

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous) Dundigal, Hyderabad - 500 043

# **ELECTRICAL AND ELECTRONICS ENGINEERING**

## DEFINITIONS AND TERMINOLOGY QUESTION BANK

| Course Name    |   | : | LINEAR ALGEBRA AND CALCULUS            |
|----------------|---|---|----------------------------------------|
| Course Code    |   | : | AHSB02                                 |
| Program        |   | : | B.Tech                                 |
| Semester       |   | : | I                                      |
| Branch         | 1 | : | Electrical and Electronics Engineering |
| Section        |   | : | A & B                                  |
| Course Faculty | - | : | Ms. P Rajani, Assistant Professor      |

#### **COURSE OBJECTIVES:**

| The cours | The course should enable the students to:                                                            |  |  |  |  |  |
|-----------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Ι         | Determine rank of a matrix and solve linear differential equations of second order.                  |  |  |  |  |  |
| II        | Determine the characteristic roots and apply double integrals to evaluate area.                      |  |  |  |  |  |
| III       | Apply mean value theorems and apply triple integrals to evaluate volume.                             |  |  |  |  |  |
| IV        | Determine the functional dependence and extremum value of a function                                 |  |  |  |  |  |
| V         | Analyze gradient, divergence, curl and evaluate line, surface, volume integrals over a vector field. |  |  |  |  |  |

## DEFINITIONS AND TERMINOLOGY QUESTION BANK

| S. No | QUESTION                                | ANSWER                                                                                                                                                                                                                                                                                                   | <b>Blooms Level</b> | СО   | CLO   | CLO Code  |
|-------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|-----------|
|       |                                         | MODULE                                                                                                                                                                                                                                                                                                   | E-I                 |      |       |           |
| 1     | Define matrix.                          | A matrix is a rectangular array<br>of numbers or other<br>mathematical objects for which<br>operations such as addition and<br>multiplication are defined. For<br>instance, this is a real matrix:<br>The numbers, symbols or<br>expressions in the matrix<br>are called its entries or its<br>elements. | Understand          | CO 1 | CLO 1 | AHSB02.01 |
| 2     | Define<br>symmetric<br>matrix.          | A square matrix is called<br>symmetric if it is equal to its<br>transpose.                                                                                                                                                                                                                               | Remember            | CO 1 | CLO 1 | AHSB02.01 |
| 3     | Define is skew-<br>symmetric<br>matrix. | A square matrix is called<br>symmetric if it is equal to<br>negative its transpose.                                                                                                                                                                                                                      | Remember            | CO 1 | CLO 1 | AHSB02.01 |
| 4     | Define hermitian<br>matrix.             | In mathematics, a Hermitian<br>matrix (or self-adjointmatrix) is<br>a complex square matrix that is<br>equal to its own conjugate<br>transpose                                                                                                                                                           | Remember            | CO 1 | CLO 1 | AHSB02.01 |

| S. No | QUESTION                                                                         | ANSWER                                                                                                                                                                                                                                                                                                                                     | <b>Blooms Level</b> | СО   | CLO   | CLO Code  |
|-------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------|-----------|
| 5     | Define skew<br>Hermitian matrix                                                  | A square matrix with complex<br>entries is said to be skew-<br>Hermitian if its conjugate<br>transpose is the negative of the<br>original matrix.                                                                                                                                                                                          | Remember            | CO 1 | CLO 1 | AHSB02.01 |
| 6     | When a matrix is<br>said to be<br>nilpotent?                                     | If A is a square matrix such that $A^m=0$ where m is a positive integer, then A is called nilpotent                                                                                                                                                                                                                                        | Remember            | CO 1 | CLO1  | AHSB02.01 |
| 7     | What is<br>differential<br>equation?                                             | A differential equation is an<br>equation that contains<br>derivatives which are either<br>partial derivatives or ordinary<br>derivatives. The derivatives<br>represent a rate of change, and<br>the differential equation<br>describes a relationship between<br>the quantity that is continuously<br>varying and the speed of<br>change. | Remember            | CO 1 | CLO 4 | AHSB02.04 |
| 8     | What are types of differential equations?                                        | The types of differential<br>equations are 1. An ordinary<br>differential equation<br>2. partial differential equation                                                                                                                                                                                                                     | Remember            | CO 1 | CLO 4 | AHSB02.04 |
| 9     | Mention any two<br>applications of<br>differential<br>equation.                  | <ol> <li>Differential equations<br/>describe various exponential<br/>growths and decays.</li> <li>They are also used to<br/>describe the change in<br/>investment return over time.</li> </ol>                                                                                                                                             | Remember            | CO 1 | CLO 4 | AHSB02.04 |
| 10    | Define order of differential equation.                                           | The order is the highest<br>numbered derivative in<br>the equation,                                                                                                                                                                                                                                                                        | Remember            | CO 1 | CLO 4 | AHSB02.04 |
| 11    | Define degree of differential equation.                                          | The degree is the highest<br>power to which a derivative<br>is raised.                                                                                                                                                                                                                                                                     | Remember            | CO 1 | CLO 4 | AHSB02.04 |
| 12    | What is general<br>solution of higher<br>order differential<br>equation contains | General solution contains<br>complementary function and<br>particular integral.                                                                                                                                                                                                                                                            | Remember            | CO 1 | CLO 4 | AHSB02.04 |
| 13    | When a<br>differential<br>equation is said<br>to be linear?                      | If degree of differential equation<br>is one then it is linear.                                                                                                                                                                                                                                                                            | Understand          | CO 1 | CLO 4 | AHSB02.04 |
| 14    | What is non-<br>linear differential<br>equation?                                 | If degree of differential equation<br>is greater than one it is linear.                                                                                                                                                                                                                                                                    | Remember            | CO 1 | CLO 1 | AHSB02.01 |
| 15    | What is<br>differential<br>equation?                                             | A differential equation is an<br>equation that contains derivatives<br>which are either partial<br>derivatives or ordinary<br>derivatives. The derivatives<br>represent a rate of change, and<br>the differential equation describes<br>a relationship between the<br>quantity that is continuously<br>varying and the speed of change.    | Remember            | CO 1 | CLO 1 | AHSB02.01 |

