $x_2(t)$ is	Understand	CO 3	CLO 19	AECB14.19
	correlation	$R_{12}(au)=\int_{-\infty}^{\infty}x_1(t)x_2(t- au)dt$				
	formula	$R_{12}(au) = \int_{-\infty}^{\infty} x_1(t)x_2(t- au)dt$				
29	Give energy	Energy density spectrum can be calculated using	Understand	CO 5	CI O 20	AECB14.20
29	density spectrum	the formula	Understand	CO 3	CLO 20	ALCD14.20
	formula					
	Tormula	$E = \int_{-\infty}^{\infty} x(f) ^2 df$				
30	Give power	Energy density spectrum can be calculated using	Understand	CO 5	CLO 20	AECB14.20
	density spectrum	the formula			020 20	
	formula	$P = \Sigma_{n=-\infty}^{\infty} \left \left. C_n ight ^2$				
31	Give spectrum of	The spectrum of sampled signal is given by	Understand	CO 5	CLO 20	AECB14.20
	sampled signal	$Y(\omega) = rac{1}{T_s} \Sigma_{n=-\infty}^{\infty} X(\omega - n \omega_s)$				
	75 67 6		7	G0. 7	~~ ~	4 T C D 1 4 1 0
32	Define transfer	A transfer function represents the relationship	Remember	CO 5	CLO 19	AECB14.19
	function	between the output signal of a control system				
22	Define	and the input signal.	Remember	CO 5	CI O 10	AECD14.10
33	Define incoherent or	The signals for which the cross correlation is zero for all values of τ are called uncorrelated.	Keinember	003	CLU 19	AECB14.19
	uncorrelated	zero for all values of t are carred uncorrelated.				
	signals					
34	Define cross	Cross correlation for orthogonal signals is zero.	Remember	CO 5	CI O 19	AECB14.19
34	correlation for	Cross correlation for orthogonal signals is zero.	Kemember	003	CLO 17	7 ILCD14.17
	orthogonal					
	signals.					
35	Define relation	The relation between convolution and	Remember	CO 5	CLO 19	AECB14.19
	between	correlation is that cross correlation of $x_1(t)$ and			CLO 17	
	convolution and	$x_2(t)$ is same as convolution between $x_1(t)$ and				
	correlation.	$x_2(-t)$.				
36	Define	The normalized energy of a signal x(t) is defined	Remember	CO 5	CLO 20	AECB14.20
	normalized	as the energy dissipated by a voltage signal				
	energy.	applied across a 1 ohm resistor.				
37	Define area	The area under energy spectral density is equal	Remember	CO 5	CLO 20	AECB14.20
	property of	to the total energy of that signal.				
	Energy spectral					
-	density.			~~ -		
38	Define output of	The output of energy spectral density is defined	Remember	CO 5	CLO 20	AECB14.20
	Energy spectral	as the multiplication of magnitude square of				
	density.	system function and Energy Spectrum Density				
39	Define average	of input signal. The average power is defined as the power	Remember	CO 5	CLO 20	AECB14.20
37	power.	dissipated by a voltage x(t) applied across a 1	Kemember	003	CLU 20	ALCD14.20
	power.	ohm resistor.			1	
40	Define area	The area under energy spectral density is equal	Remember	CO 5	CLO 20	AECB14.20
	property of	to the average power of that signal.				
	power spectral					
	density.					
41	Define output of	The output of power spectral density is defined	Remember	CO 5	CLO 20	AECB14.20
	power spectral	as the multiplication of magnitude square of				
	density.	system function and power Spectrum Density of				
		input signal.				
42	Define sampling	The sampling frequency (or sample rate) is the	Remember	CO 5	CLO 18	AECB14.18
	frequency	number of samples per second.				
43	Define ADC.	An analog-to-digital converter is a system that	Remember	CO 5	CLO 18	AECB14.18
		converts an analog signal, such as a sound				
		picked up by a microphone or light entering a				
4.4	Dafina DAC	digital camera, into a digital signal.	Daw 1	CO 7	OT 0.10	AECD14.10
44	Define DAC.	A digital-to-analog converter is a system that	Remember	CO 5	CLO 18	AECB14.18

		converts a digital signal into an analog signal.				
45	Define noise	Noise is an unwanted disturbance in an electrical	Remember	CO 5	CLO 18	AECB14.18
		signal.				
46	Define SNR	SNR is defined as the ratio of signal power to	Remember	CO 5	CLO 18	AECB14.18
		the noise power.				
47	Define	Reconstruction usually means the determination	Remember	CO 5	CLO 18	AECB14.18
	reconstruction in	of an original continuous signal from a sequence				
	sampling	of equally spaced samples.				
48	Define noise	Noise reduction is the process of removing noise	Remember	CO 5	CLO 18	AECB14.18
	reduction	from a signal.				
49	Define anti	An "anti-imaging" or "anti-aliasing" filter is	Remember	CO 5	CLO 18	AECB14.18
	imaging filter	placed before the A-to-D converter, to prevent				
		signal frequencies greater than half the sampling				
		rate from being digitized, which would produce				
		images at unwanted frequencies.				
50	What is the use	Correlation is used to find the linear relationship	Remember	CO 5	CLO 19	AECB14.19
	ofcorrelation.	between two numerically expressed variables.				

Prepared by:

Dr. V Padmanabha Reddy, Professor, ECE

HOD, ECE