

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name		:	VLSI DESIGN	
Course Code		:	AEC017	
Program		:	B.Tech	
Semester		:	VII	
Branch		:	Electronics and Communication Engineering	
Section	·	:	A, B, C,D	
Academic Year		:	2019 - 2020	
Course Faculty		:	Dr. V Vijay, Associate Professor Dr. M Manisha, Associate Professor Ms. K S Indrani, Assistant Professor Mr. V R Seshagiri Rao, Associate professor	

OBJECTIVES:

Ι	Have skills to use concepts of MOS devices for the fabrication of integrated chips (IC's).
II	Familiarize CMOS layout rules in the placement and routing of transistors and interconnect, and
	to verify the functionality, timing, power, and parasitic effects.
III	Demonstrate the ability to design static CMOS combinational and sequential logic at the
	transistor level, including mask layout.
IV	Focus in selecting appropriate building blocks of data path for given system.

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		UNIT-I				
1	What is depletion mode?	In this MOSFET device is normally ON at zero gate– source voltage.	Understand	CO 1	CLO 1	AEC017.01
2	What is enhancement mode?	These devices are off at zero gate–source voltage, NMOS can be turned on by pulling the gate voltage higher than the source voltage, PMOS can be turned on by pulling the gate voltage lower than the source voltage.	Understand	CO 1	CLO 1	AEC017.01
3	What are the applications of MOSFET?	All digital and Analog circuits	Understand	CO 1	CLO 1	AEC017.01
4	How MOSFET is better than BJT?	MOSFETs are better in terms of power consumption. As the supply voltage is less in MOSFETs when compared to BJTs, power consumption is also very less.	Understand	CO 1	CLO 1	AEC017.01

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
5	What is pinch	Pinch off voltage is the drain	Understand	CO 1	CLO 1	AEC017.01
	off?	to source voltage after which				
		the drain to source current				
		becomes almost constant and				
		MOSFET enters into				
		saturation region and is				
		defined only when gate to				
		source voltage is zero.				
6	What is latch	Latch up is defined as the	Understand	CO 1	CLO 2	AEC017.02
	up?	generation of a low-				
	*	impedance path in CMOS				
		between the power supply				
		(VDD) and the ground (GND)				
		due to the interaction of		-		
	-	parasitic PNP and NPN	1 T . I .			
		bipolar junction transistors		\sim		
		(BJTs).				
7	What is body	Body effect refers to the	Remember	CO 1	CLO 2	AEC017.02
	effect?	change in the transistor				
		threshold voltage (VT)				
		resulting from a voltage				
		difference between the				
		transistor source and body.				
8	What is triode	The triode region is the	Remember	CO 1	CLO 1	AEC017.01
	region?	operating region where the				
		inversion region exists and				
		current flows, but this region	_			
		has begun to taper near the				
		source.				
9	What do u mean	It is a region in which	Remember	CO 1	CLO 1	AEC017.01
	by cut-off	transistor remains OFF and				
	region?	needed some threshold voltage				
	5	to operate or to move				100
10	What is linear	There "linear" can mean	Understand	CO 1	CLO 1	AEC017.01
	region in MOS	"roughly linear current with		-	- C)
	transistor?	applied voltage", which also				
	0	means the MOSFET is acting		7		
	0	like a resistor as opposed to				
		more like a current source.		~~ · ·	CT 0.0	
11	Define sub-	The supply voltage which is	Understand	CO 1	CLO 2	AEC017.02
	threshold	less than threshold voltage is		1		
10	voltage	called sub-threshold voltage	TT 1 . 1	00.1		
12	Define sub-	The region of operation of a	Understand	001	CLO 2	AEC017.02
	threshold region	MOSFET below its threshold	111	1 A A		
		voltage is called sub threshold				
		region. It is also known as				
10	Define and	weak inversion region	I In damate 1	CO 1	CLOC	AEC017.02
15	Define super	The region of operation of a	Understand	01	CLO 2	AEC017.02
	threshold region	MOSFET above its infestion				
		throshold region It is also				
		known as strong inversion				
		region				
14	List out Short	1 Threshold voltage roll	Understand	CO 1	CLO 3	AEC017.03
14	channel effects	off	Understand	01	CLO 5	ALC017.05
	of MOSEET	2 Sub-threshold current				
	OT MODILI	3 Drain induced barrier				
		lowering (DIRI)				
		4 Hot carrier effect				
		5 Impact Ionization				
L	1	- The contraction	I			1

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		6 Velocity saturation				
		7 Gate Induced Drain				
		Leakage (GIDL)				
15	Define threshold	The voltage at which the	Understand	CO 1	CLO 2	AEC017.02
	voltage?	conduction starts is called				
16	What is Dusin	threshold voltage.	I I a de note a d	CO 1	CIO2	AEC017.02
10	what is Drain	Drain-induced Darrier	Understand	01	CLU 3	AEC017.03
	lowering	channel effect in MOSEETs				
	lowering	referring originally to a				
		reduction of threshold voltage				
		of the transistor at higher drain				
		voltages.				
17	What is GIDL	Gate-induced drain leakage,	Understand	CO 1	CLO 3	AEC017.03
		GIDL is induced by band-to-				
		band tunneling effect in strong				
		accumulation mode and				
		generated in the gate-to-drain				
		overlap region.				
18	What is Hot	Hot carrier injection in	Understand	CO 1	CLO 1	AEC017.01
	carrier effect	MOSFETs occurs when a				
		carrier from Si channel is				
10	XX 71 1	injected into the gate oxide.		00.1		AEC017.01
19	Why does	Due to doping in poly silicate	Understand	COT	CLO I	AEC017.01
	in MOSEET2	dened mostly) used in gets of				
	III MOSFET ?	MOSEET tunnel effect occurs				
		from gate to channel / source /				
		drain in forward bias and				
		between gate to source / drain				
		in reverse bias.				
20	What is Sub-	An effect that is exacerbated	Understand	CO 1	CLO 2	AEC017.02
	threshold	by short channel designs is the		_		1
	current	sub-threshold current which				
		arises from the fact that some		-	- C)
		electrons are induced in the		1	-	
		channel even before strong			4	
		inversion is established. For				
		the low electron concentration			100	
		(typically of sub-threshold				
		current (proportional to carrier		23		
		gradients) to dominate over	-	~		
		drift currents (proportional to				
		carrier concentrations). For	1 1 1			
		very short channel lengths,	· · · · · · · · · · · · · · · · · · ·			
		such carrier diffusion from				
		source to drain can make it				
		impossible to turn off the				
		device below threshold. The				
		sub-threshold current is made				
		worse by the DIBL effect				
		which increases the injection				
21	How mobility	Lateral Field Effect: In case of	Understand	CO 1	CIO 2	AEC017.02
21	degradation	short channels as the lateral	Understand	CUI	CLO 3	AEC017.03
	occurs in	field is increased the channel				
	MOSFET?	mobility becomes field-				
		dependent and eventually				
		velocity saturation occurs.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		This results in current				
		saturation.				