| S. No | QUESTION                                                             | ANSWER                                                                                                                                                                                                                                                                                                                                                   | Blooms Level | CO   | CLO    | CLO Code  |
|-------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|--------|-----------|
|       |                                                                      | MODULE                                                                                                                                                                                                                                                                                                                                                   | -II          |      |        |           |
| 1     | What is Eigen value?                                                 | Any number such that a given<br>matrix minus that number times<br>the identity matrix has zero<br>determinants.                                                                                                                                                                                                                                          | Remember     | CO 2 | CLO 10 | AHSB02.10 |
| 2     | What is Eigen vector?                                                | a vector which when operated<br>on by a given operator gives a<br>scalar multiple of itself.                                                                                                                                                                                                                                                             | Remember     | CO 2 | CLO 10 | AHSB02.10 |
| 3     | Define Algebraic<br>multiplicity of a<br>characteristic<br>roots.    | It is number of times an Eigen value is repeated.                                                                                                                                                                                                                                                                                                        | Understand   | CO 2 | CLO 10 | AHSB02.10 |
| 4     | Define<br>Geometric<br>multiplicity of a<br>characteristic<br>roots. | It is number of linearly<br>independent characteristic<br>vector corresponding to the<br>characteristic root.                                                                                                                                                                                                                                            | Understand   | CO 2 | CLO 10 | AHSB02.10 |
| 5     | Define<br>Orthogonal<br>matrix.                                      | a matrix Q is orthogonal if its<br>transpose is equal to its inverse                                                                                                                                                                                                                                                                                     | Understand   | CO 2 | CLO 10 | AHSB02.10 |
| 6     | When two<br>matrices A and B<br>are said to<br>orthogonal?           | If B=P <sup>-1</sup> AP where P is orthogonal matrix.                                                                                                                                                                                                                                                                                                    | Remember     | CO 2 | CLO 11 | AHSB02.11 |
| 7     | State Cayley<br>Hamilton<br>theorem?                                 | It states that every square matrix<br>satisfies its own characteristic<br>equation.                                                                                                                                                                                                                                                                      | Remember     | CO 2 | CLO 11 | AHSB02.11 |
| 8     | What is integral?                                                    | Given a function $f(x)$ that is<br>continuous on the interval [a,<br>b] we divide the interval into n<br>subintervals of equal width, $\Delta x$ ,<br>and from each interval choose a<br>point, x*i. Then the definite<br>integral<br>of $f(x)f(x)$ from a to bb is<br>$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$ | Remember     | CO 2 | CLO 11 | AHSB02.14 |
| 9     | What are double integrals?                                           | The multiple integral is a definite integral of a function of more than one real variable, for example, $f(x, y)$ or $f(x, y, z)$ . Integrals of a function of two variables over a region in $R^2$ are called double integrals.                                                                                                                         | Remember     | CO 2 | CLO 11 | AHSB02.14 |
| 10    | What are types of integrals?                                         | Types of integrals are 1.<br>Definite 2. Indefinite integrals.                                                                                                                                                                                                                                                                                           | Remember     | CO 2 | CLO 14 | AHSB02.14 |
| 11    | What are definite integrals?                                         | A definite integral is an integral<br>$\int_{a}^{b} f(x) dx$ with upper and lower<br>limits. If $x$ is restricted to lie on the real<br>line.                                                                                                                                                                                                            | Remember     | CO 2 | CLO 14 | AHSB02.14 |
| 12    | What are<br>indefinite<br>integrals?                                 | an integral expressed without<br>limits, and so containing an<br>arbitrary constant.                                                                                                                                                                                                                                                                     | Remember     | CO 2 | CLO 10 | AHSB02.10 |

