

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

COMPUTER SCIENCE AND ENGINEERING

DEFINITIONS AND TERMINOLOGY QUESTION BANK

Course Name		:	LINEAR ALGEBRA AND CALCULUS
Course Code		:	AHSB02
Program		:	B.Tech
Semester		:	I
Branch	~	:	Computer science and engineering
Section		:	A, B, C, D
Course Faculty		:	Ms. P Rajani, Assistant Professor

COURSE OBJECTIVES:

The cours	The course should enable the students to:					
Ι	Determine rank of a matrix and solve linear differential equations of second order.					
II	Determine the characteristic roots and apply double integrals to evaluate area.					
III	Apply mean value theorems and apply triple integrals to evaluate volume.					
IV	Determine the functional dependence and extremum value of a function					
V	Analyze gradient, divergence, curl and evaluate line, surface, volume integrals over a vector field.					

DEFINITIONS AND TERMINOLOGY QUESTION BANK

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		MODULE				
1	Define matrix.	A matrix is a rectangular array of numbers or other mathematical objects for which operations such as addition and multiplication are defined. For instance, this is a real matrix: The numbers, symbols or expressions in the matrix are called its entries or its elements.	Understand	CO 1	CLO 1	AHSB02.01
2	Define symmetric matrix.	A square matrix is called symmetric if it is equal to its transpose.	Remember	CO 1	CLO 1	AHSB02.01
3	Define is skew- symmetric matrix.	A square matrix is called symmetric if it is equal to negative its transpose.	Remember	CO 1	CLO 1	AHSB02.01
4	Define hermitian matrix.	In mathematics, a Hermitian matrix (or self-adjointmatrix) is a complex square matrix that is equal to its own conjugate transpose	Remember	CO 1	CLO 1	AHSB02.01

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
5	Define skew	A square matrix with complex	Remember	CO 1	CLO 1	AHSB02.01
	Hermitian matrix	entries is said to be skew- Hermitian if its conjugate				
		transpose is the negative of the				
6	When a matrix is	original matrix. If A is a square matrix such that	Remember	CO 1	CLO1	AHSB02.01
Ũ	said to be	A ^m =0 where m is a positive	remember	001	CLOI	1115202.01
	nilpotent?	integer, then A is called nilpotent				
7	What is	A differential equation is an	Remember	CO 1	CLO 4	AHSB02.04
	differential	equation that contains derivatives which are either				
	equation?	partial derivatives or ordinary			P.1	
		derivatives. The derivatives	0	-		
		represent a rate of change, and the differential equation			l	
		describes a relationship between				
		the quantity that is continuously				
		varying and the speed of change.				
8	What are types of	The types of differential	Remember	CO 1	CLO 4	AHSB02.04
	differential equations?	equations are 1. An ordinary differential equation				
	-	2. partial differential equation				
9	Mention any two applications of	1) Differential equations describe various exponential	Remember	CO 1	CLO 4	AHSB02.04
	differential	growths and decays.				
	equation.	2) They are also used to				
		describe the change in				
		investment return over time.				
10	Define order of differential	The order is the highest	Remember	CO 1	CLO 4	AHSB02.04
	equation.	numbered derivative in the equation,				
11	Define degree of	The degree is the highest	Remember	CO 1	CLO 4	AHSB02.04
	differential	power to which a derivative			1	
12	equation. What is general	is raised. General solution contains	Remember	CO 1	CLO 4	AHSB02.04
12	solution of higher	complementary function and	Kemeniber	COT	CLO 4	AII3D02.04
	order differential	particular integral.		1.5	h	
13	equation contains When a	If degree of differential equation	Understand	CO 1	CLO 4	AHSB02.04
	differential	is one then it is linear.		0		
	equation is said to be linear?	7 505	1			
14	What is non-	If degree of differential equation	Remember	CO 1	CLO 1	AHSB02.01
	linear differential	is greater than one it is linear.				
15	equation? What is	A differential equation is an	Remember	CO 1	CLO 1	AHSB02.01
	differential	equation that contains derivatives				
	equation?	which are either partial derivatives or ordinary				
		derivatives. The derivatives				
		represent a rate of change, and				
		the differential equation describes a relationship between the				
		quantity that is continuously				
		varying and the speed of change.				