		Vertical Field Effect: As the				
		vertical electric field also				
		increases on shrinking the				
		channel lengths, it results in				
		scattering of carriers near the				
		surface. Hence the surface				
		mobility reduces. Thus for				
		short channels, the mobility				
		degradation which occurs due				
		to velocity saturation and				
- 22	X71	scattering of carriers.		CO 1	01.0.2	AEC017.02
22	what is $V_{\rm T}$ roll	The variations in threshold	Understand	001	CLO 3	AEC017.03
	011?	voltage with respect to				
		channel length in short				
23	What is Drain	When the drain is at high	Domombor	CO 1	CLO 3	AEC017.02
23	punch through	enough voltage with respect to	Kemember	01	CLO 5	AEC017.05
	punch unough	the source the depletion				
		region around the drain may				
		extend to the source causing				
		current to flow irrespective of				
		gate voltage (i.e. even if gate				
		voltage is zero). This is known				
		as Drain Punch Through				
		condition				
24	What is aspect	The ratio of width to length	Remember	CO 1	CLO 1	AEC017.01
	ratio	(W/L) in a MOSFET is called				
		aspect ratio or β ratio or				
		transistor ratio				
25	Write down	W W V V	Remember	CO 1	CLO 1	AEC017.01
	drain current	$I_{D} = \mu_{n} C_{OX} - \frac{1}{L} (V_{GS} - V_{T}) V_{DS} - \frac{1}{2}$				1
	equation of					
	NMOS in linear	$JOT \ \mathbf{v}_{GS} > \mathbf{v}_{T}, \mathbf{v}_{DS} \leq \mathbf{v}_{GS} - \mathbf{v}_{T}$		-	- C)
	region of					
2.5	operation		D 1	GO 1	CT 0 1	
26	What is channel	Channel length modulation	Remember	COT	CLO I	AEC017.01
	length	(CLM) is a shortening of the			Sec. 1	
	modulation	length of the inverted channel				
		region with increase in drain		~~		
27	What is lookage	The surrant in a MOSEET	Understand	CO 1	CLO 1	AEC017.01
21	w nat is leakage	when the MOSEET is in OEE	Understand	01	CLU I	AEC017.01
	current?	state. It is also known as static		· · · · ·		
		current / OFE current				
28	State Moore's	The number of transistors per	Remember	CO 1	CLO 1	AEC017.01
20	law	square inch on integrated	Kenteniber	001	CLU I	ALCOI7.01
	14 **	circuits had doubled every				
		vear since the integrated				
		circuit was invented.				
29	Why Moore's	Moore's law is ending due to	Remember	CO 1	CLO 1	AEC017.01
-	law is ending?	continually shrinking of the				
	- O	size of components on a chip				
		(due to technology scaling)				
30	What is Tick	In technology terms, tick-tock	Remember	CO 1	CLO 1	AEC017.01
	Tock model?	typically refers to Intel's				
		model of releasing				
		new processor families each				
		year, with the "tick" applying				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
	_	to processors fabricated on a				
		smaller die shrink and the				
		"tock" representing processors				
		that is based on a new				
		processor micro-architecture.				
		The "tick" processors feature				
		enhanced performance and				
		energy efficiency on a smaller,				
		while the "tock" processors				
		typically optimize the value of				
		the increased number of				
		transistors available from the				
		"tick" release and also		-		
	-	integrate the latest technology	1.1			
		updates available.)		
31	What is	Technology scaling is	Understand	CO 1	CLO 3	AEC017.03
	technology	reduction of the lateral and				
	scaling	vertical dimensions of				
		transistors. The supply voltage				
		(VDD) is scaled down to				
		to maintain device reliability				
32	What is ITRS?	The International Technology	Remember	CO 1	CLO 1	AEC017.01
52	What is it is.	Roadmap for Semiconductors	Remember	COT	CLUI	ALCOI7.01
33	What is the	Power reduces	Understand	CO 1	CLO 2	AEC017.01
	impact of down					
	scaling the					
	MOSFET on					
	power					
	dissipation?				61 6 6	
34	What is the	Propagation delay increases	Understand	CO 1	CLO 2	AEC017.01
	impact of down					C
	MOSEET on			_	-	
	propagation					8
	delav?	Constituted in the local lines	Contraction of the local division of the loc	1 C - C	~	
35	What is the	Area reduces	Understand	CO 1	CLO 3	AEC017.03
	impact of down		1	· · · ·	-	
	scaling the				10	
	MOSFET on				S	
	area?			6.7		
36	What is velocity	Saturation velocity is the	Understand	CO 1	CLO 3	AEC017.03
	saturation?	maximum velocity a charge				
		carrier in a semiconductor,				
		in the presence of very				
		high electric fields When this				
		happens, the semiconductor is				
		said to be in a state of velocity				
		saturation				
37	What is Bi-	Bi-CMOS technology is a	Remember	CO 1	CLO 1	AEC017.02
	CMOS	combination of Bipolar and				
	technology?	CMOS technologies.				
38	What is	Mobility is the measure of	Remember	CO 1	CLO 1	AEC017.01
	mobility?	how quickly an electron can				
		semiconductor in presence of				
		electrical field.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
39	What is totem	Totem-pole output, also	Remember	CO 1	CLO 1	AEC017.02
	pole	known as a push-pull output,				
	configuration?	is a type of electronic circuit				
		and usually realized as a				
		complementary pair of				
		transistors. The High and Low				
		determined The output of				
		high level is 10 V max low				
		level is 0.5 V min.				
				L		<u> </u>
		UNIT-II	L			
1	Define dry	Dry oxidation means, it is	Remember	CO 2	CLO 5	AEC017.05
	oxidation	oxidized with oxygen.				
	process	$Si + O_2 \rightarrow SiO_2$				
2	Define wet	Wet oxidation means the	Understand	CO 2	CLO 5	AEC017.05
	oxidation	silicon is oxidized with stream				
	process	or water vapor.				
2	What are the	$Si + 2H_2O \rightarrow SiO_2 + 2H_2$	Derrort	60.2	CLOS	AEC017.05
3	what are the	1. Thermal oxidation	Remember	CO 2	CL05	AEC017.05
	amerent	2. Electrochemical oxidation				
	processes?					
4	What is	Exposing photoresist through	Remember	CO_2	CLO 1	AEC017.02
	masking?	n-well mask is called masking	Remember	002	CLO I	1112011.02
5	What is	Chemical vapor	Understand	CO 2	CLO 1	AEC017.01
-	Chemical Vapor	deposition (CVD) is a vacuum		001		1120017101
	Deposition	deposition method used to				
	(CVD) process	produce high quality, high-				
		performance, solid materials.				