| S. No | QUESTION                           | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Blooms Level</b> | CO       | CLO              | CLO Code               |
|-------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|------------------|------------------------|
| 13    | How to calculate                   | The area of a closed,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remember            | CO 2     | CLO 10           | AHSB02.10              |
|       | area using double                  | bounded plane region R is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          |                  |                        |
|       | integral?                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |          |                  |                        |
|       |                                    | defined as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |          |                  |                        |
|       |                                    | $A = \iint_{B} dA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |                  |                        |
| 1.4   | XX 71 . 1 1 1 1                    | JJK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>D</b> 1          | <u> </u> | CT 0 10          |                        |
| 14    | What is double integral over a     | Double Integrals over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Remember            | CO 2     | CLO 12           | AHSB02.12              |
|       | rectangle?                         | Rectangles. Recognize when a function of two variables is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          |                  |                        |
|       | 8                                  | integral over a rectangular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |          |                  |                        |
|       |                                    | region Use a double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |          |                  |                        |
|       |                                    | integral to calculate the area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |          |                  |                        |
|       |                                    | of a region, volume under a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\cap$              | -        |                  |                        |
|       |                                    | surface, or average value of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |          |                  |                        |
|       |                                    | function over a plane region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          |                  |                        |
| 15    | How do you find                    | The area under a curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remember            | CO 2     | CLO 12           | AHSB02.12              |
|       | area between two<br>curve?         | between two points can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          |                  |                        |
|       | curve?                             | found by doing a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |          |                  |                        |
|       |                                    | definite integral between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |          |                  |                        |
|       |                                    | two points. To find the area<br>under the curve $y = f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |          |                  |                        |
|       |                                    | between $x = a$ and $x = b$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |          |                  |                        |
|       |                                    | integrate $y = f(x)$ between the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |          |                  |                        |
|       |                                    | limits of a and b. Areas under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |          |                  |                        |
|       |                                    | the x-axis will come out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |          |                  |                        |
|       |                                    | negative and areas above the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          |                  |                        |
|       |                                    | x-axis will be positive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | _        |                  |                        |
|       |                                    | MODULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·III                |          |                  |                        |
| 1     | When a function                    | In other words, a function f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Understand          | CO 3     | CLO 15           | AHSB02.15              |
| 1     | is continuous?                     | In other words, a function f is continuous at a point $x=a$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chierstand          | 05       | CLU 15           | 7115002.15             |
|       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |          |                  |                        |
|       |                                    | when (i) the function f is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |          |                  | S                      |
|       |                                    | when (i) the function f is defined at a. (ii) the limit of f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          | 1                |                        |
|       |                                    | defined at a, (ii) the limit of f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 7        | 12               |                        |
|       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | 7        | 171              |                        |
|       |                                    | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |          | 471              |                        |
|       |                                    | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |          | 11/10/           |                        |
|       | CA                                 | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |          |                  |                        |
| 2     | When a function                    | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Remember            | CO 3     | CLO 15           | AHSB02.15              |
| 2     | When a function is differentiable? | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a                                                                                                                                                                                                                                                                                                                                                                                                                        | Remember            | CO 3     | CLO 15           | AHSB02.15              |
| 2     |                                    | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that                                                                                                                                                                                                                                                                                                                                                                                          | Remember            | CO 3     | CLO 15           | AHSB02.15              |
| 2     |                                    | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the                                                                                                                                                                                                                                                                                                                                                            | Remember            | CO 3     | CLO 15           | AHSB02.15              |
| 2     |                                    | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the<br>slope of the tangent line of                                                                                                                                                                                                                                                                                                                            | Remember            | CO 3     | CLO 15           | AHSB02.15              |
| 2     |                                    | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the                                                                                                                                                                                                                                                                                                                                                            | Remember            | CO 3     | CLO 15           | AHSB02.15              |
| 2     |                                    | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the<br>slope of the tangent line of<br>the points from the left is<br>approaching the same value<br>as the slope of the tangent of                                                                                                                                                                                                                             | Remember            | CO 3     | CLO 15           | AHSB02.15              |
|       | is differentiable?                 | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the<br>slope of the tangent line of<br>the points from the left is<br>approaching the same value<br>as the slope of the tangent of<br>the points from the right.                                                                                                                                                                                               |                     |          |                  |                        |
| 2     | is differentiable?<br>State Rolles | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to $f(a)$ .<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the<br>slope of the tangent line of<br>the points from the left is<br>approaching the same value<br>as the slope of the tangent of<br>the points from the right.<br>If a function <i>f</i> is defined on the                                                                                                                                                | Remember            | CO 3     | CLO 15<br>CLO 15 | AHSB02.15<br>AHSB02.15 |
|       | is differentiable?                 | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to $f(a)$ .<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the<br>slope of the tangent line of<br>the points from the left is<br>approaching the same value<br>as the slope of the tangent of<br>the points from the right.<br>If a function <i>f</i> is defined on the<br>closed interval [a,b] satisfying                                                                                                            |                     |          |                  |                        |
|       | is differentiable?<br>State Rolles | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the<br>slope of the tangent line of<br>the points from the left is<br>approaching the same value<br>as the slope of the tangent of<br>the points from the right.<br>If a function <i>f</i> is defined on the<br>closed interval [a,b] satisfying<br>the following conditions i) The                                                                            |                     |          |                  |                        |
|       | is differentiable?<br>State Rolles | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the<br>slope of the tangent line of<br>the points from the left is<br>approaching the same value<br>as the slope of the tangent of<br>the points from the right.<br>If a function <i>f</i> is defined on the<br>closed interval [a,b] satisfying<br>the following conditions i) The<br>function <i>f</i> is continuous on the<br>closed interval [a, b] ii)The |                     |          |                  |                        |
|       | is differentiable?<br>State Rolles | defined at a, (ii) the limit of f<br>as x approaches a from the<br>right-hand and left-hand<br>limits exist and are equal,<br>and (iii) the limit of f as x<br>approaches a is equal to f(a).<br>A function is differentiable at<br>a point when there's a<br>defined derivative at that<br>point. This means that the<br>slope of the tangent line of<br>the points from the left is<br>approaching the same value<br>as the slope of the tangent of<br>the points from the right.<br>If a function $f$ is defined on the<br>closed interval [a,b] satisfying<br>the following conditions i) The<br>function $f$ is continuous on the                                            |                     |          |                  |                        |