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		MODULE	-II			
1	What is Eigen value?	Any number such that a given matrix minus that number times the identity matrix has zero determinants.	Remember	CO 2	CLO 10	AHSB02.10
2	What is Eigen vector?	a vector which when operated on by a given operator gives a scalar multiple of itself.	Remember	CO 2	CLO 10	AHSB02.10
3	Define Algebraic multiplicity of a characteristic roots.	It is number of times an Eigen value is repeated.	Understand	CO 2	CLO 10	AHSB02.10
4	Define Geometric multiplicity of a characteristic roots.	It is number of linearly independent characteristic vector corresponding to the characteristic root.	Understand	CO 2	CLO 10	AHSB02.10
5	Define Orthogonal matrix.	a matrix Q is orthogonal if its transpose is equal to its inverse	Understand	CO 2	CLO 10	AHSB02.10
6	When two matrices A and B are said to orthogonal?	If $B=P^{-1}AP$ where P is orthogonal matrix.	Remember	CO 2	CLO 11	AHSB02.11
7	State Cayley Hamilton theorem?	It states that every square matrix satisfies its own characteristic equation.	Remember	CO 2	CLO 11	AHSB02.11
8	What is integral?	Given a function $f(x)$ that is continuous on the interval [a, b] we divide the interval into n subintervals of equal width, Δx , and from each interval choose a point, x*i. Then the definite integral of $f(x)f(x)$ from a to bb is $\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$	Remember	CO 2	CLO 11	AHSB02.14
9	What are double integrals?	The multiple integral is a definite integral of a function of more than one real variable, for example, $f(x, y)$ or $f(x, y, z)$. Integrals of a function of two variables over a region in \mathbb{R}^2 are called double integrals.	Remember	CO 2	CLO 11	AHSB02.14
10	What are types of integrals?	Types of integrals are 1. Definite 2. Indefinite integrals.	Remember	CO 2	CLO 14	AHSB02.14
11	What are definite integrals?	A definite integral is an integral $\int_{a}^{b} f(x) dx$ with upper and lower limits. If x is restricted to lie on the real line.	Remember	CO 2	CLO 14	AHSB02.14
12	What are indefinite integrals?	an integral expressed without limits, and so containing an arbitrary constant.	Remember	CO 2	CLO 10	AHSB02.10