		In typical CVD, the wafer				
	-	(substrate) is exposed to one				-
		or more volatile precursors,				
	0	which react and/or decompose			0	
	~	produce the desired deposit		· · ·	· · · · ·	e
6	What is	In fabrication processing the	Understand	CO_2	CLOS	AFC017.05
0	diffusion	term "diffusion" usually refers	Onderstand	02	CLO J	ALCOIT.05
	unrusion	to the entire process of adding			Sec. 1	
	-7	a dopant to the surface of			- N	
		wafer at high temperature.		~~~	· · · · · · · · · · · · · · · · · · ·	
7	What is oxide	Stripping off the remaining	Remember	CO 2	CLO 5	AEC017.05
	stripping	oxidation layer is called oxide	. 0			
		stripping				
8	What is	Aluminum is sputtered on the	Remember	CO 2	CLO 5	AEC017.05
	Metallization	whole water	D 1		<u> </u>	
9	What is	In physics, sputtering is a	Remember	CO 2	CLO 5	AEC017.05
	sputtering	phenomenon in which				
		solid material are ejected from				
		its surface after the material is				
		itself bombarded by energetic				
		particles of a plasma or gas.				
10	What is etching?	Etching is used in	Remember	CO 2	CLO 5	AEC017.05
	5	microfabrication to chemically				
		remove layers from the				
		surface of a wafer during				
		manufacturing. Etching is a				
		critically important process				

S.No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		module, and every wafer				
		undergoes many etching steps				
		before it is complete.				
11	What is ion	Ion implantation is a low-	Understand	CO 2	CLO 5	AEC017.05
	implantation	temperature process by which				
		ions of one element are				
		accelerated into a solid target,				
		thereby changing the physical,				
		chemical, or electrical				
		properties of the target.				
12	What is Twin	The process of creating both a	Understand	CO 2	CLO 5	AEC017.05
	Well/Tub	p-well and an n-well for the n-				
	Technology	MOSFET's and p-MOSFET				
		respectively is twin		-		
		well or twin tub technology.				
		Such a choice means that the				
		process is independent of the				
		dopant type of the starting				
		substrate (provided it is only				
		lightly doped).				
13	What is	Lithography is the process of	Understand	CO 2	CLO 5	AEC017.05
	lithography?	transferring circuit pattern				
		directly on to the silicon				
		wafer. But first, the designer				
		must have designed the				
		circuit, determined the size of				
		various circuit elements down				
		to transistor bases to lead				
		width, and their exact				
		positions on the chip.				
14	What is SOI	Silicon on insulator (SOI)	Understand	CO 2	CLO 5	AEC017.05
	CMOS	CMOS technology refers to				
	technology?	the use of a layered silicon-				100
		insulator-silicon substrate in				
		place of		- 27	0	
		conventional silicon substrates		· / .		5
		in semiconductor			-	
		manufacturing, especially				
		microelectronics, to				
		reduce parasitic device			10	
		capacitance, thereby				
	1	improving performance		6		
15	What is the	Latch up and body effect	Remember	CO 2	CLO 5	AEC017.05
	significance of	issues are solved in this		1		
	SOI CMOS	technology by reducing				
	technology?	parasitic capacitances.				
16	What is voltage	Voltage droop is the	Remember	CO 2	CLO 7	AEC017.07
	droop?	intentional loss in				
		output voltage from a device				
		as it drives a load.				
17	What is ground	Ground bounce is usually seen	Remember	CO 2	CLO 7	AEC017.07
	bounce?	on high density VLSI where				
		insufficient precautions have				
		been taken to supply a logic				
		gate with a sufficiently low				
		resistance connection (or				
		sufficiently high capacitance)				
		to ground.				
18	Define noise	Noise margin is the amount	Understand	CO 2	CLO 7	AEC017.07
	margin in	of noise that a CMOS				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	CMOS circuit?	circuit could withstand				
		without compromising the				
10	Dofino	Propagation delay is the	Domomhor	COD	CIO7	AEC017.07
19	propagation	difference in time (calculated	Kemember	02	CLO /	AEC017.07
	delay	at 50% of input-output				
	,	transition), when output				
		switches, after application of				
20		input.		GO 0	a a	
20	Define power	power consumption refers to	Remember	CO 2	CLO 7	AEC017.07
	consumption	time				
21	What are the	1. Dynamic / Switching power	Remember	CO 2	CLO 7	AEC017.07
	components of	2. Static / leakage power		-		
	power	3. Short circuit Power				
22	What is PTL	Pass transistor logic describes	Understand	CO 2	CLO 8	AEC017.08
	(Pass transistor	one of the several logic				
	logic) ?	the count of transistors used to				
		make different logic gates, by				
		eliminating redundant				
		transistors.				
23	What is the	** **	Understand	CO 2	CLO 5	AEC017.05
	output voltage	$Vout = V_{DD} - V_T$		_		
	transistor logic)					
	device?					
24	How to	By using level restorer	Understand	CO 2	CLO 5	AEC017.05
	overcome	transistors				
	voltage drop in					
25	PTL device	Nagativa hias tamparatura	Domomhon	COL	CLO7	AEC017.07
23	CMOS?	instability (NBTI) is a key	Kemeniber	02		AEC017.07
	0.1001	reliability issue in MOSFETs.				
	0	NBTI manifests as an increase		-7	C	
	1	in the threshold voltage and		_	-	
	~	consequent decrease in drain		× .	A	
	0	and transconductance of a				
		MOSFET. The degradation is			100	
	· · · · ·	often approximated by		. 0		
	1	a power-law dependence on	· · · ·	67		
		time. It is of immediate		~		
		concern in p-	111			
		(pMOS), since they almost	-			
		always operate with negative				
		gate-to-source voltage;				
		however, the very same				
		mechanism also affects nMOS				
		accumulation regime i.e. with				
		a negative bias applied to the				
		gate.				
26	What are the	Low Power	Understand	$CO\overline{2}$	CLO 7	AEC017.07
	advantages of	Less Propagation delay				
	PIL	LOW PDP Low FDP				
2.7	What are	1.Intrinsic gate canacitance	Remember	CO 2	CLO 7	AEC017 07
	different	2.overlap capacitance.	Remember			1120017.07

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	components in					
	gate					
	capacitance?					
28	Define diffusion	The parasitic capacitance arise	Remember	CO 2	CLO 7	AEC017.07
	capacitance?	from reverse biased p-n				
		junction are called as diffusion				
20	D C 10	capacitance.		00.0	CT 0 7	
29	Define self-	Polysilicon with underlying	Remember	CO 2	CLO 5	AEC017.05
	aligning?	thin oxide and the thick oxide				
		the process is self aligning				
30	How latch up	Latch up problem can be	Pomombor	CO^{2}	CLO 5	AEC017.05
50	problem is	reduced by using a low-	Kemember	02	CLO J	AEC017.05
	avoided?	resistivity epitaxial P-		-		
	uvolucu.	Substrate as the starting				
		material which act as very low		\sim		
		resistance .				