| S. No | QUESTION                      | ANSWER                                                                        | <b>Blooms Level</b> | CO          | CLO             | CLO Code  |
|-------|-------------------------------|-------------------------------------------------------------------------------|---------------------|-------------|-----------------|-----------|
|       |                               | there exists a value $x = c$ in<br>such a way that                            |                     |             |                 |           |
|       |                               |                                                                               |                     |             |                 |           |
|       |                               | $f'(c) = \frac{f(b)-f(a)}{b-a}$                                               |                     |             |                 |           |
| 4     | State Lagranges               | Lagrange's mean value                                                         | Remember            | CO 3        | CLO 15          | AHSB02.15 |
|       | theorem                       | theorem (MVT) states that if a function $f(x)$ is continuous.                 |                     |             |                 |           |
|       |                               | function $f(x)$ is continuous on a closed interval [a,b] and                  |                     |             |                 |           |
|       |                               | differentiable on the open                                                    |                     |             |                 |           |
|       |                               | interval (a,b), then there is at least one point x=c on this                  |                     |             |                 |           |
|       |                               | interval, such that                                                           | -                   |             |                 |           |
|       |                               | $f\left(b ight)-f\left(a ight)=f'\left(c ight)\left(b-a ight).$               | 1.1                 |             |                 |           |
|       |                               |                                                                               | -                   |             |                 |           |
| 5     | State Cauchy's                | Cauchy's mean-value theorem is                                                | Remember            | CO 3        | CLO 15          | AHSB02.15 |
|       | mean value theorem.           | a generalization of the usual mean-value theorem. It                          |                     |             |                 |           |
|       |                               | states that if $f(x)$ and $g(x)$                                              |                     |             |                 |           |
|       |                               | are continuous on the closed<br>interval $[a, b]$ , if $g(a) \neq g(b)$ ,     |                     |             |                 |           |
|       |                               | and if both functions                                                         |                     |             |                 |           |
|       |                               | are differentiable on the open                                                |                     |             |                 |           |
|       |                               | interval $(a, b)$ , then there exists<br>at least one $c$ with $a < c < b$    |                     |             |                 |           |
|       |                               | such that                                                                     |                     |             |                 |           |
|       |                               | f(h) = f(h) = f(h)                                                            |                     |             |                 |           |
|       |                               | $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$                       |                     |             |                 |           |
|       |                               |                                                                               |                     | <b>GO A</b> | <b>CT 0.1</b> ( |           |
| 6     | What is geometric             | Geometric interpretation of Rolle's Theorem:                                  | Understand          | CO 3        | CLO 16          | AHSB02.16 |
|       | interpretation of             | Algebraically,                                                                |                     |             | 1               | 1         |
|       | Rolles theorem?               | this theorem tells us that if f                                               |                     |             | 4               |           |
|       |                               | (x) is representing a polynomial function in x and                            |                     |             | -               |           |
|       |                               | the two roots of the equation                                                 |                     |             | 10              |           |
|       |                               | f(x) = 0 are $x = a$ and $x = b$ ,                                            |                     |             | C               |           |
|       |                               | then there exists at least one root of the equation $f'(x) = 0$               |                     | 1           |                 |           |
|       |                               | root of the equation $f'(x) = 0$<br>lying between the values.                 | 111                 |             |                 |           |
| 7     | What is                       | In the given graph the curve y                                                | Remember            | CO 3        | CLO 16          | AHSB02.16 |
|       | geometrical interpretation of | = f(x) is continuous from $x = aand x = b and differentiable$                 |                     |             |                 |           |
|       | Lagranges mean                | within the closed interval [a,b]                                              |                     |             |                 |           |
|       | values?                       | then according to Lagrange's mean value theorem, for any                      |                     |             |                 |           |
|       |                               | function that is continuous on $[a, b]$ and differentiable on $(a, b)$        |                     |             |                 |           |
|       |                               | there exists some $c$ in the interval                                         |                     |             |                 |           |
|       |                               | (a, b) such that the secant joining<br>the endpoints of the interval $[a, b]$ |                     |             |                 |           |
|       |                               | is parallel to the tangent at $c$ .                                           |                     |             |                 |           |
|       |                               |                                                                               |                     |             |                 |           |
|       |                               |                                                                               |                     |             |                 |           |