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
13	How to calculate	The area of a closed,	Remember	CO 2	CLO 10	AHSB02.10
	area using double	bounded plane region R is				
	integral?					
		defined as				
		$A = \iint_{P} dA$				
		J_{J_R}				
14	What is double	Double Integrals over	Remember	CO 2	CLO 12	AHSB02.12
	integral over a	Rectangles. Recognize when				
	rectangle?	a function of two variables is				
		integral over a rectangular				
		region Use a double				
		integral to calculate the area		_		
		of a region, volume under a	1 T			
		surface, or average value of a	<u> </u>	-		
15	How do you fi <mark>nd</mark>	function over a plane region	Remember	CO 2	CLO 12	AHSB02.12
15	area between two	The area under a curve between two points can be	Kemeniber	02		Ansb02.12
	curve?	found by doing a				
		definite integral between the				
		two points. To find the area				
		under the curve $y = f(x)$				
		between $x = a$ and $x = b$,				
		integrate $y = f(x)$ between the				
		limits of a and b. Areas under				
		the x-axis will come out				
		negative and areas above the	Contraction of the International Contractional Contractionae Contractionae Contractionae Contract			
		x-axis will be positive.		-		
		MODULE	-III			
1	When a function	In other words, a function f	-III Understand	CO 3	CLO 15	AHSB02.15
1	When a function is continuous?	In other words, a function f is continuous at a point x=a,		CO 3	CLO 15	AHSB02.15
1		In other words, a function f is continuous at a point $x=a$, when (i) the function f is		CO 3	CLO 15	AHSB02.15
1		In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f		CO 3	CLO 15	AHSB02.15
1		In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the		CO 3	CLO 15	AHSB02.15
1		In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand		CO 3	CLO 15	AHSB02.15
1		In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal,		CO 3	CLO 15	AHSB02.15
1		In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x		CO 3	CLO 15	AHSB02.15
1		In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal,		CO 3	CLO 15 CLO 15	AHSB02.15 AHSB02.15
	is continuous?	In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a).	Understand		411 PL	
	is continuous? When a function	In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at	Understand		411 PL	
	is continuous? When a function	In other words, a function f is continuous at a point x=a, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the	Understand		411 PL	
	is continuous? When a function	In other words, a function f is continuous at a point x=a, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of	Understand		411 PL	
	is continuous? When a function	In other words, a function f is continuous at a point x=a, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is	Understand		411 PL	
	is continuous? When a function	In other words, a function f is continuous at a point x=a, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value	Understand		411 PL	
	is continuous? When a function	In other words, a function f is continuous at a point x=a, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value as the slope of the tangent of	Understand		411 PL	
2	is continuous? When a function is differentiable?	In other words, a function f is continuous at a point x=a, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value as the slope of the tangent of the points from the right.	Understand Remember	CO 3	CLO 15	AHSB02.15
	is continuous? When a function is differentiable? State Rolles	In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value as the slope of the tangent of the points from the right. If a function f is defined on the	Understand		411 PL	
2	is continuous? When a function is differentiable?	In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value as the slope of the tangent of the points from the right. If a function f is defined on the closed interval [a,b] satisfying	Understand Remember	CO 3	CLO 15	AHSB02.15
2	is continuous? When a function is differentiable? State Rolles	In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value as the slope of the tangent of the points from the right. If a function f is defined on the	Understand Remember	CO 3	CLO 15	AHSB02.15
2	is continuous? When a function is differentiable? State Rolles	In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value as the slope of the tangent of the points from the right. If a function f is defined on the closed interval [a,b] satisfying the following conditions i) The function f is continuous on the closed interval [a, b] ii)The	Understand Remember	CO 3	CLO 15	AHSB02.15
2	is continuous? When a function is differentiable? State Rolles	In other words, a function f is continuous at a point $x=a$, when (i) the function f is defined at a, (ii) the limit of f as x approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of f as x approaches a is equal to f(a). A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value as the slope of the tangent of the points from the right. If a function f is defined on the closed interval [a,b] satisfying the following conditions i) The function f is continuous on the	Understand Remember	CO 3	CLO 15	AHSB02.15

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
		there exists a value $x = c$ in				
		such a way that				
		$f'(c) = \frac{f(b)-f(a)}{b-a}$				
4	State Lagranges	Lagrange's mean value	Remember	CO 3	CLO 15	AHSB02.15
	theorem	theorem (MVT) states that if a function $f(x)$ is continuous on a				
		closed interval [a,b] and				
		differentiable on the open				
		interval (a,b), then there is at least one point x=c on this				
		interval, such that	-			
		$f\left(b ight)-f\left(a ight)=f'\left(c ight)\left(b-a ight).$	1.1			
5	State Cauchy's	Cauchy's mean-value theorem is	Remember	CO 3	CLO 15	AHSB02.15
	mean value theorem.	a generalization of the usual mean-value theorem. It				
		states that if $f(x)$ and $g(x)$				
		are continuous on the closed				
		interval $[a, b]$, if $g(a) \neq g(b)$, and if both functions				
		are differentiable on the open				
		interval (a, b) , then there exists at least one c with $a < c < b$				
		such that				
		$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$				
		g(b) - g(a) g'(c)				-
6	What is	Geometric interpretation of	Understand	CO 3	CLO 16	AHSB02.16
	geometric interpretation of	Rolle's Theorem:				2
	Rolles theorem?	Algebraically, this theorem tells us that if f	Constant of the second		~	
		(x) is representing a			_	
		polynomial function in x and	1		100	
		the two roots of the equation $f(x) = 0$ are $x = a$ and $x = b$,			h	
		then there exists at least one $x = 0$,		S .		
		root of the equation $f'(x) = 0$	1.15			
7	What is	lying between the values. In the given graph the curve y	Domomhor	CO 3	CLO 16	AHSB02.16
	geometrical	In the given graph the curve y = $f(x)$ is continuous from x = a	Remember	05		ANSDU2.10
	interpretation of	and $x = b$ and differentiable within the closed interval [a,b]				
	Lagranges mean values?	then according to Lagrange's				
		mean value theorem, for any function that is continuous on				
		[a, b] and differentiable on (a, b)				
		there exists some c in the interval (a, b) such that the second ioning				
		(<i>a</i> , <i>b</i>) such that the secant joining the endpoints of the interval [<i>a</i> , <i>b</i>]				
		is parallel to the tangent at c .				

