Dundigal, Hyderabad - 500043
COMPUTER SCIENCE AND ENGINEERING
DEFINITIONS AND TERMINOLOGY QUESTION BANK

| Course Name | $:$ | LINEAR ALGEBRA AND CALCULUS |
| :--- | :--- | :--- |
| Course Code | $:$ | AHSB02 |
| Program | $:$ | B.Tech |
| Semester | $:$ | I |
| Branch | $:$ | Computer science and engineering |
| Section | $:$ | A, B, C, D |
| Course Faculty | $:$ | Ms. P Rajani, Assistant Professor |

## COURSE OBJECTIVES:

| The course should enable the students to: |  |
| :---: | :--- |
| I | Determine rank of a matrix and solve linear differential equations of second order. |
| II | Determine the characteristic roots and apply double integrals to evaluate area. |
| III | Apply mean value theorems and apply triple integrals to evaluate volume. |
| IV | Determine the functional dependence and extremum value of a function |
| V | Analyze gradient, divergence, curl and evaluate line, surface, volume integrals over a vector field. |

## DEFINITIONS AND TERMINOLOGY QUESTION BANK

| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Define matrix. | M matrix is a rectangular array <br> of numbers or other <br> mathematical objects for which <br> operations such as addition and <br> multiplication are defined. For <br> instance, this is a real matrix: <br> The numbers, symbols or <br> expressions in the matrix <br> are called its entries or its <br> elements. | Understand | CO 1 | CLO 1 | AHSB02.01 |
| 2 | Define <br> symmetric <br> matrix. | A square matrix is called <br> symmetric if it is equal to its <br> transpose. | Remember | CO 1 | CLO 1 | AHSB02.01 |
| 3 | Define is skew- <br> symmetric <br> matrix. | A square matrix is called <br> symmetric if it is equal to <br> negative its transpose. | Remember | CO 1 | CLO 1 | AHSB02.01 |
| 4 | Define hermitian <br> matrix. | In mathematics, a Hermitian <br> matrix (or self-adjointmatrix) is <br> a complex square matrix that is <br> equal to its own conjugate <br> transpose | Remember | CO 1 | CLO 1 | AHSB02.01 |


| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Define skew Hermitian matrix | A square matrix with complex entries is said to be skewHermitian if its conjugate transpose is the negative of the original matrix. | Remember | CO 1 | CLO 1 | AHSB02.01 |
| 6 | When a matrix is said to be nilpotent? | If A is a square matrix such that $\mathrm{A}^{\mathrm{m}}=0$ where m is a positive integer, then A is called nilpotent | Remember | CO 1 | CLO1 | AHSB02.01 |
| 7 | What is differential equation? | A differential equation is an equation that contains derivatives which are either partial derivatives or ordinary derivatives. The derivatives represent a rate of change, and the differential equation describes a relationship between the quantity that is continuously varying and the speed of change. | Remember | CO 1 | CLO 4 | AHSB02.04 |
| 8 | What are types of differential equations? | The types of differential equations are 1 . An ordinary differential equation 2. partial differential equation | Remember | CO 1 | CLO 4 | AHSB02.04 |
| 9 | Mention any two applications of differential equation. | 1) Differential equations describe various exponential growths and decays. <br> 2) They are also used to describe the change in investment return over time. | Remember | CO 1 | CLO 4 | AHSB02.04 |
| 10 | Define order of differential equation. | The order is the highest numbered derivative in the equation, | Remember | CO 1 | CLO 4 | AHSB02.04 |
| 11 | Define degree of differential equation. | The degree is the highest power to which a derivative is raised. | Remember | CO 1 | $\text { CLO } 4$ | AHSB02.04 |
| 12 | What is general solution of higher order differential equation contains | General solution contains complementary function and particular integral. | Remember | CO 1 | CLO 4 | AHSB02.04 |
| 13 | When a differential equation is said to be linear? | If degree of differential equation is one then it is linear. | Understand | CO 1 | CLO 4 | AHSB02.04 |
| 14 | What is nonlinear differential equation? | If degree of differential equation is greater than one it is linear. | Remember | CO 1 | CLO 1 | AHSB02.01 |
| 15 | What is differential equation? | A differential equation is an equation that contains derivatives which are either partial derivatives or ordinary derivatives. The derivatives represent a rate of change, and the differential equation describes a relationship between the quantity that is continuously varying and the speed of change. | Remember | CO 1 | CLO 1 | AHSB02.01 |


| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | How to calculate <br> area using double <br> integral? | The area of a closed, <br> bounded plane region R is <br> defined as <br> $A=\iint_{R} d A$ | Remember | CO 2 | CLO 10 | AHSB02.10 |
| 14 | What is double <br> integral over a <br> rectangle? | Double Integrals over <br> Rectangles. Recognize when <br> a function of two variables is <br> integral over a rectangular <br> region. ... Use a double <br> integral to calculate the area <br> of a region, volume under a <br> surface, or average value of a <br> function over a plane region | Remember | CO 2 | CLO 12 | AHSB02.12 |
| 15 | How do you find <br> area between two <br> curve? | The area under a curve <br> between two points can be <br> found by doing a <br> definite integral between the <br> two points. To find the area <br> under the curve y = f(x) <br> between x = and x = b, <br> integrate y = f(x) between the <br> limits of a and b. Areas under <br> the x-axis will come out <br> negative and areas above the <br> x-axis will be positive. | Remember | CO 2 | CLO 12 | AHSB02.12 |

## MODULE-III

| 1 | When a function is continuous? | In other words, a function f is continuous at a point $x=a$, when (i) the function $f$ is defined at a, (ii) the limit of $f$ as $x$ approaches a from the right-hand and left-hand limits exist and are equal, and (iii) the limit of $f$ as $x$ approaches a is equal to $f(a)$. | Understand | CO 3 | $\text { CLO } 15$ | AHSB02.15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | When a function is differentiable? | A function is differentiable at a point when there's a defined derivative at that point. This means that the slope of the tangent line of the points from the left is approaching the same value as the slope of the tangent of the points from the right. | Remember | CO 3 | CLO 15 | AHSB02.15 |
| 3 | State Rolles theorem. | If a function $f$ is defined on the closed interval [a,b] satisfying the following conditions i) The function $f$ is continuous on the closed interval [a, b] ii)The function $f$ is differentiable on the open interval ( $\mathrm{a}, \mathrm{b}$ ) Then | Remember | CO 3 | CLO 15 | AHSB02.15 |


| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | there exists a value $\mathrm{x}=\mathrm{c}$ in such a way that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ |  |  |  |  |
| 4 | State Lagranges theorem | Lagrange's mean value theorem (MVT) states that if a function $f(x)$ is continuous on a closed interval [a,b] and differentiable on the open interval ( $\mathrm{a}, \mathrm{b}$ ), then there is at least one point $x=c$ on this interval, such that $f(b)-f(a)=f^{\prime}(c)(b-a) .$ | Remember | CO 3 | CLO 15 | AHSB02.15 |
| 5 | State Cauchy's mean value theorem. | Cauchy's mean-value theorem is a generalization of the usual mean-value theorem. It states that if $f(x)$ and $g(x)$ are continuous on the closed interval $[a, b]$, if $g(a) \neq g(b)$, and if both functions are differentiable on the open interval $(a, b)$, then there exists at least one $\boldsymbol{c}_{\text {with }} a<c<b$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$ | Remember | CO 3 | CLO 15 | AHSB02.15 |
| 6 | What is geometric interpretation of Rolles theorem? | Geometric interpretation of Rolle's Theorem: ... <br> Algebraically, this theorem tells us that if f ( x ) is representing a polynomial function in x and the two roots of the equation $\mathrm{f}(\mathrm{x})=0$ are $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$, then there exists at least one root of the equation $\mathrm{f}^{\prime}(\mathrm{x})=0$ lying between the values. | Understand | CO 3 | $\text { CLO } 16$ | AHSB02.16 |
| 7 | What is geometrical interpretation of Lagranges mean values? | In the given graph the curve $y$ $=f(\mathrm{x})$ is continuous from $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$ and differentiable within the closed interval $[\mathrm{a}, \mathrm{b}]$ then according to Lagrange's mean value theorem,for any function that is continuous on [ $a, b]$ and differentiable on $(a, b)$ there exists some $c$ in the interval $(a, b)$ such that the secant joining the endpoints of the interval $[a, b]$ is parallel to the tangent at $c$. | Remember | CO 3 | CLO 16 | AHSB02.16 |


| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | When a function $f(x, y)$ is said to be homogeneous? | Let $f(x, y)$ be a homogeneous function of order $\boldsymbol{n}_{\text {so that }}$ $f(t x, t y)=t^{n} f(x, y)$ | Understand | CO 3 | CLO 16 | AHSB02.16 |
| 9 | What are triple integrals? | Integrals of a function of three variables over a region of $\mathrm{R}^{3}$ are called triple integrals. | Remember | CO 3 | CLO 16 | AHSB02.16 |
| 10 | How to calculate volume using triple integral? | volume using triple integral $\iiint_{E} f(x, y, z) d V$ | Remember | CO 3 | CLO 16 | AHSB02.16 |
| 11 | What is difference between double and triple integrals? | A double integral is used for integrating over a twodimensional region, while a triple integral is used for integrating over a threedimensional region. | Remember | CO 3 | CLO 16 | AHSB02.16 |
| 12 | What is R in polar coordinates? | In polar coordinates, a point in the plane is determined by its distance $r$ from the origin and the angle theta (in radians) between the line from the origin to the point and the x -axis (see the figure below). It is common to represent the point by an ordered pair (r, theta). | Remember | CO 3 | CLO 17 | AHSB02.17 |
| 13 | What is Z in cylindrical coordinates? | In the cylindrical coordinate system, a point P in space is represented by the ordered triple ( $\mathrm{r}, \theta, \mathrm{z}$ ), where $r$ and $\theta$ are polar coordinates of the projection of P onto the $\mathrm{x} y$-plane and z is the directed distance from the $\mathrm{x} y$-plane to P . | Remember | CO 3 | $\text { CLO } 17$ | AHSB02.17 |
| 14 | What is relationship between Cartesian and polar coordinates? | to convert from Polar Coordinates (r, $\theta$ ) to Cartesian Coordinates ( $\mathrm{x}, \mathrm{y}$ ) : $x=r \times \cos (\theta) y=r \times \sin (\theta)$ | Remember |  | CLO 16 | AHSB02.16 |
| 15 | What is Cartesian coordinate? | The $x$ and $y$ coordinates of a point measure the respective distances from the point to a pair of perpendicular lines in the plane called the coordinate axes, which meet at the origin. | Remember | CO 3 | CLO 16 | AHSB02.16 |
| MODULE-IV |  |  |  |  |  |  |
| 1 | What is partial derivate? | A derivative of a function of two or more variables with respect to one variable, the | Remember | CO 4 | CLO 18 | AHSB02.18 |


| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | other(s) being treated as constant. |  |  |  |  |
| 2 | When the functions $u$ and $v$ are said to be functionally dependent? | When Jacobian transformation of $u$ and $v$ with respect to dependent variables x and y is zero. | Remember | CO 4 | CLO 18 | AHSB02.18 |
| 3 | What is stationary value? | A stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. | Remember | CO 4 | CLO 18 | AHSB02.18 |
| 4 | What are critical points? | Critical point of a single variable function. A critical point of a function of a single real variable, $\mathrm{f}(\mathrm{x})$, is a value $\mathrm{x}_{0}$ in the domain of f where it is not differentiable or its derivative is $0\left(f^{\prime}\left(x_{0}\right)=0\right)$. | Remember | CO 4 | CLO | AHSB02.18 |
| 5 | What are saddle points? | Saddle points are points where the function is neither maxima nor minima. | Remember | CO 4 | CLO | AHSB02.18 |
| 6 | What are inflection points? | A point of a curve at which a change in the direction of curvature occurs | Remember | CO 4 | CLO | AHSB02.18 |
| 7 | When the function is maximum? | $\mathrm{f}^{1}(\mathrm{x})$ and equate it to zero <br> Solve the above equation we get $\mathrm{x}_{0}, \mathrm{x}_{1}$ as roots. <br> Then find $f^{11}(x)$. <br> If $\mathrm{f}^{11}(\mathrm{x})_{(\mathrm{x}=\mathrm{x} 0)}>0$, <br> If $f^{11}(x)_{(x=x 0)},<0, f(x)$ is maximum at $\mathrm{x}_{0}$ | Remember | $\text { CO } 4$ | CLO | AHSB02.18 |
| 8 | When the function is minimum? | $f^{1}(x)$ and equate it to zero <br> Solve the above equation we get $\mathrm{x}_{0}, \mathrm{x}_{1}$ as roots. <br> Then find $\mathrm{f}^{11}(\mathrm{x})$. <br> If $\mathrm{f}^{11}(\mathrm{x})_{(\mathrm{x}=\mathrm{x} 0)}>0$, then $f(x)$ is minimum at $x_{0}$ | Remember | $\mathrm{CO} 4$ | CLO | AHSB02.18 |
| 9 | Write the first order partial derivatives? | f is a function x and y variable then $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ | Remember | CO 4 | CLO | AHSB02.18 |
| 10 | Write the higher order partial derivatives? | f is a function x and y variable then $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}, \frac{\partial^{2} f}{\partial x \partial y}$ | Remember | CO 4 | CLO | AHSB02.18 |
| 11 | Explain the jacobian of two variables? | If $u$ and $v$ are continuous and differentiable functions of two independent variables x and y then the determinant $\left\|\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial x}\end{array}\right\|$ | Remember | CO 4 | CLO | AHSB02.18 |


| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | Explain the jacobian of three variables? | If $u, v, w$ are continuous and differentiable functions of two independent variables x and $\mathrm{y}, \mathrm{z}$ then the $\text { determinant }\left\|\begin{array}{lll} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z} \end{array}\right\|$ | Remember | CO 4 | CLO | AHSB02.18 |
| 13 | When the functions $u$ and $v$ are said to be functionally independent? | When Jacobian transformation of $u$ and $v$ with respect to dependent variables x and y is not equals to zero. | Remember | CO 4 | CLO | AHSB02.18 |
| 14 | When the function is maximum point? | The stationary point (a,b) satisfying maximum condition ,that point of the function is called the maximum point. | Remember | CO 4 | CLO | AHSB02.18 |
| 15 | When the function is minimum point? | The stationary point (a,b) satisfying minimum condition ,that point of the function is called the minimum point. | Remember | CO 4 | CLO | AHSB02.18 |
| MODULE-V |  |  |  |  |  |  |
| 1 | What is vector algebra? | An algebra for which the elements involved may represent vectors and the assumptions and rules are based on the behavior of vectors. | Remember | CO 5 | CLO 22 | AHSB02.22 |
| 2 | Define unit vector? | A unit vector is a vector of unit length. | Remember | CO 5 | CLO 22 | AHSB02.22 |
| 3 | What is difference between scalar and vector? | A vector quantity has a direction and a magnitude, while a scalar has only a magnitude. | Remember | CO 5 | CLO 21 | AHSB02.21 |
| 4 | What is difference between dot and cross product? | If the product of two vectors is a scalar quantity, the product is called scalar product or dot product. If the product of two vectors is a vector quantity then the product is called vector product or cross product. If two vectors are perpendicular to each other than their scalar product is zero. | Remember | CO 5 | $\text { CLO } 21$ | AHSB02.21 |
| 5 | What is vector calculus? | Vector calculus, or vector analysis, is a branch of mathematics concerned with differentiation and integration of vector fields. | Understand | CO 5 | CLO 22 | AHSB02.22 |
| 6 | What is line integral? | Any integral that is evaluated along a curve is called a line integral. | Understand | CO 5 | CLO 23 | AHSB02.23 |
| 7 | Define unit normal. | Let $S$ be a two-sided surface . Let one side of $S$ be considered arbitrarily as the positive side (if S is a closed surface this is taken as the outer side). A unit normal $n$ to any point of the | Understand | CO 5 | CLO 22 | AHSB02.22 |


| S. No | QUESTION | ANSWER | Blooms Level | CO | CLO | CLO Code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | positive side of $S$ is called a positive or outward drawn normal. |  |  |  |  |
| 8 | What does Greens theorem mean? | Green's theorem gives a relationship between the line integral of a two-dimensional vector field over a closed path in the plane and the double integral over the region it encloses. | Understand | CO 5 | CLO 24 | AHSB02.24 |
| 9 | What does Stokes theorem mean? | a theorem proposing that the surface integral of the curl of a function over any surface bounded by a closed path is equal to the line integral of a particular vector function round that path. | Understand | CO 5 | CLO 24 | AHSB02.24 |
| 10 | What does Gauss divergence theorem mean? | The divergence theorem is a mathematical statement of the physical fact that, in the absence of the creation or destruction of matter, the density within a region of space can change only by having it flow into or away from the region through its boundary. | Understand | CO 5 | CLO 24 | AHSB02.24 |
| 11 | What is Gradient? | Gradient of a scalar field, gives the change per unit "distance" in the value of the field. | Remember | CO 5 | CLO 21 | AHSB02.21 |
| 12 | What is divergence? | the scalar product of the operator del and a given vector, which gives a measure of the quantity of flux emanating from any point of the vector field or the rate of loss of mass, heat, etc., from it. | Remember | CO 5 | CLO 21 | AHSB02.21 |
| 13 | What is difference between gradient and directional derivative? | In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. | Remember | CO 5 | $\text { CLO } 21$ | AHSB02.21 |
| 14 | What is directional derivative? | The directional derivative is the rate at which the function changes at a point in the direction. It is a vector form of the usual derivative | Remember | CO 5 | CLO 21 | AHSB02.21 |
| 15 | What is difference between gradient and directional derivative? | In sum, the gradient is a vector with the slope of the function along each of the coordinate axes whereas the directional derivative is the slope in an arbitrary specified direction. | Remember | CO 5 | CLO 21 | AHSB02.21 |