| S. No | QUESTION                 | ANSWER                                                                                    | <b>Blooms Level</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CO        | CLO             | CLO Code   |
|-------|--------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|------------|
| 8     | When a function          | Let $f(x, y)$ be a homogeneous                                                            | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 3      | CLO 16          | AHSB02.16  |
|       | f(x, y) is said to       | function of order $n$ so that                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       | be                       | -                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       | homogeneous?             | $f(tx, ty) = t^n f(x, y).$                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
| 9     | What are triple          | Integrals of a function of                                                                | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 3      | CLO 16          | AHSB02.16  |
| 7     | integrals?               | Integrals of a function of three variables over a region                                  | Kemenibei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05        | CLO 10          | AIISD02.10 |
|       | integruis.               | of $\mathbb{R}^3$ are called triple                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | integrals.                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
| 10    | How to calculate         | volume using triple integral                                                              | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 3      | CLO 16          | AHSB02.16  |
|       | volume using             | $\iiint f(x,y,z) \ dV$                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000       | 02010           |            |
|       | triple integral?         | $\iint_E f(x, y, z) dv$                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
| 11    | What is                  | A double integral is used for                                                             | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 3      | CLO 16          | AHSB02.16  |
|       | difference               | integrating over a two-                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       | between double           | dimensional region, while                                                                 | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -         |                 |            |
|       | and triple<br>integrals? | a triple integral is used for                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       | integrais:               | integrating over a three-                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | dimensional region.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
| 12    | What is R in             | In polar coordinates, a point                                                             | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 3      | CLO 17          | AHSB02.17  |
|       | polar                    | in the plane is determined by                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       | coordinates?             | its distance r from the origin                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | and the angle theta (in                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | radians) between the line<br>from the origin to the point                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | and the x-axis (see the figure                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | below). It is common to                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | represent the point by an                                                                 | and the second se |           |                 |            |
|       |                          | ordered pair (r, theta).                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
| 13    | What is Z in             | In the cylindrical                                                                        | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 3      | CLO 17          | AHSB02.17  |
|       | cylindrical              | coordinate system, a point P                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | · · ·           |            |
|       | coordinates?             | in space is represented by the                                                            | - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                 |            |
|       |                          | ordered triple (r, $\theta$ , z), where                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1               |            |
|       |                          | r and $\theta$ are polar                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 | 1          |
|       |                          | coordinates of the projection                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         | -               |            |
|       |                          | of P onto the x y-plane                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /         |                 |            |
|       |                          | and z is the directed distance                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · | P               |            |
|       |                          | from the x y-plane to P.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | <b>ax a i i</b> |            |
| 14    | What is                  | to convert from Polar                                                                     | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 3      | CLO 16          | AHSB02.16  |
|       | relationship<br>between  | Coordinates $(r, \theta)$ to                                                              | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~~        |                 |            |
|       | Cartesian and            | Cartesian Coordinates $(x, y)$ :                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0         |                 |            |
|       | polar                    | $\mathbf{x} = \mathbf{r} \times \cos(\theta) \mathbf{y} = \mathbf{r} \times \sin(\theta)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -         |                 |            |
|       | coordinates?             | - C U I                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
| 15    | What is Cartesian        | The <i>x</i> and <i>y</i> coordinates of a                                                | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 3      | CLO 16          | AHSB02.16  |
|       | coordinate?              | point measure the respective                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | distances from the point to a                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | pair of perpendicular lines in                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | the plane called                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | the coordinate axes, which                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | meet at the origin.                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <br>      |                 |            |
|       |                          | MODULE                                                                                    | -IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                 |            |
| 1     | What is partial          | A derivative of a function of                                                             | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 4      | CLO 18          | AHSB02.18  |
|       | derivate?                | two or more variables with                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          | respect to one variable, the                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |
|       |                          |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                 |            |