31	What is the	The function of this layer is to	Understand	CO 2	CLO 5	AEC017.05
	purpose of the N	reduce the collector resistance				
	buried layer?	of the transistor.				
32	What is pull	A device connected so as to	Understand	CO 2	CLO 8	AEC017.08
	down device?	pull the output voltage to the				
		lower supply voltage usually				
		0V is called pull down device.				
33	What is pull up	A device connected so as to	Remember	CO 2	CLO 8	AEC017.08
	device?	pull the output voltage to the				
		VDD is called rull up device				
34	Why NMOS	VDD is called pull up device.	Pomomhor	CO 2	CLOS	AEC017.08
54	technology is	greater switching speed when	Kemember	02	CLU 8	AEC017.08
	preferred more	compared the PMOS				
	than PMOS	transistors.				
	technology?					1
35	What are the	Cutoff region	Remember	CO 2	CLO 5	AEC017.05
	different	Non- Saturated Region		-7	- C	
	operating	Saturated Region				S
	regions foe an			7	4	
	MOS transistor					
36	Define Short	Transistors with Channel	Remember	CO 2	CLO 8	AEC017.08
	Channel	length less than 3- 5 microns				
	devices?	are termed as Short channel		~~		
		devices. With short channel	-	5		
		lateral & vertical				
		dimensions are reduced				
37	What are the	Low power Dissipation	Understand	CO 2	CLO 7	AEC017 07
	advantages of	High Packing density	2 actionality	202		
	CMOS	Bi directional capability				
	process?					
38	What are the	Additional masks defining P	Understand	CO 2	CLO 5	AEC017.05
	basic processing	base region				
	steps involved in	N Collector area Buried Sub				
	Bi-CMOS	collector (SCCD) Processing				
	process?	steps in CMOS process		<i>a</i>	<u> </u>	
39	What are the	Tub Formation, Thin-oxide	Remember	CO 2	CLO 5	AEC017.05
	steps involved in	Construction				
	twin-tub	Contact out definition,				
	process?	Matallization				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
40	What are the	No Latch-up, Due to absence	Remember	CO 2	CLO 5	AEC017.05
	advantages of	of bulks transistor structures				
	Silicon-on-	are denser than bulk silicon.				
	Insulator					
	process?					
		UNIT-III				-
1	What are the	MOS circuits formed by four	Remember	CO 3	CLO 10	AEC017.10
	basic layers of	basic layers n-diffusion, p-				
	MOS circuits?	diffusion, polysilicon and				
2	Define Chiele	metal.	D 1	CO 2	CLO 10	AEC017.10
2	Denne Stick	information through the use of	Remember	005	CLO 10	AEC017.10
	Diagram?	color code Also it is the				
		cartoon of a chip layout.		-		
3	What are the	It can be drawn much easier	Understand	CO 3	CLO 10	AEC017.10
5	uses of Stick	and faster than a complex	Chaerstand	000	02010	1120011110
	diagram?	layout. These are especially				
	ulagran	important tools for layout built				
		from large cells				
4	Give the various	Green – n-diffusion . Red-	Remember	CO 3	CLO 10	AEC017.10
	color coding	polysilicon, Blue –metal,				
	used in stick	Yellow- implant,				
	diagram?	Black-contact areas.				
	ulagraill?					
5	What is the aim	Circuit designers in general	Understand	CO 3	CLO 11	AEC017.11
5	of Circuit	prefer tighter, smaller layouts	onderstand			
	designers in IC	for improved performance and				
	design?	decreased silicon area.				
6	What is the aim	Process engineers wants	Understand	CO 3	CLO 11	AEC017.11
-	of Process	design rules which are				
	engineers with	controllable and reproducible				
	respect to design	process.				C
_	rules?				ST 0 11	
7	What are	Design rules specify line	Understand	CO 3	CLO 11	AEC017.11
	Lambda-based	widths, separations and		1	-	
8	What is the	The width of n diffusion and	Understand	CO 3	CLO 11	AEC017 11
0	width and	p -diffusion should be 2 λ the	onderstallu	003		ALC01/.11
	spacing between	spacing between two diffusion				
	two diffusion	layers should be 3λ according		28	1. C	
	layers?	to design rules.		Sec. 1		
9	What is the layer	Each and every layer is	Understand	CO 3	CLO 10	AEC017.10
	used to separate	isolated by thick or thin silicon				
	each transistor	dioxide insulating layers.				
	layer?					
10	Define Butting	The gate and source of a	Remember	CO 3	CLO 10	AEC017.10
	contacts	depletion device can be				
		connected by a method known				
		as butting contact. Here metal				
		diffusion forming the source of				
		the depletion transistor and to				
		the poly silicon forming this				
		device's gate.				
11	What is the	The width of the metal 1 laver	Understand	CO 3	CLO 11	AEC017.11
	width and	should be 3λ and metal 2				
	spacing between	should be 4λ , spacing between				
	two metal	two metal 1 layers should be				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	layers?	3λ and spacing between two				
		metal 2 should be 4λ ,				
12	What is the	Implant for a n-mos depletion	Remember	CO 3	CLO 11	AEC017.11
	implant	minimum of 2λ from the				
	implant	channel in all the directions.				
13	Which type of	Buried contacts are much	Understand	CO 3	CLO 11	AEC017.11
	contact cuts is	better than butted contacts.				
	better?	In butted contacts the two				
		hinded together using				
		adhesive type of material				
		where as in buried contact				
		one layer is interconnected				
		or fitted into another.	D 1	00.2	GT 0 11	AEC017.11
14	Contacts	The buried contact is a method	Remember	03	CLO II	AEC017.11
	contacts	to make direct onmic contact				
		material and the junctions in				
		silicon-gate integrated circuits				
		sincon-gate integrated circuits.				
15	Define hard	It means permanent functional	Remember	CO 3	CLO 13	AEC017.13
	failures in	failures of the chip				
	curve?					
16	Which is more	Butting contact is complex	Understand	CO 3	CLO 11	AEC017.11
	complex process	process whereas buried contact				
	in butting?	is simple process because				
		butting contact should be done				
		and be strong.				