S. No	QUESTION	ANSWER	Blooms Level	CO	CLO	CLO Code
8	When a function	Let $f(x, y)$ be a homogeneous	Understand	CO 3	CLO 16	AHSB02.16
	f(x, y) is said to	function of order n so that				
	be	_				
	homogeneous?	$f(tx, ty) = t^n f(x, y).$				
9	What are triple	Integrals of a function of	Remember	CO 3	CLO 16	AHSB02.16
7	integrals?	Integrals of a function of three variables over a region	Kemenibei	05	CLO 10	AIISD02.10
	integruis.	of \mathbb{R}^3 are called triple				
		integrals.				
10	How to calculate	volume using triple integral	Remember	CO 3	CLO 16	AHSB02.16
	volume using	$\iiint f(x,y,z) \ dV$		000	02010	
	triple integral?	$\iiint_E f(x, y, z) dv$				
11	What is	A double integral is used for	Remember	CO 3	CLO 16	AHSB02.16
	difference	integrating over a two-				
	between double	dimensional region, while			U	
	and triple integrals?	a triple integral is used for				
	integrais?	integrating over a three-				
		dimensional region.				
12	What is R in	In polar coordinates, a point	Remember	CO 3	CLO 17	AHSB02.17
	polar	in the plane is determined by				
	coordinates?	its distance r from the origin				
		and the angle theta (in				
		radians) between the line				
		from the origin to the point				
		and the x-axis (see the figure below). It is common to				
		represent the point by an	and the second se			
		ordered pair (r, theta).		_		
13	What is Z in	In the cylindrical	Remember	CO 3	CLO 17	AHSB02.17
	cylindrical	coordinate system, a point P	-			
	coordinates?	in space is represented by the	-			
		ordered triple (r, θ , z), where			1	
		r and θ are polar				2
		coordinates of the projection		1	~	
		of P onto the x y-plane		× .		
		and z is the directed distance		-	10 mil	
		from the x y-plane to P.				
14	What is	to convert from Polar	Remember	CO 3	CLO 16	AHSB02.16
	relationship between	Coordinates (r, θ) to		5		
	Cartesian and	Cartesian Coordinates (x, y) :		0		
	polar	$\mathbf{x} = \mathbf{r} \times \cos(\theta) \mathbf{y} = \mathbf{r} \times \sin(\theta)$	1.1.1			
	coordinates?		· · ·			
15	What is Cartesian	The <i>x</i> and <i>y</i> coordinates of a	Remember	CO 3	CLO 16	AHSB02.16
	coordinate?	point measure the respective				
		distances from the point to a				
		pair of perpendicular lines in				
		the plane called				
		the coordinate axes, which				
		meet at the origin.	l			
		MODULE	-IV			
1	What is partial	A derivative of a function of	Remember	CO 4	CLO 18	AHSB02.18
	derivate?	two or more variables with				
		respect to one variable, the				