| S. No | QUESTION                            | ANSWER                                                                                                                  | <b>Blooms Level</b> | СО   | CLO         | CLO Code   |
|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------------|------------|
|       |                                     | other(s) being treated as                                                                                               |                     |      |             |            |
|       |                                     | constant.                                                                                                               |                     |      |             |            |
| 2     | When the                            | When Jacobian transformation                                                                                            | Remember            | CO 4 | CLO 18      | AHSB02.18  |
|       | functions u and v<br>are said to be | of u and v with respect to<br>dependent variables x and y is                                                            |                     |      |             |            |
|       | functionally                        | zero.                                                                                                                   |                     |      |             |            |
|       | dependent?                          |                                                                                                                         |                     |      |             |            |
| 3     | What is                             | A stationary point of a                                                                                                 | Remember            | CO 4 | CLO 18      | AHSB02.18  |
|       | stationary value?                   | differentiable function of one                                                                                          |                     |      |             |            |
|       |                                     | variable is a point on the                                                                                              |                     |      |             |            |
|       |                                     | graph of the function where<br>the function's derivative is                                                             |                     |      |             |            |
|       |                                     | zero.                                                                                                                   |                     |      |             |            |
| 4     | What are critical                   | Critical point of a single                                                                                              | Remember            | CO 4 | CLO         | AHSB02.18  |
|       | points?                             | variable function. A critical                                                                                           | Remember            | 001  | 010         | 1115202.10 |
|       | -                                   | point of a function of a single                                                                                         |                     |      |             |            |
|       |                                     | real variable, $f(x)$ , is a value                                                                                      |                     |      |             |            |
|       |                                     | $x_0$ in the domain of f where it is<br>not differentiable or its                                                       |                     |      |             |            |
|       |                                     | derivative is 0 (f $'(x_0) = 0$ ).                                                                                      |                     |      |             |            |
| 5     | What are saddle                     | Saddle points are points where                                                                                          | Remember            | CO 4 | <b>C</b> LO | AHSB02.18  |
|       | points?                             | the function is neither maxima                                                                                          |                     |      |             |            |
| 6     | What are                            | nor minima.                                                                                                             | Remember            | CO 4 | CLO         | AHSB02.18  |
| 0     | inflection points?                  | A point of a curve at which a change in the direction of                                                                | Remember            | 04   |             | АПЗВ02.18  |
|       | mineetion points.                   | curvature occurs                                                                                                        |                     |      |             |            |
| 7     | When the                            | $f^{1}(x)$ and equate it to zero                                                                                        | Remember            | CO 4 | CLO         | AHSB02.18  |
|       | function is                         | Solve the above equation we get                                                                                         |                     |      |             |            |
|       | maximum?                            |                                                                                                                         |                     |      |             |            |
|       |                                     | $x_0, x_1$ as roots.                                                                                                    |                     |      |             |            |
|       |                                     | Then find $f^{11}(x)$ .                                                                                                 | -                   |      |             |            |
|       |                                     | If $f^{11}(x)_{(x = x0)} > 0$ ,                                                                                         |                     |      | 1           |            |
|       |                                     | If $f^{11}(x)_{(x = x0)} < 0$ , $f(x)$ is                                                                               |                     |      |             | 2.         |
|       | G                                   | maximum at x <sub>0</sub>                                                                                               |                     |      |             |            |
| 8     | When the                            | $f^{1}(x)$ and equate it to zero                                                                                        | Remember            | CO 4 | CLO         | AHSB02.18  |
|       | function is minimum?                | Solve the above equation we get                                                                                         | /                   |      | 100         |            |
|       | initiation i                        | $x_0, x_1$ as roots.                                                                                                    |                     |      | 1 C C       |            |
|       |                                     | Then find $f^{11}(x)$ .                                                                                                 |                     |      | 100 C       |            |
|       |                                     |                                                                                                                         |                     | 2    |             |            |
|       |                                     | If $f^{11}(x)_{(x=x0)} > 0$ , then                                                                                      |                     |      |             |            |
|       |                                     | $f(x)$ is minimum at $x_0$                                                                                              |                     |      |             |            |
| 9     | Write the first                     | f is a function x and y variable                                                                                        | Remember            | CO 4 | CLO         | AHSB02.18  |
|       | order partial                       | then $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$                                                     |                     |      |             |            |
| 10    | derivatives?<br>Write the higher    | f is a function x and y variable                                                                                        | Remember            | CO 4 | CLO         | AHSB02.18  |
| 10    | order partial                       |                                                                                                                         | Kemenioei           | 0.0+ |             | 7115002.10 |
|       | derivatives?                        | then $\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x \partial y}$ |                     |      |             |            |
| 11    | Explain the                         | If u and v are continuous and                                                                                           | Remember            | CO 4 | CLO         | AHSB02.18  |
|       | jacobian of two variables?          | differentiable functions of two<br>independent variables x and y                                                        |                     |      |             |            |
|       | variables :                         |                                                                                                                         |                     |      |             |            |
|       |                                     | then the determinant $\begin{bmatrix} \partial x & \partial y \\ \partial x \end{bmatrix}$                              |                     |      |             |            |
|       |                                     | $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial x}$                                                         |                     |      |             |            |
|       |                                     |                                                                                                                         |                     |      |             |            |