17	Define	Transient failures can come bit	Remember	CO 3	CLO 13	AEC017.13
	transient	flips and timing errors.		- 17		0
	failures?			00.0	AT 0 10	4.5.0017.10
18	Which layer is	Metal layers are used for	Remember	CO 3	CLO 10	AEC017.10
	and signal lines?	metals has good thermal and		7	1	
	U	electrical conductivity.			(
19	What is the	The minimum width of n-well	Remember	CO 3	CLO 11	AEC017.11
	Minimum n-well	is 3 micro meter because n-		- 0	1 C C	
	width should be	thickness and in it p-type		67	84	
	in mero meter :	devices are formed.	0	~		
20	What is the	The minimum spacing	Remember	CO 3	CLO 11	AEC017.11
	Minimum	between two n-well is 8.5	1			
	spacing between	micro meter according to the				
21	What are the	Design rules are those are	Understand	CO 3	CLO 11	AFC017 11
<u> </u>	advantages of	durable, scalable, portable,	Understalld	203		
	design rules?	increases designer efficiency				
		and automatic translation to				
- 22	Which color	final layout can be done.	TT. 1	CO 2	CL O 10	AEC017 10
	is used for	polysilicon layers. Orange	Understand	05		AEC017.10
	polysilicon,p	color is used to represent				
	olysilicon2?	polysilicon-2 layer				
23	Define	Defect that occurs due to	Remember	CO 3	CLO 13	AEC017.13
	metallization	Scratches and voids,				
L	iuiiuie	meenumeur uumuge, non-			l	1

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	mechanism	ohmic contacts, step coverage,				
		weak adhesion, improper				
		thickness, corrosion,				
		migration stress				
24	How to represent	Implant is represented using	Remember	CO 3	CLO 11	AEC017.11
	implant?	yellow color dotted lines. It is				
		drawn in the middle of the				
		nMOS or pMOS where ever				
		the implant is used.		GO 0	GL 0.10	
25	Define electrical	When two or more sticks	Remember	CO 3	CLO 10	AEC017.10
	diagram?	touch each other then that				
	diagram.	forms a contact called	-	-		
	~	electrical contact.				
26	What is the	Interconnect increases circuit	Remember	CO 3	CLO 12	AEC017.12
	effect of	delay for two reasons. First,			_	
	Interconnect on	the wire capacitance adds				
	MOS devices ?	loading to each gate. Second,				
		long wires have significant				
		distributed RC delay or flight				
		time, wire delay grows				
		quadratically with length.				
27	Define crosstalk	wires have	Understand	CO 3	CLO 12	AEC017.12
	effect of wir <mark>es</mark> ?	capacitance to their				
		adjacent neighbors as				
		well as to ground.				
		when wire A				
		switches, it tends to				
		bring its neighbor B				
	5	along with it on				100
		account of				-
	0	capacitive coupling,		-7	- C	
	D.C. I.C.	also called <i>crosstalk</i> .	-	00.0	GY 0 10	15001510
28	Define infant	Chip failures that are caused	Remember	CO 3	CL0 13	AEC017.13
	monanty?	by a variety of fabrication				
		flaws that create marginal		1.1	100	
	· · · · ·	structures such as thin wires or		0		
		malformed transistors.		67		
20	Define	This metric defines the mean	0	CO 3		AEC017 13
29	mean time	time to the next occurrence of	Remember	05	CLO 13	ALC017.15
	to failure	a given failure mechanism.	1			
	(MTTF).	Based on MTTF, we can				
		determine other interesting				
		metrics, such as lifetime .				
30	Define diffusion	Crystal defects, impurity	Remember	CO 3	CLO 13	AEC017.12
	and junctions	precipitation, mask				
		misalignment, surface				
		contamination.				
21	Define	Failure that occurs due to		CO^{3}		AEC017 12
51	passivation	Pinholes and cracks thickness	Understand	005	CLO 13	ALC017.13
	failure ?	variations, contamination.				
		surface inversion				
32	Define Time-	TDDB Time-dependent	Understand	CO 3	CI O 13	AEC017.13
	dependent	dielectric breakdown	Understallu		CLU 15	

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	dielectric	occurs because the electric				
	breakdown	fields across gate oxides				
		induce stresses that				
		damage the oxide.				
33	Define hot	It is a carrier that gains enough	Remember	CO 3	CLO 13	AEC017.13
	carrier	energy to jump from the				
		silicon substrate into the gate				
		oxide. As these hot carriers				
		accumulate, they create a				
		space charge in the oxide that				
		affects the transistor's				
		neremeters				
24	Dofino Nogotivo	f_{a}		CO 3	CL 0 13	AEC017 13
54	bias temperature	pMOS devices due to stress	Remember	05	CLU 15	AEC017.15
	instability	that introduces interface states				
	mstability	and space charge				
35	Define failu <mark>re</mark>	It is due to Mobile ions	Remember	CO 3	CLO 13	AEC017 13
55	mechanism	pinholes, interface states, hot	remember	005		11120017.113
	occurs in	carriers, time dependent				
	oxides?	dielectric breakdown.				
36	Define	Electrons drifting through the	Understand	CO 3	CLO 13	AEC017.13
	Electromigration	voltage gradient on a metal				
		line collide with the metal				
		grains. Under high currents,				
		electron collisions with metal				
		grains cause the metal to				
		move; this process is called				
		metal migration (also known				
27	D	as electromigration).	D	00.2	CL 0 12	AEC017.12
57	Define stress	Stress migration is caused by	Remember	0.03	CLO IS	AEC017.15
	Inigration	occur even when no current				
	C	flows through the wire These				C
	0	stresses are caused by the				
		different thermal expansion			· · · ·	e
	6	coefficients of the wires and			~	
		the materials in which they			· · · ·	
	0	reside				
38	Define soft	Soft errors cause memory cells	Understand	CO 3	CLO 13	AEC017.13
	errors in VLSI	to change state. Soft errors can			S	
		be caused by alpha particles		6.7		
		that generate excess carriers as		~		
		they travel through the				
20	Define Latel and	substrate.	Demousher	CO 2	$CI \cap 12$	AEC017.12
39	in CMOS 2	Laten-up is a condition in	Remember	0.5	CLO 15	AEC017.15
		components give rise to the				
		establishment of low				
		resistance conducting paths				
		between V_{DD} and V_{sc}				
40	Define via	It is the contact between metal	Remember	CO 3	CLO 11	AEC017.11
	contact?	1 and metal 2.				