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		other(s) being treated as				
		constant.				
2	When the	When Jacobian transformation	Remember	CO 4	CLO 18	AHSB02.18
	functions u and v are said to be	of u and v with respect to dependent variables x and y is				
	functionally	zero.				
	dependent?					
3	What is	A stationary point of a	Remember	CO 4	CLO 18	AHSB02.18
	stationary value?	differentiable function of one				
		variable is a point on the				
		graph of the function where the function's derivative is				
		zero.				
4	What are critical	Critical point of a single	Remember	CO 4	CLO	AHSB02.18
	points?	variable function. A critical		001	020	1110202110
		point of a function of a single				
		real variable, $f(x)$, is a value				
		x_0 in the domain of f where it is not differentiable or its				
		derivative is 0 (f '(x_0) = 0).				
5	What are saddle	Saddle points are points where	Remember	CO 4	CLO	AHSB02.18
	points?	the function is neither maxima				
6	What are	nor minima. A point of a curve at which a	Remember	CO 4	CLO	AHSB02.18
Ŭ	inflection points?	change in the direction of	Remember	001	010	1115202.10
	-	curvature occurs				
7	When the	$f^{1}(x)$ and equate it to zero	Remember	CO 4	CLO	AHSB02.18
	function is maximum?	Solve the above equation we get				
		x_0, x_1 as roots.				
		Then find $f^{11}(x)$.	-			
		If $f^{11}(x)_{(x=x0)} > 0$,	- 11			100 million (1990)
				7	- C	
		If $f^{11}(x)_{(x = x0)} < 0$, $f(x)$ is		_		
8	When the	maximum at x_0 $f^1(x)$ and equate it to zero	Remember	CO 4	CLO	AHSB02.18
-	function is					
	minimum?	Solve the above equation we get			100	
		x_0, x_1 as roots.		1.5	~	
		Then find $f^{11}(x)$.		10		
		If $f^{11}(x)_{(x=x0)} > 0$, then	1.13	ð 1		
		$f(x)$ is minimum at x_0	1			
9	Write the first	f is a function x and y variable	Remember	CO 4	CLO	AHSB02.18
	order partial derivatives?	then $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$				
10	Write the higher	f is a function x and y variable	Remember	CO 4	CLO	AHSB02.18
	order partial	then $\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x \partial y}$		•		
11	derivatives? Explain the	If u and v are continuous and	Remember	CO 4	CLO	AHSB02.18
11	jacobian of two	differentiable functions of two		0.0 4		110002.10
	variables?	independent variables x and y				
		$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y}$				
		then the determinant $\frac{\partial v}{\partial v} = \frac{\partial v}{\partial v}$				
		$\partial x \partial x$				

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
12	Explain the	If u , v,w are continuous and	Remember	CO 4	CLO	AHSB02.18
	jacobian of three variables?	differentiable functions of two independent variables x and y,z then the				
		$\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial z}$				
		determinant $\begin{array}{ccc} \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial w} & \frac{\partial w}{\partial w} & \frac{\partial w}{\partial w} \end{array}$				
		$\frac{\partial x}{\partial y} \frac{\partial y}{\partial z}$				
13	When the	When Jacobian transformation	Remember	CO 4	CLO	AHSB02.18
	functions u and v	of u and v with respect to				
	are said to be	dependent variables x and y is				
	functionally independent?	not equals to zero.	-	_		
14	When the	The stationary point (a,b)	Remember	CO 4	CLO	AHSB02.18
17	function is	satisfying maximum condition	Remember	0.0.4	CLO	7115002.10
	maximum point ?	,that point of the function is				
	1	called the maximum point.				
15	When the	The stationary point (a,b)	Remember	CO 4	CLO	AHSB02.18
	function is	satisfying minimum condition				
	minimum point ?	,that point of the function is				
		called the minimum point.				
		MODULE	• • •			
		MODULE	/- v			
1	What is vector	An algebra for which the	Remember	CO 5	CLO 22	AHSB02.22
	algebra?	elements involved may	2011 - 10 March 10			
		represent vectors and the	Contraction of the International Contractional			
		assumptions and rules are based				
2	Define unit	on the behavior of vectors.	D	00.5		AUGD02.22
2	vector?	A unit vector is a vector of unit length.	Remember	CO 5	CLO 22	AHSB02.22
3	What is difference	A vector quantity has a direction	Remember	CO 5	CLO 21	AHSB02.21
C	between scalar	and a magnitude, while		000	010 11	1110202121
	and vector?	a scalar has only a magnitude.		-	C	D
4	What is	If the product of two vectors is	Remember	CO 5	CLO 21	AHSB02.21
	difference	a scalar quantity, the product is		1	A	
	between dot and	called scalar product or dot				
1	cross product?	product. If the product of			100	
	7	two vectors is a vector quantity		1.0	2	
		then the product is called vector product or cross product. If		6	1.1	
		two vectors are perpendicular to		1		
		each other than their scalar		0		
		product is zero.				
5	What is vector	Vector calculus,	Understand	CO 5	CLO 22	AHSB02.22
	calculus?	or vector analysis, is a branch of				
		mathematics concerned with				
		differentiation				
	XX71 . • •	and integration of vector fields.		<u> </u>	01.0.11	
6	What is line	Any integral that is evaluated	Understand	CO 5	CLO 23	AHSB02.23
	integral?	along a curve is called a line				
7	Define unit	integral. Let S be a two-sided surface .	Understand	CO 5	CLO 22	AHSB02.22
/		Let S be a two-sided surface. Let one side of S be considered	Understallu	0.05	CLU 22	A113D02.22
1	normal.	arbitrarily as the positive side (if				
1		S is a closed surface this is				
		taken as the outer side). A unit				
		normal n to any point of the				