| S. No | QUESTION                      | ANSWER                                                                                                                                                                                                                                      | Blooms Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | СО           | CLO         | CLO Code   |
|-------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|------------|
| 12    | Explain the                   | If u, v,w are continuous and                                                                                                                                                                                                                | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 4         | CLO         | AHSB02.18  |
|       | jacobian of three variables?  | differentiable functions of two<br>independent variables x and y,z<br>then the                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | $\frac{\partial u}{\partial x}  \frac{\partial u}{\partial y}  \frac{\partial u}{\partial z}$                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | determinant $\begin{array}{ccc} \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial w} & \frac{\partial w}{\partial w} & \frac{\partial w}{\partial w} \end{array}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | $\left  \frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} - \frac{\partial z}{\partial z} \right $                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
| 13    | When the                      | When Jacobian transformation                                                                                                                                                                                                                | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 4         | CLO         | AHSB02.18  |
|       | functions u and v             | of u and v with respect to                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       | are said to be                | dependent variables x and y is                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       | functionally independent?     | not equals to zero.                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _            |             |            |
| 14    | When the                      | The stationary point (a,b)                                                                                                                                                                                                                  | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 4         | CLO         | AHSB02.18  |
| 14    | function is                   | satisfying maximum condition                                                                                                                                                                                                                | Kemember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04           | CLU         | AIISD02.10 |
|       | maximum point ?               | ,that point of the function is                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | called the maximum point.                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
| 15    | When the                      | The stationary point (a,b)                                                                                                                                                                                                                  | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 4         | <b>C</b> LO | AHSB02.18  |
|       | function is                   | satisfying minimum condition                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       | minimum poi <mark>nt</mark> ? | ,that point of the function is                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | called the minimum point.                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | MODULE                                                                                                                                                                                                                                      | -V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |             |            |
| 1     | What is vector                | An algebra for which the                                                                                                                                                                                                                    | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 5         | CLO 22      | AHSB02.22  |
|       | algebra?                      | elements involved may                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |            |
|       |                               | represent vectors and the                                                                                                                                                                                                                   | Concession of the local division of the loca |              |             |            |
|       |                               | assumptions and rules are based                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       | <b>D</b>                      | on the behavior of vectors.                                                                                                                                                                                                                 | <b>D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>2 2 4</b> | GY C AA     |            |
| 2     | Define unit vector?           | A unit vector is a vector of unit length.                                                                                                                                                                                                   | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 5         | CLO 22      | AHSB02.22  |
| 3     | What is difference            | A vector quantity has a direction                                                                                                                                                                                                           | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 5         | CLO 21      | AHSB02.21  |
| 5     | between scalar                | and a magnitude, while                                                                                                                                                                                                                      | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 005          | CLO 21      | 7110002.21 |
|       | and vector?                   | a scalar has only a magnitude.                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | C           |            |
| 4     | What is                       | If the product of two vectors is                                                                                                                                                                                                            | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CO 5         | CLO 21      | AHSB02.21  |
|       | difference                    | a scalar quantity, the product is                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | A           |            |
|       | between dot and               | called scalar product or dot                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       | cross product?                | product. If the product of                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 100         |            |
|       | 7                             | two vectors is a vector quantity                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            | 1           |            |
|       |                               | then the product is called vector                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5          | 1 C         |            |
|       |                               | product or cross product. If                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5            |             |            |
|       |                               | two vectors are perpendicular to each other than their scalar                                                                                                                                                                               | 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0            |             |            |
|       |                               | product is zero.                                                                                                                                                                                                                            | 1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |            |
| 5     | What is vector                | Vector calculus,                                                                                                                                                                                                                            | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO 5         | CLO 22      | AHSB02.22  |
|       | calculus?                     | or vector analysis, is a branch of                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | mathematics concerned with                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | differentiation                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | and integration of vector fields.                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
| 6     | What is line                  | Any integral that is evaluated                                                                                                                                                                                                              | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO 5         | CLO 23      | AHSB02.23  |
|       | integral?                     | along a curve is called a line                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
| ~     |                               | integral.                                                                                                                                                                                                                                   | TT. 1 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |             |            |
| 7     | Define unit                   | Let S be a two-sided surface.                                                                                                                                                                                                               | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO 5         | CLO 22      | AHSB02.22  |
|       | normal.                       | Let one side of S be considered                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
| 1     |                               | arbitrarily as the positive side (if S is a closed surface this is                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | taken as the outer side). A unit                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
|       |                               | normal n to any point of the                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |
| L     |                               | normal if to any point of the                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |            |