		UNIT-IV	7			
1	What is static	Static CMOS logic is a	Remember	CO 4	CLO 19	AEC017.19
	CMOS logic?	combination of two networks				
		,Pull up Network using PMOS				
		transistors and Pull down				
		network using NMOS				
		transistors. They are dual with				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		each other.At any time ,any				
		one of the network is on		~~ (CT 0 10	
2	What is dynamic	Dynamic circuits reduce the	Understand	CO 4	CLO 19	AEC017.19
	CMOS logic?	drawbacks of ratioed circuits				
		using a clock input to the pull				
		requires N+2 transistors and				
		there are two modes of				
		operation ,Pre-charge and				
		Evaluation				
3	What are the	•Consume significant	Remember	CO 4	CLO 19	AEC017.19
	disadvantages of	dynamic power				
	dynamic logic?	•Sensitive to noise during				
		evaluation				
	C	Carefull clocking				
		 Monotonicity problem 				
4	Why domin <mark>o</mark>	In dynamic logic ,there is	Understand	CO 4	CLO 19	AEC017.19
	logic is preferred	cascading problem. This				
	over dynamic	can be solved by placing a				
	logic?	static – CMOS inverter				
		between dynamic gates.				
		together is called domino				
		logic				
5	Define	The propagation delay	Remember	CO 4	CLO 15	AEC017.15
	propagation	is the time taken to				
	delay	change the output after				
		applying the input. This				
		is the upper bound on				
		interval between valid				
		inputs and valid				
6	What is the	Static dissipation is due to sub	Understand	CO 4	CL O 19	AEC017 19
0	cause of static	threshold conduction through	Onderstand	004	CLO I)	ALCOITI
	power	off transistor.				
	dissipation?	Constitution of the second second			~	
7	State any two	The low power can be	Remember	CO 4	CLO 21	AEC017.21
	criteria for low	achieved by lowering the	1		- C	
	power logic	effective capacitance. The non			100	
	design	active modules can be made to		28	h	
	1	stand by mode to reduce the		S. 1		
8	What is	Transmission gate is	Understand	CO 4	CLO 14	AEC017 14
0	transmission	constructed by combining an	Chaerstand	004		71LC017.14
	gate?	NMOS transistor and PMOS	-			
	0	transistor in parallel. It acts as				
		a switch that turns on when a				
		'1' is applied to the gate 'A'.				
		When A=1,'0'and '1'can be				
0	What is pass	This type of last	Domomhan	CO 4		AEC017 14
9	transistor logic?	NMOS transistors alone In	Remember	CO 4	CLO 14	AEC017.14
	transistor logic:	this gate is driven by a				
		control signal .the source (out				
), the drain of the transistor is				
		called constant or variable				
		voltage potential (in) when the				
		control signal is high, the				
		input is passed to the output				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		and when the control signal is				
		low, the output is floating				
		such topology circuit is called				
		pass transistor.		~~ (~ ~ ~ ~	
10	Why single	In cascading problem arises	Understand	CO 4	CLO 19	AEC017.19
	phase dynamic	because the output of each gate				
	logic structure	are pre-charged to 1 and due				
	cannot be	to this some charge will be				
	Lustify	loss and leads to reduced noise				
	Justify	margin and potential				
		malfunctioning				
11	Write the design	Standard cell design	Remember	CO 4	CLO 17	AEC017.17
	style	Gate array design :	-	-		
	classification of	Channelled Gate Array				
	Semi custom	Channel less Gate				
	design ASICs	Array				
12	Write the design	PLDs, FPGA	Understand	CO 4	CLO 17	AEC017.17
	style					
	classification of					
	Programmable					
12	ASICs		Dent	CO 4	CI O 17	AEC017.17
15	types of A SICs?	Semi custom ASICs	Remember	CO 4		AEC017.17
14	What are the	Programming Techniques of	Understand	CO 4	CL 0 17	AFC017 17
14	different types	PAL are	Onderstand	004		ALCOIV.IV
	of programming	1. Fusible Links				
	structure	programming				
	available in	2. UV-Erasable				
	PAL?	EPROM				
		programming				
		3. EEPROM				
	0	programming				100
15	What are the	All mask layers are	Remember	CO 4	CLO 17	AEC017.17
	features of	customized- transistors and		_		2
	A SICo2	hlocks can be embedded		- C		
	ASICS?	Manufacturing lead time is		× .	A	
	0	about eight weeks				
16	Define Total	It is defined as the sum of area	Understand	CO 4	CLO 15	AEC017 15
10	wire	capacitance and fringing field	Chaeistana	001	CLO IS	1112011115
	capacitance?	capacitance.		27		
17	How the	Interlayer capacitance occurs	Understand	CO 4	CLO 15	AEC017.15
	Interlayer	due to parallel plate effect		1		
	capacitance	between one layer and				
	occurs	another. When one				
		capacitance value comes				
		closer to another they create				
10	***	some combined effects.		GO 4	GY 0 15	
18	What are the	• None of the mask	Remember	CO 4	CLO I7	AEC017.17
	EDC A 2	layers are				
	TTUA!	customized.				
		• .A method for				
		basic logic cells and				
		the interconnect				
		• This is used to				
		implement				
		combinational as				
		well as sequential				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		logic (flip-flops).				
19	What is	A programmable logic array	Understand	CO 4	CLO 17	AEC017.17
	programmable	(PLA) is a programmable				
	logic array?	device used to implement				
		combinational logic circuits.				
		The PLA has a set of				
		programmable AND planes,				
		which link to a set of				
20	What is mean by	The Programmable logic planes.	Domomhor	CO 4	CLO 17	AEC017.17
20	Programmable	is programmable read only	Remember	CO 4	CLU I/	AEC017.17
	logic plane?	memory (PROM) array that				
	logie plane.	allows the signals present on				
		the devices pins (or the				
	-	logical components of those				
		signals) to be routed to an		\sim		
		output logic macro cell				
21	How the switch	Switch logic is designed using	Understand	CO 4	CLO 14	AEC017.14
	logic is	n or p pass transistors or from				
	designed?	complementary switches.				
22	List the steps in	Design entry. Enter the design	Understand	CO 4	CLO 17	AEC017.17
	ASIC design	into an ASIC design system,				
	flow	either using a hardware				
		description language (HDL) or				
		schematic entry.				
		Logic synthesis. Use an HDL				
		(VHDL or Verilog) and a logic				
		synthesis tool to produce a net				
23	Dofino Fall time	$\begin{array}{c} \text{IISL} \\ \text{Fall time } \tau f \text{ is the time taken} \end{array}$	Pamamhar	CO 4	CLO 15	AEC017 15
23	Denne Pan unie	for a waveform to fall from	Kemember	04	CLO 15	ALC017.15
		90% to 10% of its steady state				
		value.				100
24	Define Delay	Delay time, τd is the time	Understand	CO 4	CLO 15	AEC017.15
	time	difference between input			- C	
	1	transition (50%) and the				
	0	50% output level. This is the				
	0	time taken for a logic				
		transition to pass from input to			Sec. 1	
		output.		~~ · ·	AT A 4 A	
25	What are two	These are:	Remember	CO 4	CLO 19	AEC017.19
	components of	1) Static dissipation due to	-	Sec. 1		
	power dissinction?	leakage current or other				
	uissipation?	from the power supply				
		ii) Dynamic dissination due to				
		- Switching transient current -				
		Charging and discharging of				
		load capacitances.				