S. No	QUESTION	ANSWER	Blooms Level	СО	CLO	CLO Code
		positive side of S is called				
		a positive or outward				
		drawn normal.			~ ~ ~ ~ ~ ~	
8	What does	Green's theorem gives a	Understand	CO 5	CLO 24	AHSB02.24
	Greens theorem	relationship between the line				
	mean?	integral of a two-dimensional				
		vector field over a closed path				
		in the plane and the double integral over the region it				
		encloses.				
9	What does Stokes	a theorem proposing that the	Understand	CO 5	CLO 24	AHSB02.24
_	theorem mean?	surface integral of the curl of a	Chaeistana	005	010 21	1115002.21
	incoroni incuir.	function over any surface				
		bounded by a closed path is	-		1	
		equal to the line integral of a				
		particular vector function round			A	
		that path.				
10	What does Gauss	The divergence theorem is a	Understand	CO 5	CLO 24	AHSB02.24
	divergence	mathematical statement of the				
	theorem mean?	physical fact that, in the absence				
		of the creation or destruction of				
		matter, the density within a				
		region of space can change only				
		by having it flow into or away				
		from the region through its				
11	What is Gradient?	boundary. Gradient of a scalar field, gives	Remember	CO 5	CLO 21	AHSB02.21
11	what is Gradient?	the change per unit "distance" in	Kemember	05	CLO 21	AH3D02.21
		the value of the field.	and the second se			
12	What is	the scalar product of the	Remember	CO 5	CLO 21	AHSB02.21
	divergence?	operator del and a given vector,				
	8	which gives a measure of the				
	50	quantity of flux emanating from				
		any point of the vector field or	- AL		1.1	
	0	the rate of loss of mass, heat,			- C	
13		etc., from it.			_	
	What is	In sum, the gradient is a vector	Remember	CO 5	CLO 21	AHSB02.21
	difference	In sum, the gradient is a vector with the slope of the function	Remember	CO 5	CLO 21	AHSB02.21
	difference between gradient	In sum, the gradient is a vector with the slope of the function along each of the coordinate	Remember	CO 5	CLO 21	AHSB02.21
	difference between gradient and directional	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the	Remember	CO 5	CLO 21	AHSB02.21
	difference between gradient	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is	Remember	CO 5	CLO 21	AHSB02.21
	difference between gradient and directional	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary	Remember	CO 5	CLO 21	AHSB02.21
14	difference between gradient and directional derivative?	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction.		10	182	
14	difference between gradient and directional derivative? What is	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is	Remember	CO 5 CO 5	CLO 21 CLO 21	AHSB02.21 AHSB02.21
14	difference between gradient and directional derivative? What is directional	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function		10	182	
14	difference between gradient and directional derivative? What is	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the		10	182	
14	difference between gradient and directional derivative? What is directional	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form		10	182	
	difference between gradient and directional derivative? What is directional derivative?	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form of the usual derivative	Remember	CO 5	CLO 21	AHSB02.21
14	difference between gradient and directional derivative? What is directional derivative? What is	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form of the usual derivative In sum, the gradient is a		10	182	
	difference between gradient and directional derivative? What is directional derivative? What is difference	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form of the usual derivative In sum, the gradient is a vector with the slope of the	Remember	CO 5	CLO 21	AHSB02.21
	difference between gradient and directional derivative? What is directional derivative? What is difference between gradient	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form of the usual derivative In sum, the gradient is a vector with the slope of the function along each of the	Remember	CO 5	CLO 21	AHSB02.21
	difference between gradient and directional derivative? What is directional derivative? What is difference between gradient and directional	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form of the usual derivative In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas	Remember	CO 5	CLO 21	AHSB02.21
	difference between gradient and directional derivative? What is directional derivative? What is difference between gradient	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form of the usual derivative In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is	Remember	CO 5	CLO 21	AHSB02.21
	difference between gradient and directional derivative? What is directional derivative? What is difference between gradient and directional	In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form of the usual derivative In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas	Remember	CO 5	CLO 21	AHSB02.21

Signature of the Faculty

HOD, CSE