| S. No | QUESTION                                                                                                                                                                  | ANSWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Blooms Level</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | СО           | CLO              | CLO Code               |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------------------------|
|       |                                                                                                                                                                           | positive side of S is called                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | a positive or outward                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | drawn normal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | ~~~~~            |                        |
| 8     | What does                                                                                                                                                                 | Green's theorem gives a                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 5         | CLO 24           | AHSB02.24              |
|       | Greens theorem                                                                                                                                                            | relationship between the line                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       | mean?                                                                                                                                                                     | integral of a two-dimensional                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | vector field over a closed path                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | in the plane and the double integral over the region it                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | encloses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
| 9     | What does Stokes                                                                                                                                                          | a theorem proposing that the                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 5         | CLO 24           | AHSB02.24              |
| _     | theorem mean?                                                                                                                                                             | surface integral of the curl of a                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chaeistana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 005          | 010 21           | 1110002.21             |
|       | incoroni incuir.                                                                                                                                                          | function over any surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | bounded by a closed path is                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 1                |                        |
|       |                                                                                                                                                                           | equal to the line integral of a                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | particular vector function round                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | A                |                        |
|       |                                                                                                                                                                           | that path.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
| 10    | What does Gauss                                                                                                                                                           | The divergence theorem is a                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Understand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO 5         | <b>CLO</b> 24    | AHSB02.24              |
|       | divergence                                                                                                                                                                | mathematical statement of the                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       | theorem mean?                                                                                                                                                             | physical fact that, in the absence                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | of the creation or destruction of                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | matter, the density within a                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | region of space can change only                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | by having it flow into or away                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | from the region through its                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
| 11    | What is Gradient?                                                                                                                                                         | boundary.<br>Gradient of a scalar field, gives                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
| 11    | what is Gradient?                                                                                                                                                         | the change per unit "distance" in                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kemember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 05           | CLO 21           | Ansb02.21              |
|       |                                                                                                                                                                           | the value of the field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second se |              |                  |                        |
| 12    | What is                                                                                                                                                                   | the scalar product of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | divergence?                                                                                                                                                               | operator del and a given vector,                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       | 8                                                                                                                                                                         | which gives a measure of the                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       | 50                                                                                                                                                                        | quantity of flux emanating from                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       |                                                                                                                                                                           | any point of the vector field or                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1.1              |                        |
|       | 0                                                                                                                                                                         | the rate of loss of mass, heat,                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | - C              |                        |
|       |                                                                                                                                                                           | etc., from it.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
| 13    | W/leat in                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |                        |
|       | What is                                                                                                                                                                   | In sum, the gradient is a vector                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
| 1     | difference                                                                                                                                                                | with the slope of the function                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | difference<br>between gradient                                                                                                                                            | with the slope of the function along each of the coordinate                                                                                                                                                                                                                                                                                                                                                                                                                              | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | difference<br>between gradient<br>and directional                                                                                                                         | with the slope of the function<br>along each of the coordinate<br>axes whereas the                                                                                                                                                                                                                                                                                                                                                                                                       | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | difference<br>between gradient                                                                                                                                            | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is                                                                                                                                                                                                                                                                                                                                                                          | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | difference<br>between gradient<br>and directional                                                                                                                         | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary                                                                                                                                                                                                                                                                                                                                             | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
| 14    | difference<br>between gradient<br>and directional<br>derivative?                                                                                                          | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4            | 182              |                        |
| 14    | difference<br>between gradient<br>and directional<br>derivative?<br>What is                                                                                               | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is                                                                                                                                                                                                                                                                                    | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5<br>CO 5 | CLO 21<br>CLO 21 | AHSB02.21<br>AHSB02.21 |
| 14    | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional                                                                                | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4            | 182              |                        |
| 14    | difference<br>between gradient<br>and directional<br>derivative?<br>What is                                                                                               | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function<br>changes at a point in the                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4            | 182              |                        |
| 14    | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional                                                                                | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function<br>changes at a point in the<br>direction. It is a vector form                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4            | 182              |                        |
|       | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional<br>derivative?                                                                 | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function<br>changes at a point in the<br>direction. It is a vector form<br>of the usual derivative                                                                                                                                                        | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
| 14    | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional<br>derivative?<br>What is                                                      | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function<br>changes at a point in the<br>direction. It is a vector form<br>of the usual derivative<br>In sum, the gradient is a                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4            | 182              |                        |
|       | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional<br>derivative?<br>What is<br>difference                                        | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function<br>changes at a point in the<br>direction. It is a vector form<br>of the usual derivative<br>In sum, the gradient is a<br>vector with the slope of the                                                                                           | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional<br>derivative?<br>What is<br>difference<br>between gradient                    | <ul> <li>with the slope of the function<br/>along each of the coordinate<br/>axes whereas the<br/>directional derivative is<br/>the slope in an arbitrary<br/>specified direction.</li> <li>The directional derivative is<br/>the rate at which the function<br/>changes at a point in the<br/>direction. It is a vector form<br/>of the usual derivative</li> <li>In sum, the gradient is a<br/>vector with the slope of the<br/>function along each of the</li> </ul>                  | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional<br>derivative?<br>What is<br>difference<br>between gradient<br>and directional | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function<br>changes at a point in the<br>direction. It is a vector form<br>of the usual derivative<br>In sum, the gradient is a<br>vector with the slope of the<br>function along each of the<br>coordinate axes whereas                                  | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional<br>derivative?<br>What is<br>difference<br>between gradient                    | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function<br>changes at a point in the<br>direction. It is a vector form<br>of the usual derivative<br>In sum, the gradient is a<br>vector with the slope of the<br>function along each of the<br>coordinate axes whereas<br>the directional derivative is | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |
|       | difference<br>between gradient<br>and directional<br>derivative?<br>What is<br>directional<br>derivative?<br>What is<br>difference<br>between gradient<br>and directional | with the slope of the function<br>along each of the coordinate<br>axes whereas the<br>directional derivative is<br>the slope in an arbitrary<br>specified direction.<br>The directional derivative is<br>the rate at which the function<br>changes at a point in the<br>direction. It is a vector form<br>of the usual derivative<br>In sum, the gradient is a<br>vector with the slope of the<br>function along each of the<br>coordinate axes whereas                                  | Remember                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO 5         | CLO 21           | AHSB02.21              |

### Signature of the Faculty

HOD, EEE