26	What is the full	In a full custom ASIC, an	Understand	CO 4	CLO 17	AEC017.17
	custom ASIC	engineer designs some or all of				
	design?	the logic cells, circuits or				
		layout specifically for one				
L		ASIC.				
27	What is the	A cell-based ASIC (CBIC)	Understand	CO 4	CLO 17	AEC017.1
	standard cell-	uses predesigned logic cells				
	dosign?	ASIC designer defines or la				
	uesign:	the placement of standard calls				
		and the interconnect in a				
L	I	and the interconnect in a	1			

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		CBIC. All the mask layers of a				
		CBIC are customized and are				
		unique to a particular				
29	Differentiate	customer.	I lu de note u d	<u> </u>	CL 0 17	AEC017 17
28	batwaan	In Channeled Gate Array only	Understand	CO 4	CL0 17	AEC017.17
	channeled &	but in channelless Gate Array				
	channel less gate	only the top few mask layers				
	array.	customized.				
29	Give the	2V10 I/O cell consists of a	Remember	CO 4	CLO 17	AEC017.17
	constituent of	register ,output 4:1 mux, a tri-				
	I/O cell in	state buffer,a 2:1 input mux.				
	22V10.					
30	What are the	The programming of PALs is	Understand	CO 4	CLO 17	AEC017.17
	different	done in three main		<u> </u>		
	programming of	ways: • Fusible links • $UV =$				
	PALs?	• EEPROM (E2PROM) -				
	111113.	Electrically Erasable				
		Programmable ROM				
31	What are	In a PAL, the device is	Understand	CO 4	CLO 17	AEC017.17
	Programmable	programmed by changing the				
	Interconnects ?	characteristics if the				
		switching element. An				
		alternative would be to				
32	What is the	The switch logic approach	Understand	CO 4	CLO 14	AEC017 14
32	advantage of	takes no static current from the	Understand	CU 4	CLO 14	AEC017.14
	switch logic?	supply rails and is faster for				
	switch logie.	small arrays.				
33	Define Gate	Gate logic is also called as	Understand	CO 4	CLO 14	AEC017.14
	logic?	restoring logic. This is a logic				
	5	circuitry designed so that even				-
	-	with an imperfect input pulse a				
		standard output occurs at the		-	- C	2
	6	exit of each successive logic				
34	What is the pull	For a pseudo nMOS design	Understand	CO 4	CLO 14	AFC017 14
51	up and pull	the ratio of Zp.u. and Zp.d. is	Childerstand	001	CLO II	ALLCOI /
	down impedance	3:1.			100	
	ratio is pseudo			Q	S	
	nMOS design ?	1		62		
35	In which region	In Pseudo-nMOS logic, n	Understand	CO 4	CLO 14	AEC017.14
	Pseudo-nMOS	transistor operates in saturation				
	logic operates?	region and p transistor				
36	What are the	Some of the features of switch	Understand	CO 4	CL O 14	AFC017 14
50	features of	logic approach are that it	Childerstand	004	CL0 14	7120017.14
	switch logic	occupies more area, eliminates				
	approach	undesirable threshold voltage				
	-	and has low power dissipation.				
37	Which	The sources of capacitances	Remember	$CO\overline{4}$	CLO 15	AEC017.15
	contribute to the	which contribute to the total				
	wiring	wiring capacitance are fringing				
	capacitance?	neid capacitance, interlayer				
		capacitance and peripheral				
38	Which	Metal to polysilicon	Remember	CO 4	CLO 15	AEC017 15
50	capacitance must	capacitance should be higher		CO T		
	be higher?	than metal to substrate				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		capacitance. This is due to that				
		when one layer underlies the				
		other and inconsequence				
		dependent on layout				
UNIT.	-V	dependent on layout.				
1	What is	A parallel adder is an	Remember	CO5	CLO 19	AEC017.19
	parallel adder?	arithmetic combinational				
	-	logic circuit that is used to				
		add more than one bit of data				
	XX 71	simultaneously.	TT 1 1	005	CT 0 10	45001510
2	What is	The memory cell is an	Understand	005	CLO 19	AEC017.19
	memory cen?	one bit of binary information		-		
	-	and it must be set to store a	1.1			
		logic 1 (high voltage level)		\sim		
		and reset to store a logic 0				
		(low voltage level). Its value				
		is maintained/stored until it is				
		changed by the set/reset				
3	What is ROM?	ROM is a type of memory	Remember	CO5	CLO 19	AEC017 19
5		that normally can only be	remember	005		7112017.17
		read, as opposed to RAM				
		which can be both read and				
		written		<i><i>a</i> a</i> <i>a</i>	ST 0 10	
4	What is	This is a type of ROM that	Understand	CO5	CLO 19	AEC017.19
	PROM?	can be programmed using				
		written to but only once				
5	What is	An asynchronous DRAM	Remember	CO5	CLO 19	AEC017.19
	Synchronous	chip has power connections,				
	DRAM?	some number of address		_		
	-	inputs (typically 12), and a				
		few (typically one or four)		-		2
6	What is	An asynchronous DRAM	Remember	C05	CLO 20	AFC017 20
0	Synchronous	chip has power connections.	Remember	005	CLO 20	71LC017.20
	DRAM?	some number of address			- · · ·	
	-2	inputs (typically 12), and a		~		
		few (typically one or four)		28		
	W/h at is set	bidirectional data lines.	I Indonetica 1	COF		AEC017.21
/	what is meant	adder that is capable of	Understand	COS	CLU 21	AEC017.21
	adder?	adding two 4-hit words	1 1 1 1			
		having a BCD (binary-coded	· · · · · ·			
		decimal) format				
8	Where is BCD	Binary-coded Decimal or	Remember	CO5	CLO 21	AEC017.21
	used?	BCD is a way of representing				
		a decimal number as a string				
		electronic systems				
9	What is a 4 bit	a combinational circuit which	Remember	CO5	CLO 21	AEC017 21
Í	parallel adder?	is used to add two N-bit		2.55	22021	
	· · · · · ·	binary numbers				
10	What is a in	A binary code represents	Understand	CO5	CLO 21	AEC017.21
	binary code?	text, computer processor				
		instructions, or any other data				
		using a two-symbol system.				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
11	What is fast	A carry-lookahead adder	Remember	CO5	CLO 20	AEC017.20
	adder?	(CLA) or fast adder is a type				
		of adder used in digital logic.				
12	What are	A Universal shift register is a	Understand	CO5	CLO 20	AEC017.20
	universal shift	register which has both the	Charistand	000	020 20	11120017120
	registers?	right shift and left				
	registers.	shift with parallel load				
		canabilities Universal shift				
		registers are used as memory				
		elements in computers				
13	What is the	Both shift registers and	Understand	CO5	CLO 20	AFC017 20
15	difference	counters are made of flin-	Onderstand	005	CLO 20	71LC017.20
	between	flops A shift register is				
	register and	simply a chain of EEs where				
	shift register?	the O output of one EE				
	shift register:	connects to the D input of the				
		post A shift register will				
		transfer data from one FE to				
		the next on each clock event				
14	What is a	A dynamic shift register	Remember	COS	CL O 20	AEC017.20
14	dynamic shift	circuit comprises an input	Kemember	005		ALCOI7.20
	rogistor?	terminal and an output				
	register !	terminal The logic circuit is				
		made operative by an output				
		signal of the signal follower				
		signal of the signal follower				
		inverter function at the output				
		terminal in response to an				
		output signal of the second				
		transfer gate circuit				
15	Dofino	Sequential circuit has	Understand	COS	CLO 21	AEC017 21
15	Sequential	memory as output can yerry	Understand	COS	CL0 21	AEC017.21
	sequential	has d on input. This type of				
	circuits.	sirguita usos provious input				C
		output clock and a mamory				
		element			- N	2
16	What is	An EPROM is a ROM that	Remember	COS	CLO 21	AEC017 21
10	FPROM?	can be erased and	Kememoer	005	CLO 21	ALC017.21
		reprogrammed				
17	What is	Electrically Eroschle	Understand	COS	CL O 22	AEC017 22
17	What is	Programmable POM	Understand	COS	CLO 22	AEC017.22
10	EEF KOWI :	Programmia rendem eccess	Domombon	COS	CLO 22	AEC017.22
10	DRAM9	memory	Kemember	COS	CLU 22	AEC017.22
10	DIAM:	A decoder is a aircuit that	Domomhor	C05	CLO 22	AEC017 22
19	decodor	changes a code into a set of	Kemennber	COS	CLU 22	AEC017.22
	uecouer.	signals. It is called a decoder				
		because it does the reverse of				
		anading but we will begin				
		our study of oncoders and				
		doordars with doordars				
		because they are simpler to				
		design				
20	Dofina an	The poutput lines second	Underster 1	COF	CLO 21	AEC017.21
20	Denne an	the binery code for the	Understand	005	CLU 21	AEC017.21
	encouer.	ne officiary code for the				
		possible 2n input lines. Let us				
		take an example of an octal-				
1	Define mit	Dinomy Error Jam	Und-ante 1	COF	CLO 21	AEC017.21
21	Define priority	binary Encoders generally	Understand	CUS	CLU 21	AEC017.21
	encoder.	nave a number of inputs that				
1		must be mutually exclusive,				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
	-	i.e. only one of the inputs can				
		be active at any one time.				
		The encoder then produces a				
		binary code on the output				
		pins, which changes in				
		response to the input that has				
	D.C. 1.10	been activated.	XX 1 1	005	GL 0.01	1001201
22	Define half	Half adder is a combinational	Understand	CO5	CLO 21	AEC017.21
	adder.	circuit, which performs the				
		addition of two binary				
		single bit. It produces two				
		outputs sum S & carry C				
23	What is binary	The most basic arithmetic	Understand	COS	CL O 19	AEC017 19
25	adder?	operation is addition The	Onderstand	005	CLO I)	ALCOIT.IT
	adder .	circuit which performs the				
		addition of two binary				
		numbers, is known as Binary				
		adder.				
24	Define full	Full adder is a combinational	Understand	CO5	CLO 19	AEC017.19
	adder.	circuit, which performs the				
		addition of three				
		bits A, B and Cin. Where, A				
		& B are the two parallel				
		significant bits and Cin is the				
		carry bit, which is generated				
		from previous stage.				
25	Define	Multiplexer is a	Understand	CO5	CLO 19	AEC017.19
	multiplexer.	combinational circuit that has				
		maximum of 2 ⁿ data inputs,				
		'n' selection lines and single				
		output line. One of these data				
		inputs will be connected to				C
		the output based on the				
		values of selection lines.			CT C 10	
26	Define	De-Multiplexer is a	Remember	CO5	CLO 19	AEC017.19
	Demultiplexer	combinational circuit that			~	
		performs the reverse				
		bas single input 'n' selection			10	
		has single input, it selection		_ Q	S	
		lines and maximum of 2"		0.7		
		outputs. The input will be	0	~		
		connected to one of these				
		of selection lines				
27	Define	Digital Comparator A	Remember	COS	CLO 20	AEC017.20
27	comparator	magnitude digital comparator	Remember	005	CLO 20	71120017.20
	computation.	is a combinational circuit that				
		compares two digital or				
		binary numbers (consider A				
		and B) and determines their				
		relative magnitudes in order				
		to find out whether one				
		number is equal, less than or				
		greater than the other digital				
		number.		<i>a</i> : -		
28	What is code	Codes and code converters	Understand	CO5	CLO 21	AEC017.21
	converter?	Coding is the process of				
		translating the input				

S.No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		information which can be understandable by the machine or a particular device. Coding can be used for security purpose to protect the information from steeling or interrupting.				
29	What is parallel adder?	A parallel adder is an arithmetic combinational logic circuit that is used to add more than one bit of data simultaneously.	Remember	CO5	CLO 21	AEC017.21
30	What is one- to-one mapping?	each input code word produces a different output code word	Remember	CO5	CLO 21	AEC017.21
31	What is binary decoder?	has an n-bit binary input code and a 1-out-of-2n output code	Understand	CO5	CLO 22	AEC017.22
32	What is binary encoder?	If the device's output code has fewer bits than the input code, the device is usually called an encoder	Remember	CO5	CLO 22	AEC017.22
33	What is multiplexer?	a digital switch—it connects data from one of n sources to its output	Remember	CO5	CLO 22	AEC017.22
34	What is comparator?	A circuit that compares two binary words and indicates whether they are equal is called a comparator	Understand	CO5	CLO 21	AEC017.21
35	What is ALU?	arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and logic operations	Remember	CO5	CLO 21	AEC017.21
36	What is Barrel shifter?	A barrel shifter is a digital circuit that can shift a data word by a specified number of bits without the use of any sequential logic, only pure combinational logic	Remember	CO5	CLO 19	AEC017.19
37	What is a counter?	Counts those pulses which are driven by a clock.	Understand	CO5	CLO 19	AEC017.19
38	What are the categories Counters?	(i) Asynchronous and Synchronous counters. (ii) Single and multi mode counters. (iii) Modulus counters.	Remember	CO5	CLO 19	AEC017.19
39	What is a multimode counter?	If the same counter circuit can be operated in both the UP and DOWN modes, it is called a multimode counters.	Remember	CO5	CLO 20	AEC017.20
40	What is a asynchronous counters?	Each flip flop is triggered by the previous flip flop.	Understand	CO5	CLO 22	AEC017.22

Signature of the Faculty

Signature of HOD